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a b s t r a c t 

Video object detection is a challenging task due to the appearance deterioration in video frames. To 

enhance feature representation of the deteriorated frames, previous methods usually aggregate features 

from fixed-density and fixed-length adjacent frames. However, due to the redundancy of videos and irreg- 

ular object movements over time, temporal information may not be efficiently exploited using the tradi- 

tional inflexible strategy. Alternatively, we present a temporal-adaptive sparse feature aggregation frame- 

work, an accurate and efficient method for video object detection. Instead of adopting a fixed-density 

and fixed-length window fusion strategy, a temporal-adaptive sparse sampling strategy is proposed us- 

ing a stride predictor to encode informative frames more efficiently. A collaborative feature aggregation 

framework, which consists of a pixel-adaptive aggregation module and an object-relational aggregation 

module, is proposed for feature enhancement. The pixel-adaptive aggregation module enhances pixel- 

level features on the current frame using corresponding pixel-level features from other frames. Simi- 

larly, the object-relational aggregation module further enhances feature representation at proposal level. 

A graph is constructed to model the relations between different proposals so that the relation features 

and proposal features are adaptively fused for feature enhancement. Experiments demonstrate that our 

proposed framework significantly surpasses traditional dense aggregation methods, and comprehensive 

ablation studies verify the effectiveness of each proposed module in our framework. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Video object detection is an important yet challenging com- 

uter vision task that has attracted increasing attention in recent 

ears. In videos, object appearances are usually deteriorated by a 

ariety of factors including motion blur, video defocus, or part oc- 

lusion, which are extremely challenging for image-based detec- 

ors. To address the appearance deterioration problem, video ob- 

ect detectors usually attempt to explore temporal information in 

ideos to boost the detection performance on deteriorated frames. 

One major solution of recent methods [1–3] is to aggregate fea- 

ures from nearby frames to exploit spatial-temporal coherence for 

eature enhancement of the deteriorated frames. Temporal aggre- 

ation is usually operated on a fixed-density and fixed-length tem- 

oral window. These related methods are hereinafter referred to as 

he dense feature aggregation (DFA) methods. However, such DFA 
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trategies may be sub-optimal, and the reasons mainly lie in two 

spects: (1) temporal information in videos could be extremely re- 

undant so that dense sampling strategy might be computation- 

lly inefficient; (2) object appearances and locations may change 

rregularly over time and therefore additional noise might be also 

ntroduced by intuitive adjacent frame selection. In the following, 

e put these DFA methods in a unified view to explain how they 

perate (as shown in Fig. 1 (a)). 

As mentioned above, the DFA methods aggregate features of 

ultiple adjacent frames to enhance the feature representation of 

he current frame. Specifically, for reference frame t in the video, 

he support frames to be aggregated are mechanistically sampled 

rom a fixed-length and fixed-density temporal window [1–6] . Ad- 

acent frames of video usually contain extremely redundant infor- 

ation, such as frames t − 4 s to t in Fig. 1 (a) are very similar. The

eature representation of the current frame may only be slightly 

mproved at the cost of massive inefficient computations. An intu- 

tive way to reduce redundant computation is to sparsely sample 

he support frames with a fixed stride from the adjacent frames, as 

hown in Fig. 1 (b). However, as objects may move irregularly over 

https://doi.org/10.1016/j.patcog.2022.108587
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Fig. 1. (Best viewed in color) Comparison between our method and other multi-frame feature aggregation method. To obtain the detection results of reference frame t , 

the features of frame t would aggregate its nearby features for feature enhancement. Frame t is indicated as a reference frame, and the aggregated frames are indicated as 

support frames. 
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ime, an object in one certain frame may be disturbed by objects 

rom its adjacent frames. For example, in frame t + 3 s of Fig. 1 (b),

he cat and fox become blurred after a sudden moving, which may 

ntroduce additional noise to frame t . 

To exploit temporal information more efficiently, we propose a 

emporal-adaptive sparse feature aggregation framework for video 

bject detection. Aiming at the drawbacks of the DFA methods, 

 stride predictor is proposed to adaptively sample informative 

earby frames to be aggregated. As the appearances and loca- 

ions of objects changing irregularly over time, the sampling strat- 

gy should adapt to the variation. As shown in Fig. 1 (c), the cat

nd fox before frame t slowly move over time, and the adjacent 

rames contain a lot of redundant information. In this case, aggre- 

ating the distant frame t − 4 s which contains more diverse infor- 

ation is more useful than other close frames. The cat and fox 

egin to move quickly after frame t , and the closer frame t + 2 s

hould be more informative. Therefore, the stride predictor deter- 

ines whether nearby frames should be sampled according to the 

otion speed of the current object. Compared with the DFA meth- 

ds, our proposed method can achieve superior performance with 

ewer aggregated frames. Moreover, the proposed stride predictor 

an perform as a general module for video object detection frame- 

orks and can be easily integrated into traditional DFA methods. 

Furthermore, a collaborative feature aggregation framework, 

hich consists of a pixel-adaptive aggregation module and an 

bject-relational aggregation module, is proposed for feature en- 

ancement. Pixel-adaptive aggregation module firstly enhances 

ach pixel on the current feature map through aligned features 

rom nearby frames. However, pixel-level feature alignment may 

e inaccurate when the appearance of objects severely deterio- 

ates, which may adversely affect the subsequent feature enhance- 

ent. Therefore, an object-relational aggregation module is added 

o further enhance the features of the current frame. The proposal 

eatures extracted from both the current frame and the sampled 

rames are regarded as nodes of a specific graph. Each node of 

he graph aggregates information from its neighborhoods through 

raph convolution [7] , and proposals are enhanced by the mined 

elation features for better detection. We argue that such high- 

evel feature enhancement is a good complement to pixel-level fea- 

ure enhancement, especially for severe appearance deterioration. 
The contributions of this work are summarized below: f

2 
• A stride predictor is proposed to adaptively sample informative 

frames for feature aggregation. Compared with the traditional 

DFA methods, fewer aggregated frames can achieve higher de- 

tection accuracy. 
• A pixel-adaptive aggregation module is proposed to achieve ac- 

curate pixel-level spatial alignment and efficient feature ag- 

gregation to enhance each pixel feature quality of the current 

frame. 
• An object-relational aggregation module is further adopted to 

enhance the proposal features. A graph is proposed to model 

the object relations between different proposals for better fea- 

ture enhancement. 
• Our experiments show that the proposed model outperforms 

state-of-the-art methods on ImageNet VID [8] , and the effec- 

tiveness of each proposed component is verified by comprehen- 

sive ablation studies. 

This paper is based on and extends our conference ver- 

ion [9] in terms of several aspects. (1) Object-relational aggrega- 

ion is added to exploit the proposal relations by graph reason- 

ng to further enhance features of the current frame. (2) Consider- 

ng that the object may move at different speeds before and after 

he current frame, the stride predictor estimates the bidirectional 

peeds instead of the single front speed to sample the front frames 

nd the back frames separately. (3) In the conference version, the 

tride predictor and feature aggregation module are optimized sep- 

rately in the training stage. we improve it to an end-to-end train- 

ble framework, which makes the training process more conve- 

ient and fast. (4) More comprehensive experiments and analyses 

re presented. 

. Related work 

.1. Image-based object detection 

Image-based object detection has achieved remarkable results 

n static images, with the significant progress of the deep Convo- 

utional Neural Networks (CNNs) [10] . Image-based detectors are 

sually categorized into two genres, two-stage detectors, and one- 

tage detectors. The pipeline of two-stage detectors can be sum- 

arized as generating region proposals based on the extracted 

eature maps from the deep CNNs, and classifying and refining 
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he corresponding bounding boxes to obtain final detection re- 

ults. Related works include R-CNN [11] , Fast R-CNN [12] , Faster 

-CNN [13] and HON [14] , etc. One-stage detectors directly pre- 

ict the interested bounding boxes based on the feature maps. Re- 

ated works include YOLO [15] , SSD [16] , RetinaNet [17] , LAMD [18] ,

tc. Recently, multi-scale feature learning [19,20] , ensemble learn- 

ng [21] , and memory-based methods [22] in object detection have 

ttracted a lot of attention. Wu et al. [23] proposes a multi-model 

usion architecture to learn complementary deep features recur- 

ively to facilite salient object detection. Although the above men- 

ioned methods work well on images, they cannot be directly uti- 

ized in video tasks because they cannot handle appearance dete- 

ioration problems. 

.2. Video object detection 

Unlike static images, videos contain rich yet redundant tempo- 

al information, which makes video object detection and image- 

ased detection quite different. Video object detection explores 

emporal information to boost detectors generally through two di- 

ections, object level, and pixel level. 

To explore object level temporal information, Seq-NMS [24] , 

-CNN [25] and D&T [26] perform cross-frame bounding boxes 

inkages and then rescores the boxes associated with each link- 

ge. ST-Lattice [27] detects on sparse key-frames and propagates 

he predicted bounding boxes to non-key frames through motion 

nd scales. DorT [28] uses detector and tracker on key-frames 

nd non-key frames respectively, to obtain detection results and 

rack bounding boxes. STDnet-ST [29] adopts tubelet linking to link 

mall objects across video frames for small object detection. All the 

bove methods focus on bounding box association via independent 

rocesses of linking/tracking, which cannot be jointly optimized. 

DN [3] and MEGA [30] augment the features of each object pro- 

osal by aggregating its relation features over the proposals from 

upport frames in an end-to-end manner. 

To explore pixel level temporal information, DFF [31] uti- 

izes the optical flow network FlowNet [32] to estimate the per- 

ixel motion between two neighboring frames and propagate 

he features of the selected key-frames to neighboring non-key 

rames, reducing calculation and speeding up the whole frame- 

ork. FGFA [1] also applies an optical flow network to align fea- 

ures, and the aligned features are used for feature aggregation 

o augment the features of reference frames to improve detec- 

ion quality. THP [33] designs more advanced feature propaga- 

ion and key-frame selection mechanisms to improve accuracy as 

ell as speed. Different from previous works, STSN [2] applies 

 spatiotemporal sampling network instead of the optical flow 

etwork to perform frame-by-frame spatial alignment for aggre- 

ation. STMN [5] devises a MatchTrans module to achieve fea- 

ure alignment and aggregates features with well-designed recur- 

ent units. Chen et al. [34] proposes a long-term patchwise align- 

ent method to estimate the long-term spatio-temporal constraint 

o facilitate salient object detection in short-term video contents. 

hen et al. [35] proposes a 3DConv-based lightweight temporal 

nit, which can be inserted into each decoder layer to facilitate the 

nteraction between spatial and temporal saliency cues. Chen et 

l. [36] proposes a universal learning scheme to further boost ex- 

sting methods, which selects frames from the testing set according 

o semi-supervised motion quality perception to construct a new 

raining set. 

. Methodology 

.1. Framework overview 

An overview of the proposed framework is shown in Fig. 2 . Each 

eference frame t aggregates support frames t − b(t) and t + a (t) 
3 
o obtain detection results, where a (t) and b(t) are calculated by 

tride predictor. The features f t −b(t ) , f t and f t + a (t ) ar e obtained 

rom a feature extractor (e.g., ResNet-101 [37] ). Two feature aggre- 

ation modules are adopted to the sampled frames to enhance the 

eature representation of the reference frame. Pixel-adaptive fea- 

ure aggregation module is first adopted to enhance each pixel 

eature on current frame. The DeformAlign module is proposed 

o handle spatial feature misalignment between f t −b(t ) , f t + a (t ) and 

f t , generating f t −b(t ) → t , f t + a (t ) → t , which are then aggregated by 

ttention aggregation module to get f pixel . Object-relational ag- 

regation module is then applied to the enhanced features f pixel . 

PN [13] and RoIAlign [38] are utilized to generate object propos- 

ls X from f pixel and support frames. A graph is constructed ac- 

ording to the similarity between different proposals. Each node on 

he graph aggregates information from its neighborhoods through 

raph convolution [7] , and each proposal is enhanced by the mined 

elation features. Finally, the resulting enhanced proposals Z are 

hen exploited for proposal classification and regression. 

.2. Temporal-adaptive stride predictor 

To obtain diverse information at a reference frame t , previ- 

us methods [1–4,6] aggregate the long-term features of the in- 

ut video frames based on a fixed-length sliding window. Extend- 

ng the length of the sliding window can effectively increase the 

emporal receptive field size to obtain more temporal information. 

evertheless, considering the high redundancy of video, adjacent 

rames may comprise extremely redundant information, and the 

eature representation of the reference frame may only be slightly 

mproved at the cost of massive inefficient computations. 

Inspired by dilated convolution [39] , we find that increasing the 

emporal stride between aggregated frames can increase the tem- 

oral receptive field without any computation increasing. The tem- 

oral stride s between two frames t 1 and t 2 in the same video is 

efined as s = | t 2 − t 1 | . STMN [5] adopts a fixed temporal stride

 = 10 at each reference frame to aggregate nearby frames. Since 

bject appearances and locations may change irregularly over time, 

he fixed temporal stride strategy cannot model variable temporal 

nformation, and additional noise may be introduced by intuitive 

djacent frame selection. A better temporal stride scheduling strat- 

gy should be adaptive to the varying dynamics in the temporal 

omain. 

A natural criterion for judging the temporal stride at a reference 

rame is the motion speed of the object in the reference frame. 

ast motion speed means that the target objects may move out 

f the screen after a short period of time, the framework should 

hoose a smaller temporal stride and aggregate the closer frames 

or the reference frame. On the contrary, slow motion speed means 

he framework should choose a larger temporal stride and aggre- 

ate farther frames. The motion speed of an object is measured by 

ts intersection-over-union (IoU) scores with its corresponding in- 

tances in the neighboring frames (e.g., ±10 frames). The indicator 

s dubbed as ‘motion IoU’. The lower the motion IoU is, the faster 

he object moves. 

Therefore, a stride predictor is proposed adaptively selecting ag- 

regated frames for each reference frame and the network details 

re shown in Fig. 2 . f t and f t−e are features of two nearby frames 

rom the same video, and e is a fixed value. The differences be- 

ween f t and f t−e , i.e., f t − f t−e , are taken as input of stride pre- 

ictor, and the deviation score between frame t and t − e is then 

redicted. The deviation score is formally defined as the motion 

oU. Specifically, the prediction network comprises two convolu- 

ional layers with 3 × 3 kernel and 256 channels, a global average 

ooling, a fully-connected layer, and a sigmoid function that fol- 

ows. We define the transformation between deviation score and 

emporal stride according to experiments. When the number of ag- 
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Fig. 2. (Best viewed in color) An overview of the proposed framework. First, given the input reference frames t and its nearby frames t − e, t + e , the stride predictor 

estimates the before and after motion speeds of the reference frame, and adaptively selects informative frames t − b(t) and t + a (t) . Second, a pixel-adaptive aggregation 

module is adopted to enhance the reference features. The DeformAlign module aligns the features f t −b(t ) , f t + a (t ) to f t . Then aligned features are aggregated by At tent ion Agg

to enhance each pixel feature on the reference frame. Third, an object-relational aggregation module is adopted to the enhanced features f pixel . RPN and RoIAlign are utilized 

to generate proposals X from f pixel and support features. A graph is constructed according to the similarity between different proposals. Each node on the graph aggregates 

information from its neighborhoods through graph convolution. The features of each proposal are enhanced by the mined relation features. Finally, the enhanced proposals 

Z are exploited for proposal classification and regression. 
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regated frames is 3 by default, if the predicted deviation is less 

han 0.7 (score < 0 . 7 ), reference frame t is set as fast temporal

tride (10 by default). If the predicted score ∈ [0 . 7 , 0 . 9] , frame t

s set as middle temporal stride (24 by default). And the rest of 

he situation (score > 0 . 9 ), frame t is set as slow temporal stride

38 by default). When the number of aggregated frames increases, 

e adjust the temporal strides to keep the temporal receptive field 

nchanged. Different from our conference version [9] , considering 

hat the object may move at different speeds before and after the 

eference frame, f t−e and f t+ e are sent to the predictor simultane- 

usly with f t to predict the front and back motion speeds of ref- 

rence frame t , and then select the front frame t − b(t) and back 

rame t + a (t) for aggregation (as shown in Fig. 2 ). 

.3. Pixel-adaptive aggregation 

.3.1. DeformAlign feature alignment 

Note that the appearance features of the same object are usu- 

lly not spatially aligned across frames due to object motion. Any 

isalignment feature in the pixel-level feature aggregation may in- 

roduce artifacts around image structures, which may lead to false 

ecognitions and inaccurate localization. Therefore, the DeformA- 

ign module is proposed to utilize deformable convolution [40] to 

erform accurate pixel-level spatial alignment over time. The ar- 

hitecture of DeformAlign is shown in Fig. 3 Left . 

In order to transform the support features f i to align with refer- 

nce features f t , DeformAlign first concatenates f i and f t as input 

o predict sampling parameters �i of feature f i , for each position 

p k : 

i (p k ) = f θ ( f i , f t ) = { �p k,n | n = 1 , . . . , | R |} , (1)

here R = { (−1 , −1) , (−1 , 0) , . . . , (0 , 1) , (1 , 1) } donates a regular

rid of a 3 × 3 kernel. With �i and f i , the aligned features f i → t 

an be computed by the deformable convolution: 

f i → t (p k ) = 

∑ 

p n ∈ R 
ω(p n ) f i (p k + p n + �p k,n ) . (2) 

he convolution operates on the irregular positions p n + �p k,n , 

here �p k,n may be fractional. To address the issue, the opera- 

ion is implemented by bilinear interpolation, and details can be 

ound in Dai et al. [40] . 
4 
For the sampling parameter generation function f θ , the con- 

atenated f i and f t are reduced to 256 channels using two con- 

olution layers with 3 × 3 kernel. After that, a 3 × 3 kernel with 

 × k × k channels is used to generate offsets, where k is the ker- 

el size of the deformable convolution. In practice, an additional 

eformAlign module is cascaded to enhance the transformation ca- 

ability and further refine the coarsely aligned features. 

.3.2. Attention aggregation 

Attention aggregation is proposed for feature aggregation af- 

er feature alignment, as shown in Fig. 3 Right . Different support 

rames are unequally informative and feature alignment may suffer 

rom inevitable errors. Therefore, dynamical aggregating support 

rames at pixel-level are critical for effective feature aggregation. 

nspired by the previous work [1] , which indicates the importance 

f each support frame to the reference frame by adaptive weight, 

n attention module is used in aggregation to assign pixel-level ag- 

regation weights on each frame. 

Intuitively, at location p, if the aligned nearby features f i → t (p) 

re close to the reference features f t (p) , f i → t (p) should be paid 

ore attention. The dot product similarity metric [41] is utilized 

o measure the similarity between the embedding features. The 

eights of the attention map are estimated by: 

 t (p) = σ ( f e i → t (p) · f 
e 
t (p)) , (3) 

here σ is sigmoid function which restricts the output in [0,1], 

f e = ε ( f ) and ε (·) is an embedding network to reduce the fea-

ures to 256 channels using convolution layer with 3 × 3 kernel. 

he attention map M t has the same spatial size with f t and is then 

ultiplied in a pixel-wise manner to the original aligned features 

f i → t . These features which assign attention weights are concate- 

ated and fused by a convolution layer with 1 × 1 kernel. The re- 

ulting features f pixel contain information from the reference frame 

nd support frames, and remain the same shape with f t . 

.4. Object-relational aggregation 

Pixel-adaptive aggregation can improve the feature quality of 

ach pixel. However, pixel-level feature alignment may be inaccu- 

ate when the appearance of objects is severely deteriorated, which 
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Fig. 3. Illustration of the proposed pixel-adaptive aggregation. Left : feature alignment module DeformAlign. Right : feature aggregation with attention weight. 
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ay adversely affect the subsequent feature enhancement. There- 

ore, a graph-based module (as shown in Fig. 2 ) is designed to 

odel the relations between different objects and further enhance 

he reference features at the object-level. 

Given the enhanced features f pixel and support features f t −b(t ) , 

f t , f t + a (t ) , RPN [13] and RoIAlign [38] are first utilized to extract 

he proposal features. The proposals from f pixel are denoted as 

 

r = [ x 1 , . . . , x i , . . . , x N r ] ∈ R 

N r ×D in , and the proposals from support

eatures are denoted as X 

s = [ x 1 , . . . , x i , . . . , x N s ] ∈ R 

N s ×D in , where x i 
s the i th proposal, N 

r is the number of reference proposals, N 

s 

s the number of support proposals, and D 

in is the channel di- 

ension of the proposal features. All the proposals are denoted as 

 = X 

r ∪ X 

s ∈ R 

N×D in , where N = N 

r + N 

s . 

A graph is constructed to describe relation information between 

roposals. Each proposal in X is regarded as a node. A ∈ R 

N×N 

enotes the adjacency matrix of the graph, where a i j ∈ A indi- 

ates the importance of jth node to i th node. In order to describe

he relation between two nodes, the attention coefficients e i j con- 

ider both the appearance features and position information, which 

re computed by e i j = g( f a 
i j 
, f 

p 
i j 
) , where f a 

i j 
denotes the appearance

imilarity between x i and x j , and f 
p 
i j 

denotes the position rela- 

ion between node i and node j. We use embedding dot similar- 

ty [42] to measure appearance similarity: 

f a i j = 

α( x i ) 
T β( x j ) √ 

d k 
, (4) 

here α and β are two linear transformation functions that trans- 

orm features into the embedding space R 

d k . Positional encod- 

ng [42] is employed as position relation: 

f p 
i j 

= max { 0 , γ (ε( x p 
i 
, x p 

j 
)) } , (5) 

here positions x 
p 
i 

and x 
p 
j 

are embedded to a high-dimensional 

epresentation by function ε, which computes cosine and sine 

unctions of different wavelengths. The γ is a linear transfor- 

ation function which transforms the embedded feature into a 

calar weight. Inspired from graph attention layer [43] , we per- 

orm masked attention and compute e i j between node i and node 

j, j ∈ N i , where N i is the nodes in X 

s . Proposals in X 

s are propa-

ated on the graph to enhance reference proposals X 

r and support 

roposals X 

s . The enhanced X 

s are propagated on the next graph 

ayer to further enhance each node. Attention coefficients e i j are 

ormalized by softmax function to compute element a i j ∈ A : 

 i j = sof tmax j (e i j ) = 

f p 
i j 

exp( f a 
i j 
) 

∑ N i 
j=1 

f p 
i j 

exp( f a 
i j 
) 
. (6) 
5 
After constructing the graph, proposal features are propagated 

n the graph using the graph convolution [7] to mine the relations 

etween different proposals. The outputs of the graph convolution 

re updated features of each node. Formally, one layer of graph 

onvolution can be represented as: 

 = A X W , (7) 

here A is the adjacency matrix, X is the proposal features, W ∈ 

 

D in ×D out 
is the trainable weight matrix, and Z ∈ R 

N×D out 
denotes 

he updated nodes features. The graph convolution can be stacked 

nto multiple layers. Finally, the original features are transformed 

y a trainable linear transform function to fit the dimension of Z , 

nd outputs of the last graph layer are aggregated with the trans- 

ormed features via summation to get the final outputs. The en- 

anced reference proposal features Z 

r are exploited for proposal 

lassification and regression to get final detection results. 

.5. Inference and training 

.5.1. Inference 

Algorithm 1 is the detailed inference process of our model. 

iven an input video of consecutive frames { I i } , the specified ag- 

regation range K and the maximum temporal stride s max , mini- 

um temporal stride s min . The proposed method sequentially pro- 

esses each frame with a sliding feature buffer on the neighbor- 

ng frames (of length 2 Ks max + 1 in general, except for the begin-

ing and the ending Ks max frames). At initial, the feature network 

s applied in the beginning Ks max + 1 frames to initialize the fea- 

ure buffer and temporal stride (L3-L6 in Algorithm 1 ). Then the 

lgorithm loops over all the video frames to perform video ob- 

ect detection, and to update the feature buffer. For frame I i as 

he reference, the aggregated 2 K frames are sampled at strides s be f 

nd s a f t from the feature buffer(L9-L16). Then the sampled fea- 

ures are aggregated by our pixel-adaptive aggregation module to 

et enhanced feature f pixel (L17). RPN and RoIAlign are employed 

n f pixel and original sampled features to generate proposal fea- 

ures (L18). A proposal graph is constructed based on these propos- 

ls and graph convolution is used to aggregate information from 

eighbor nodes (L19). The updated proposal features Z 

r are fed to 

he detection network for object detection (L20). Finally, the fea- 

ure maps are extracted on the ( i + Ks max + 1 )th frame and are

dded to the feature buffer (L21–L22). 

.5.2. Training 

The proposed framework is fully differentiable and can 

e trained end-to-end. Following the settings in the previous 

ethod [1] , we randomly select T support frames { I t+ s , . . . , I t+ s }
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Algorithm 1 Inference algorithm of temporal-adaptive sparse fea- 

ture aggregation for video object detection. 

1: input : video frames { I i } , aggregation range K, initialized 

temporal stride s min and s max 

2: F = [ ] � feature buffer F 
3: for k = 1 to Ks max + 1 do � initialize F 
4: f k = N feat (I k ) 
5: F .append( f k ) 
6: s k = s min 

7: end for 
8: for i = 1 to ∞ do � reference frame 
9: A = [ ] � aggregated features buffer 

10: A.append( f i ) 
11: s i +10 = Stride ( f i , f i +10 ) � predict stride 
12: s be f , s a f t = s i , s i +10 

13: for j = 1 to K do 

14: b( j) , a ( j) = max (1 , i − js be f ) , i + js a f t 

15: A.append( f a ( j) , f b( j) ) 
16: end for 
17: f pixel = PA _ Agg(A ) � pixel-adaptive aggregation 

18: X 

r 
, X 

s = RoIAlign & RP N( f pixel , A ) 

19: [ Z 

r 
, Z 

s ] = OR _ Agg([ X 

r 
, X 

s ]) � object-relational 
aggregation 

20: y i = N det ( Z 

r ) � detect on the reference frame 
21: f i + Ks max +1 

= N feat (I i + Ks max +1 ) 

22: F .append( f i + Ks max +1 
) � update F 

23: end for 
24: output : detection results { y i } 
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Table 1 

Performance comparisons with state-of-the-art video object detection models 

on ImageNet VID validation set. 

Methods Backbone Base detector #Frames mAP (%) 

FGFA [1] ResNet-101 R-FCN 21 76.3 

MANet [4] ResNet-101 R-FCN 13 78.1 

STSN [2] ResNet-101 + DCN R-FCN 27 78.9 

STMN [5] ResNet-101 R-FCN 11 80.5 

SELSA [45] ResNet-101 Faster R-CNN 21 80.2 

LLRTR [6] ResNet-101 Faster R-CNN 33 81.0 

RDN [3] ResNet-101 Faster R-CNN 37 81.8 

MEGA [30] ResNet-101 Faster R-CNN 25 82.9 

TCENet [9] ResNet-101 R-FCN 3 80.3 

Ours ResNet-101 Faster R-CNN 3 82.5 

Ours ResNet-101 Faster R-CNN 7 83.4 
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 s 1 , . . . , s T ∈ [ −9 , 9] ) from the adjacent frames of I t . In our confer-

nce version [9] , the stride predictor and feature aggregation mod- 

le are optimized separately in the training stage, we improve it 

o an end-to-end trainable framework. During training, we use all 

 + 1 frames to train our model and take a pair of features f t and

f t+ s 1 to optimize the stride predictor branch simultaneously. Here, 

he motion IoU between the input frame pair is computed as the 

egression target based on the ground truth objects. If there are 

ultiple objects, calculate their average motion IoU. The training 

f the stride predictor can be carried out together with the detec- 

ion network, and the training time is greatly reduced. 

. Experiments 

.1. Dataset and evaluation 

We evaluate our model on the ImageNet VID [8] , which consists 

f 3862 training videos and 555 validation videos from 30 object 

ategories. We report mean Average Precision (mAP) on the vali- 

ation set as the evaluation metric. Following the setting in Zhu 

t al. [1] , both ImageNet VID and ImageNet DET [8] are utilized to

rain our model. Since the 30 object categories in ImageNet VID 

re a subset of 200 categories in ImageNet DET, the images from 

verlapped 30 categories in ImageNet DET are adopted for training. 

.2. Implementation details 

We adopt ResNet-101 [37] as the backbone network and modify 

t slightly as in method FGFA [1] . Faster R-CNN [13] is utilized as

ur base detector. The pixel-adaptive aggregation is adopted on the 

op of con v 5 stage. The fused features are split into 2 parts along

xis 1. The first and the last part are fed to the RPN and detection

ead respectively. 128 proposals are sampled with a ratio of 1:3 

or positive: negatives from the reference frame and 100 proposals 
6 
ith the highest objectness scores are sampled from each support 

rame. We implement the proposed framework mainly on Pytorch 

.7 [44] . We train our model in two stages. First, we pre-train our 

ull model on the ImageNet DET dataset using the annotations of 

he 30 object classes that overlap with the ImageNet VID dataset. 

ote that ImageNet DET contains only images, and we use the ref- 

rence frames as supporting frames. In the second training stage, 

he whole model is trained on ImageNet VID dataset, where the 

roposed networks are initialized from the weights learned in the 

rst stage. For training, 120K iteration with SGD optimizer is per- 

ormed on 4 NVIDIA RTX GPUs with each GPU holding one mini- 

atch. As mentioned before, each training batch contains T + 1 im- 

ges. The learning rate begins with 10 −4 and divides by 10 after 

0K iteration. At inference, we adopt NMS with a threshold of 0.5 

oU to suppress reduplicate detection boxes. 

.3. Comparison with state-of-the-art methods 

The performance of our method and other state-of-the-art 

ideo object detectors on the ImageNet VID validation set are 

hown in Table 1 . Here we only list multi-frame aggregation meth- 

ds that learn video object detectors by enhancing per-frame fea- 

ures from nearby video frames. For a fair comparison, we com- 

are the backbone, base detector, and aggregated frames dur- 

ng evaluation. Almost all methods use ResNet-101 [37] as the 

ackbone, except for STSN [2] , which adds deformable convolu- 

ion (DCN) [40] to the backbone and detector. R-FCN [46] and 

aster R-CNN [13] are two commonly used base detectors with 

imilar performance. TCENet [9] is our conference version model, 

hich contains stride predictor and pixel-adaptively feature aggre- 

ation module. All the methods listed in Table 1 adopt a fixed- 

ength window fusion strategy except SELSA [45] and our method. 

ELSA [45] randomly samples video frames for each reference 

rame to aggregate. Only our method adopts a smart temporal 

tride scheduling strategy that is adaptive to the varying dynamics 

n the temporal domain. Overall, our method has achieved better 

erformance against other state-of-the-art methods under similar 

ettings, and superior performance is offered with fewer aggrega- 

ion video frames. 

.4. Experimental analysis 

.4.1. Ablation study 

The effectiveness of each part in the proposed framework is 

lso evaluated. To give a more comprehensive comparison, a vari- 

ty of models are implemented. Table 2 compares our model with 

he image-based baseline and its variants. 

ethod (a) is the image-based baseline. It achieves 75.4% mAP 

with ResNet-101 and Faster R-CNN, which is close to 

the previous methods [3,30] . This indicates that our 



F. He, Q. Li, X. Zhao et al. Pattern Recognition 127 (2022) 108587 

Table 2 

Accuracy and runtime of different methods on ImageNet VID validation. 

Methods (a) (b) (c) (d) (e) (f) 

pixel-adaptive � � � � � 

object-relational � � � � 

uniform sampling ( s = 20 ) � 

stride predictor (ours) � 

stride predictor (aaai) � 

mAP (%) 75.4 79 . 0 ↑ 3 . 6 80 . 4 ↑ 5 . 0 82 . 0 ↑ 6 . 6 82 . 5 ↑ 7 . 1 82 . 3 ↑ 6 . 9 
runtime (ms) 53 118 122 122 125 125 

Fig. 4. Ablation study on temporal stride. The first subfigure is the results of the whole ImageNet VID validation, the last three subfigures are the results of the fast, middle, 

and slow motion subsets. 

M

M

M

M

M

Table 3 

Results of using stride predictor in other multi-frame aggregation meth- 

ods. 

Method Stride predictor #Frames mAP (%) runtime (ms) 

FGFA [1] 21 76.3 256 

FGFA [1] 
√ 

5 76.7 120 

RDN [3] 37 81.7 190 

RDN [3] 
√ 

5 81.9 135 
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baseline is competitive and serves as a valid refer- 

ence for evaluation. To verify the effectiveness of our 

method, we do not add bells and whistles like post- 

processing, model ensemble, etc. 

ethod (b) adopts pixel-adaptive aggregation in Fig. 3 . The aligned 

features are aggregated with the attention module at 

pixel-level to enhance per-frame feature representa- 

tion. After aggregating 3 frames (stride = 1), it in- 

creases the mAP score by 3.6% to 79.0%, which is 

comparable with other pixel-level feature aggregation 

methods [1,2,4] 

ethod (c) adds object-relational aggregation into method (b). 

Proposal features on the features f pixel are augmented 

by proposals from support frames through a graph- 

based module. It further increases the mAP score by 

1.4% to 80.4%, which demonstrates their complemen- 

tarity. 

ethod (d) takes uniform sampling strategy for feature aggrega- 

tion. After experiments with different fixed tempo- 

ral strides, we find that the best performance can be 

achieved on the ImageNet VID validation set when the 

temporal stride is set to 20 (refer to the first line of 

Fig. 4 ). Compared with method (c), it does not bring 

extra time consuming, and the mAP score increased by 

1.6% to 82.0%. 

ethod (e) adds the stride predictor to method (c). After adap- 

tively selecting informative support frames to aggre- 

gate, it achieves 82.5% mAP, 2.1% higher than that of 

method (c). The results show that the adaptive sam- 

pling performed by stride predictor can achieve better 

performance when compared to taking uniform sam- 

pling strategy (method (d)). And in the case of image- 

based Faster R-CNN, there is a 7.1% mAP score in- 

crease, which indicates the effectiveness of our pro- 

posed framework. 

ethod (f) uses the conference version [9] stride predictor, which 

only predicts the front speed and samples the front 

and back aggregated frames with the same tempo- 

ral stride. It is sub-optimal since the object moves at 

different speeds before and after the current frame. 

Therefore, we improve the stride predictor to predict 

the front speed and back speed of the reference frame 
7 
simultaneously and sample the front frames and back 

frames separately. The experimental results show that 

this improvement is effective. 

.4.2. Effect of temporal stride during inference 

We conduct an experiment to study the influence of the tem- 

oral stride during inference. We achieve it by testing our model 

n different fixed temporal stride. For better analysis, besides the 

tandard mAP scores on the whole ImageNet VID validation set, 

e also report the mAP scores over three subsets with different 

otion speeds. According to the motion IOU score, the objects 

re divided into fast (score < 0 . 7 ), middle (score ∈ [0 . 7 , 0 . 9] ), and

low (score > 0 . 9 ) subsets, respectively. The results are shown in 

ig. 4 . Increasing the temporal stride does not bring about any in- 

rease in computation. With the increase of temporal stride, the 

AP score gradually boosts to a maximum point and then begins 

o decrease. It shows that increasing the temporal receptive field 

s quite effective for improving detection accuracy. However, the 

ffective tem poral receptive field length is limited. Too large tem- 

oral stride introduces invalid information and harms the result of 

eature aggregation. We can see that the faster the object motion 

peed is, the smaller the effective tem poral receptive field is. Fast- 

oving objects should choose the close frame to aggregate, while 

low-moving objects should choose the distant frame to aggregate. 

herefore, a stride predictor can be effective for feature aggrega- 

ion, and the transformation between the estimated motion IOU 

nd temporal stride is set according to each maximum point in 

he three subfigures. We adopt the stride predictor in other multi- 

rame aggregation methods, and the results are shown in Table 3 . 

fter utilizing stride predictor in FGFA [1] , we only aggregate 5 

rames to achieve a similar performance (76.7% mAP) of the origi- 

al aggregated 21 frames (76.3% mAP), and the processing time of 
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Table 4 

Ablation study of using different motion threshold divisions in stride predictor. 

Number 1 2 3 4 

Motion 

threshold 

[0, 

1.0] 

[0, 0.8], [0, 0.7], [0.7, 0.9], [0, 0.65], [0.65, 0.85], 

[0.8, 1.0] [0.9, 1.0] [0.85, 0.95], [0.95, 1.0] 

Stride 20 14, 31 10, 24, 38 6, 21, 33, 42 

mAP (%) 82.0 82.2 82.5 82.6 

Table 5 

Analysis on different validation sets. 

Method Faster R-CNN [13] + PA + OR + PA&OR 

mAP all (%) 75.4 80.9 81.2 82.5 

mAP motion 
slow (%) 83.4 89.6 87.9 89.6 

mAP motion 
med (%) 73.1 78.9 79.5 81.3 

mAP motion 
fast (%) 51.7 59.4 60.3 61.1 

mAP scale 
large (%) 84.6 90.1 89.8 91.5 

mAP scale 
med (%) 48.6 59.2 62.9 64.7 

mAP scale 
small (%) 22.5 30.8 33.1 35.6 

mAP occlusion (%) 67.8 72.8 73.6 75.3 
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Table 6 

Ablation study on the number of graph layers in 

object-relational aggregation. 

Number 0 1 2 3 4 

mAP (%) 75.0 75.7 76.0 75.8 75.4 

Table 7 

Performance comparisons by aggregating different number 

of frames. 

#Frames 1 3 5 7 9 

mAP (%) 75.4 82.5 82.8 83.4 83.7 

runtime (ms) 53 125 191 285 357 
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 single frame is greatly reduced (from 256ms to 120ms). Similar 

esults are obtained in RDN [3] . We believe that the stride predic- 

or is effective in other multi-frame aggregation methods. 

.4.3. Effect of different motion threshold divisions 

We conduct an ablation experiment to explore the influence of 

ifferent motion threshold divisions in stride predictor, and the re- 

ults are shown in Table 4 . We divide the motion IOU into differ-

nt numbers of intervals, and set thresholds for each interval so 

hat the number of ground truth objects contained in each inter- 

al is close. We use the method introduced in Section 4.4.2 to set 

he stride transformation for each interval. The smaller the motion 

hreshold, the smaller the stride set. Denser division can set the 

emporal stride more flexibly and obtain better performance, but 

he process of exploring stride transformation is also more compli- 

ated. Establishing a continuous function mapping between motion 

OU and stride may be a better stride transformation method, but 

t is very difficult in the irregularly changing video. Considering the 

omplexity of stride transformation setting and performance, we 

et three interval divisions by default. 

.4.4. Effect of pixel-adaptive and object-relational aggregation 

In order to demonstrate the effectiveness of pixel-adaptive and 

bject-relational aggregation in our model, we conduct a more 

etailed analysis of the experimental results. The original valida- 

ion set is divided into several subsets based on motion speed, 

bject scale, and occlusion. The evaluation results are shown in 

able 5 . ‘PA’ means only pixel-adaptive aggregation with stride pre- 

ictor is used. ‘OR’ means only object-relational aggregation with 

tride predictor is used. ‘PA&OR’ means the proposed temporal- 

daptive sparse feature aggregation framework. The 3rd–5th rows 

n Table 5 show the results on subsets of different motion speeds. 

ompared with the image-based detector, both pixel-adaptive and 

bject-relational aggregation methods have a high improvement 

n these subsets, especially in the fast motion speed subset. The 

th–8th rows in Table 5 show the results on subsets of differ- 

nt object scale. The objects are divided into small ( area < 50 2 

ixels), medium ( 50 2 < area < 150 2 pixels), and large ( area > 150 2 

ixels). Even if superior performance can be achieved on the whole 

ataset, small objects remain a big challenge. The object-relational 

ggregation provides a larger gain on small set. The last row in 

able 5 shows the performance of occluded samples, which are 

ampled according to the occlusion annotations of ImageNet VID. 

ndeed, fast motion, small scale, and occlusion are extremely chal- 

enging for video object detection. Pixel-adaptive feature aggrega- 

ion can improve the current results, but they are still affected by 
8 
hese severe appearance deteriorations. It’s difficult to achieve ac- 

urate per-pixel correspondence during feature alignment. We ar- 

ue that high-level features are more reliable to use when the ob- 

ect is small scale, fast-moving, or occluded. After performing both 

ixel-adaptive and object-relational aggregation, better results are 

chieved on almost all subsets, which shows that the two aggre- 

ation modules are complementary to each other and enhance the 

eatures collaboratively. Compared with the results of the image- 

ased detector, our method has made significant improvement 

n all three subsets, which demonstrates the effectiveness of our 

ethod for appearance deterioration. 

.4.5. Effect of the number of graph network layers 

Table 6 compares the performance of using different number of 

raph network layers. In this experiment, ResNet-50 is utilized as 

ackbone network, and the other settings are the same as method 

c) of the ablation study. In the case of 0, the model only con- 

ains pixel-adaptive aggregation. With one graph layer, each pro- 

osal feature is enhanced with its first-order neighbors, and the 

AP score is increased from 75.0% to 75.7%. When increasing the 

umber of graph layers, the enhanced proposal features in the first 

ayer are further used to enhance the proposal features in the next 

ayer. The performance is getting better and tends to become flat. 

e speculate that two-order relation from neighbors is sufficient 

or most cases in ImageNet VID and high-order relation may intro- 

uce some unnecessary information. Hence, in our experiment, we 

et the number of graph layers as 2. 

.4.6. Effect of aggregated frame amount 

The frames in aggregation are controlled by the aggregation 

ange K in Algorithm 1 . When the aggregation range is K, the num- 

er of aggregated frames is 2 K + 1 . We vary 2 K + 1 from 1 to 9

o explore the effect of aggregated frame amount in our model, 

he results are shown in Table 7 . We adjust the temporal stride to 

eep the temporal receptive field unchanged when the number of 

ggregated frames increases. The number of aggregated frames is 

 for the image-based detector. When the number of aggregated 

rames increases to 3 frames, the performance is greatly improved. 

ontinue to increase the aggregated frames, the performance im- 

roves slightly, but the runtime is greatly increased. To achieve a 

alance between accuracy and runtime, we set the number of ag- 

regated frames as 3. 

.5. Limitations 

The proposed stride predictor introduces a novel idea to adap- 

ively select the nearby frames to aggregate, and experiments show 

ts effectiveness. However, the temporal stride setting in the stride 

redictor follows the assumption that the stride is positively cor- 

elated with the motion degree, which may be unstable in part of 

he scenes. Also, the transformation between the motion IOU and 
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emporal stride is hand-crafted, which may need to be reset when 

eneralizing to other datasets. We hope our attempt can inspire 

he community to explore more robust and flexible adaptive se- 

ection strategies. Furthermore, since multi-frames are aggregated 

or each reference frame to boost the detection accuracy, the run- 

ime of our method is slower than the image detector and hard to 

chieve real-time detection. 

. Conclusion and future work 

We propose a temporal-adaptive sparse feature aggregation 

ramework to effectively incorporate the temporal information for 

ideo object detection. Our main contributions are as follows, 

 stride predictor that adaptively selects support frames for the 

eference frame to aggregate, a collaborative feature aggregation 

ramework, which consists of a pixel-adaptive aggregation mod- 

le and an object-relational aggregation module, for feature en- 

ancement. Experiments on ImageNet VID dataset have demon- 

trated the superiority of our proposed framework by comparison 

ith other state-of-the-art video object detection methods. Abla- 

ion experiments show the effectiveness of each module. Thanks to 

he dynamic temporal information propagation strategy, the pro- 

osed method can significantly surpass traditional dense aggrega- 

ion methods while aggregating fewer frames. 

In future work, we plan to explore the potential of using our 

ideo object detection framework to develop other video under- 

tanding algorithms. Many video understanding tasks require the 

esults of object detection, and our framework can be used as a 

trong object detection baseline. For example, in the task of weakly 

upervised video object segmentation [48–50] , our framework can 

rovide a more accurate object location result than image detec- 

ors, and the temporal information propagation contained in the 

bject location process can be shared with the segmentation pro- 

ess for joint optimization. 
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