
Vol.:(0123456789)1 3

Multimedia Systems
https://doi.org/10.1007/s00530-022-00927-5

RESEARCH ARTICLE

FedFV: federated face verification via equivalent class embeddings

Lingyun Liu1,2,3 · Yifan Zhang1,2 · Haoyuan Gao1,2,4 · Xingtao Yu5 · Jian Cheng1,2

Received: 17 December 2021 / Accepted: 23 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Face verification models based on centralized training on large face datasets have achieved excellent performance on various
test benchmarks. However, due to the increasingly sophisticated privacy protection law, centrally collecting large amount
of face images becomes more difficult. We consider learning a face verification model in the federated setting, where each
client has access to the face images of only one class and class embeddings cannot be shared to other clients because of
data privacy. In this paper, we propose Federated face verification (FedFV), in which server transfers some equivalent class
embeddings to clients so that the clients’ class embeddings can be separated far away from each other. We show that our
proposed method FedFV outperforms the existing approaches in several face verification benchmarks.

Keywords  Equivalent class embeddings · Federated learning · Face recognition · Deep learning

1  Introduction

Due to the breakthrough of deep learning, computer vision
[1–5] has been greatly developed in recent years, and face
recognition [6–12], as a popular research field of computer
vision, has attracted many researchers to study it. Face
verification is a subfield of face recognition, which aims to
identify whether the two given face images belong to the
same identity. There has been many breakthroughs in this
field in recent years, such as SphereFace [13], CosFace [14],
ArcFace [15], etc. These methods greatly improve the face
verification neural network’s performance on many face

verification test benchmarks and make it mature so that it
can be widely used in real life.

The training process of all the methods mentioned above
needs a large training dataset. The more data, the better per-
formance. It is common to collect a large amount of data
to form a huge dataset and then centrally train the neural
network using these data on the server in the past. However,
face image is a kind of privacy sensitive biometric data and
due to the growing data privacy concerns and the strict legal
restrictions, centrally collecting large amounts of face data
becomes more difficult and thus centrallized training face
verification neural network becomes hard.

Recently in 2016, Federated learning (FL) [16–20],
which is a new training framework for machine learning

Communicated by B.-K. Bao.

 *	 Yifan Zhang
	 yfzhang@nlpr.ia.ac.cn

	 Lingyun Liu
	 liulingyun2019@ia.ac.cn

	 Haoyuan Gao
	 gaohaoyuan2019@ia.ac.cn

	 Xingtao Yu
	 yxt601@126.com

	 Jian Cheng
	 jcheng@nlpr.ia.ac.cn

1	 The National Laboratory of Pattern Recognition, Institute
of Automation, Chinese Academy of Sciences, Haidian
District, Beijing 100190, China

2	 Nanjing Artificial Intelligence Research of IA, Jiangning
District, Nanjing 211135, Jiangsu, China

3	 School of Future Technology, University of Chinese
Academy of Sciences, Haidian District, Beijing 100049,
China

4	 School of Artificial Intelligence, University of Chinese
Academy of Sciences, Haidian District, Beijing 100049,
China

5	 Administrative Committee of Nanjing Chi-Lin Innovation
Park, Jiangning District, Nanjing 211135, Jiangsu, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-022-00927-5&domain=pdf

	 L. Liu et al.

1 3

to solve the data privacy problems, has been proposed by
Google. In this framework, clients and server cooperate
to train a model and in the training process, clients are
not allowed to share their own data to each other so that it
can achieve the goal of protecting the data privacy. Since
then, a lot of federated optimization approaches have been
proposed [21–26]. However, the conventional federated
learning methods can not be directly applied to face veri-
fication tasks.

Face verification task needs a model that have the ability
to generate face features with strong separability because the
learned model is often used to identify images of the iden-
tities that do not appear in the training set which is called
open-set problem. Thus, in the training process, a positive
loss term is needed to keep a face feature as close to the
embedding of the class it belongs to as possible and a nega-
tive loss term is needed to keep a face feature as far away
to the embeddings of other classes as possible [27]. But the
class embedding also contains highly sensitive information
as it can be used to identify the users so that clients are also
not allowed to share their own class embeddings to each
other. When in the extreme settings that one client has only
access to one class, which is common in real life, the client
cannot calculate the negative loss term in the local training
round because of lacking of other class embeddings and it
will soon lead to a trivial solution [28].

Recently, two works have been proposed to this problem,
one is FedAwS [29] and the other is FedUV [27]. These two
methods enable that the federated training process can be
carried out normally without sharing clients’ class embed-
dings. FedAwS [29] proposed a regularization term which
is used in the server to separate the class embeddings and
FedUV [27] uses the property of error-correcting codes
(ECCs) which can maximize the minimum Hamming dis-
tance between distinct codewords. These two methods have
comparable performance on several test benchmarks. How-
ever, there is still a relatively large performance gap between
these methods and centrally training methods.

In this paper, we proposed Federated Face Verification, a
framework for training face verification models in the feder-
ated settings that one client has only access to one class and
the clients cannot share class embeddings with each other.
Our contributions are summarized as follows:

•	 We propose a new kind of vector named equivalent class
embeddings which is generated by fusing some clients’
original class embeddings. Keeping class embedding
far away from the equivalent class embeddings can also
make it far away from the original class embeddings.
Meanwhile, it is unable to restore the original class
embeddings from the equivalent class embedding gen-
erated by our proposed method so that it does not lead to
the leakage of class embeddings.

•	 We propose a framework FedFV to train face verification
models using equivalent class embeddings in the feder-
ated setting mentioned above.

•	 We test our proposed method FedFV on several famous
face verification benchmarks, including LFW [30],
Agedb-30 [31] and CFP-FP [32], and it shows that our
methods outperforms the existing methods FedAwS [29]
and FedUV [27].

2 � Related work

2.1 � Face verification

Given two face images x1, x2 , a neural network g
�
∶ X → ℝ

d
parameterized by � which maps an input from the input
space X to a d-dimensional embedding, and a threshold t,
we consider x1, x2 belong to the same identity if the simi-
larity s between their features g

�
(x1), g�(x2) calculated by

s = g
�
(x1)g�(x2)∕(||g�(x1)|| ⋅ ||g�(x2)||) is greater than t and

otherwise we consider that they belong to different identi-
ties. This is the testing process of face verification. Thus, it
is important to train a model that can produce features with
strong separability.

In the training process, lots of methods have been pro-
posed to improve the performance of the neural network.
Among them, SphereFace [13], CosFace [14], and ArcFace
[15] are recent excellent works by modifying the loss func-
tion to strengthen the supervision signal. Actually, they are
all variants of Softmax Loss described in Eq. (1).

where N is the number of samples in one mini-batch, C is
the number of classes, fi is the d-dimensional feature of the
input xi calculated by fi = g

�
(xi) and yi is the class label of

xi . wj ∈ ℝ
d denotes the class embedding of class j and bj

is the bias term. We refer to the settings in previous works
[13–15, 33–35] and then set bj = 0, ||wj|| = 1, ||fi|| = 1 . The
Softmax Loss in Eq. (1) can be written as follows:

where sj,i denotes the cosine similarity between the class
embedding wj and the face feature fi . In Eq. (2), the first
term is the positive loss term which forces the feature of the
training samples close to the embeddings of the classes they
belong to, and the second term can be seen approximated

(1)Lsof tmax = −
1

N

N�

i=1

log
e
wyi

fi+byi

∑C

j=1
ewjfi+bj

(2)

L�
sof tmax

= −
1

N

N�

i=1

log
e
syi ,i

∑C

j=1
esj,i

= −
1

N

N�

i=1

log esyi ,i +
1

N

N�

i=1

log

C�

j=1

esj,i

FedFV: federated face verification via equivalent class embeddings﻿	

1 3

as the negative loss term that keep features far away from
the other class embeddings although it includes a term esyi ,i .
Thus, the training process in face verification is a process
that maximizing the inter-class distances and minimizing the
intra-class distances. The methods mentioned above add a
margin term on the basis of Softmax Loss to make it more
difficult to classify correctly so that the trained neural net-
work has better performance. Actually, when there is only
one class, the Softmax Loss equals to 0 all the time so that
it cannot be used in FedAwS [29] and FedUV [27].

2.2 � Federated learning

Federated learning (FL) is a framework of machine learn-
ing in which there exists a server and multiple clients with

their own data and the server and clients cooperate to train
a machine learning model without sharing data with each
other to ensure the data privacy. It was first proposed in
2016 by Google along with an optimization algorithm Fed-
eratedAveraging (FedAvg) [18]. FedAvg [18] makes some
changes to the traditional SGD algorithm to adapt to the
setting of federated learning and is described in Algorithm 1.
Now federated learning has been applied in users’ digital
products, for example, Google keyboard prediction [36]. In
the future, federated learning is expected to play a more
significant role in real life.

Algorithm 1 FederatedAveraging [18]
Input: C: number of clients, ε: fraction of clients selected in each round, T :
total round, B: mini-batch size, E: epochs in local training, ni: number of
samples of client i.
Parameters: θt: the global model in t-th round, θti : the local model on client
i in t-th round.
Output: θ: the global model.

Server:
1: Initialize the global model θ0

2: m ← max(1, ε× C)
3: for t = 1, 2, . . . , T do
4: St ← (random set of m clients)
5: Send θt−1 to client i for i ∈ St

6: Receive θti from client i for i ∈ St

7: θt ←
∑

i∈St
niθ

t
i∑

i∈St
ni

8: end for
9: return θT

Client:
1: Receive θt−1 from the server.
2: for e = 1, . . . , E do
3: Forward and Backward normally with mini-batch size of B.
4: end for
5: Send θti to the server.

	 L. Liu et al.

1 3

The non-independent and identically distributed (Non-
IID) [18] data are a major challenge for federated learning.
Lots of approaches were proposed to solve this problem,
such as FedProx [24], FedNova [25], etc. These methods are
effective in the normal settings. But when in the federated
setting that each client has only access to one class and the
clients’ class embeddings cannot be shared with each other,
these methods do not work as the client lacks the negative
loss term in the local training process and it will soon lead
to a trivial solution.

To our best knowledge, two recent works focused on this
problem. The first one is FedAwS [29]. FedAwS proposed a
regularization term described in Eq. (3) .

where W ∈ ℝ
C×d is the class embedding matrix and � is a

margin. When clients finished their local training, they send
their local models and their own class embeddings to the
server and the server uses Eq. (3) to perform an optimiza-
tion step on the class embedding matrix W to make sure all
the class embeddings are separated from each other by at
least a margin of � so that the training process can be carried
out normally. It is proved that FedAwS [29] can approach a
consistent classifier in performance.

The other work is FedUV [27], which noticed that ECCs
can maximize the minimum Hamming distance between
distinct codewords. Thus, FedUV [27] let each client i
generate a unique vector, and then use ECC algorithm to
encrypt the unique vector to get a secret vector vi . These
vectors form a set V. Due to the properties of ECCs, the
secret vectors in V are already separated from each other
so that in the training process, only the positive loss term
described in Eq. (4) is required to make feature close to its
corresponding secret embedding.

(3)regsp(W) =
∑

i∈[C]

∑

i�≠i

(max{0, � − d(wi,wi�)})
2

In Eq. (4), W ′ is a parameter matrix that maps the secret vec-
tor vyi , which belongs to class yi , to a d-dimensional secret
class embedding. Different from FedAwS [29], these secret
vectors are invisible to the server so that the client is also
confidential to the server.

Although both of these two methods enable the model
to be trained normally in extreme federated settings men-
tioned above and can protect the class embeddings of the
clients to a certain extent, our later experiments results
show that they still have a large gap from the performance
of centralized training.

3 � Method

In this paper, we proposed a new method Federated face
verification (FedFV) which uses equivalent class embed-
dings to train a network in federated setting. We will intro-
duce our proposed method in detail in this section.

3.1 � Equivalent class embedding

As is mentioned above, the reason why direct application
of conventional federated methods does not work is that cli-
ent cannot calculate the negative loss term so that the class
embeddings cannot be separated from each other. A naive
idea to solve this problem is to find a way to let a client have
negative loss term without disclosing other clients’ class
embeddings. Thus, we consider to fuse the information of
the class embeddings to generate new vectors and mean-
while, the client cannot restore the information of the origi-
nal class embeddings from the new vectors. Specifically, our

(4)Lpos = −
1

N

N∑

i=1

max

(
0, 1 −

1

||vyi ||
2
vT
yi
W �g

�
(xi)

)

Fig. 1   Illustration of Equivalent Class Embedding. w
i
 denotes class

embedding and w̃ is the generated equivalent class embedding which
is obtained by applying Eq. (5) to w

1
 and w

2
 . a It is unable to restore

the original class embeddings w
1
 and w

2
 from w̃ because any two vec-

tors symmetric about w̃ on the red arc, such as w′
1
 and w′

2
 , can produce

w̃ using Eq. (5). b When a class embedding w
3
 is trained to keep far

away from the equivalent class embedding w̃ , it will also be far away
from the original class embeddings w

1
 and w

2
 . c Even in the extreme

case that � is extremely close to 90◦ , w
3
 will still maintain a large

included angle with w
1
 and w

2

FedFV: federated face verification via equivalent class embeddings﻿	

1 3

proposed method simply uses averaging and normalization
operations and is described as follows:

where wi and wj are any two class embeddings that have been
normalized and w̃ ∈ ℝ

d is the vector we need.
We call the generated vector w̃ the Equivalent Class

Embedding. As is shown in Fig. 1, the client cannot restore
w1 and w2 from the generated vector w̃ . The only information
client can obtain from w̃ is that the original class embed-
dings are on the red semicircle and actually in the training
process, it is a d-dimensional semi-hypersphere which is
a very huge space. Even if the client uses reverse method,
such as [37], to restore the face from w̃ , it cannot know the
similarity between this face and the original face as there are
infinite pairs of embeddings that can be used to generate w̃
by our proposed method. In addition, we also provided an
experiment (FedFV(k)) in Sect. 4.4 about using more than
two original embeddings to generate one equivalent class
embedding. It also works well and in this time it is even
more impossible to obtain the private information of other
clients through the equivalent class embedding w̃ . Mean-
while, when in local training process, client can bring w̃ into
the negative loss term in Eq. (2) so that the client can make
its class embedding w3 far away from w̃ which will also make
w3 far away from the original class embeddings w1 and w2
and this is why we name w̃ Equivalent Class Embedding.

When a client gets an Equivalent Class Embedding w̃ ,
the client cannot restore the original class embeddings from
it. The detailed proof is as follows: Firstly, w̃ is generated
by equation w̃ = w̄∕||w̄|| . According to the properties of
normalizing, there are innumerable solutions for w̄ when
given w̃ . And for any solution w̄ , it is generated by equation
w̄ =

1

2
(w1 + w2) , or by equation w̄ =

1

k
(w1 + w2 +⋯ + wk)

in Sect. 4.4 where we use k original class embeddings whose
norms are all 1 to generate w̃ instead of 2. No matter what
the value of k is, as long as the norm of w̄ is less than 1, the
above equation has at least one set of solutions. And there
are innumerable w̄ whose norm is less than 1. In addition, the
class embeddings used to generate Equivalent Class Embed-
dings are randomly selected. Therefore, no matter what the
value of k is, the client cannot restore the original class
embeddings from the given Equivalent Class Embeddings.

3.2 � Federated face verification

Now we already have the equivalent class embeddings, and
in this section, we will introduce our proposed framework
Federated face verification (FedFV) for training face verifi-
cation model in detail.

(5)
w̄ =

1

2
(wi + wj)

w̃ =
w̄

||w̄||

Different from the conventional federated methods, in
FedFV, the server has an equivalent class embedding gen-
erator as shown in Fig. 2. At each round of global training,
the server first selects m = max(1, � × C) clients to partici-
pate in this round of training where � ∈ (0, 1] . Then the
generator uses the class embeddings of clients which are
not selected to generate n equivalent class embeddings
because it is impossible to let a class embedding far away
from itself. Specifically, the generator randomly selects
two clients’ class embeddings at a time, and then gener-
ates an equivalent class embedding according to the Eq.
(5) until n embeddings are all generated. After that, the
server sends the global model � , the corresponding class
embedding wi and the generated equivalent class embed-
ding matrix W̃  , which is formed by stacking all equivalent
class embeddings in the vertical direction, to client i. The
clients then start there local training process using their

Fig. 2   The framework of FedFV. The numbers with circles repre-
sent the steps of the training process. 1  : sending global backbone
parameters to clients; 2  : generating Equivalent Class Embeddings
with original class embeddings; 3  : sending class embedding and
Equivalent Class Embeddings to the corresponding client; 4  : train-
ing model using the data in the client; 5  : sending the gradients of
the parameters back to the server. In our proposed framework, there
exists a generator in the server to generate equivalent class embed-
dings using clients’ class embeddings. Then the server sends them to
each client selected and the clients use them and its own class embed-
ding to form a matrix to calculate Softmax Loss so that all class
embeddings can be separated from each other

	 L. Liu et al.

1 3

own data. Significantly, W̃ is fixed during the local training
process because if it is changeable, it will also lead to triv-
ial solution where each row of W̃ would be the same and
the client’s class embedding wi would equal to −w̃ which
will make our method not work. When finished the local
training, the client i only sends its local model �i and its
class embedding wi to the server. Then server aggregates

all the local model to obtain the new global model and
uses the new class embeddings to generate new equivalent
class embeddings for the next round of training. This is
one round of training process in FedFV and the complete
training process is detailed in Algorithm 2.

Algorithm 2 Federated Face Verification
Input: C: number of clients and also number of classes, ε: fraction of clients
selected in each round, T : total round, B: mini-batch size, E: epochs in local
training, n: number of equivalent class embeddings, ni: number of samples of
client i.
Parameters: θt: the global model in t-th round, θti : the local model on client
i in t-th round, wt

i : class embedding of client i in t-th round.
Output: θ: the global model.

Server:
1: Initialize the global model θ0 and class embeddings w0

i , i = 1, . . . , C
2: m ← max(1, ε× C)
3: for t = 1, 2, . . . , T do
4: St ← (random set of m clients)
5: Rt ← (rest set of clients)
6: for j = 1, 2, . . . , n do
7: Randomly select two class embeddings wt−1

i1
and wt−1

i2
from Rt

8: Generate w̃t
j using wt−1

i1
and wt−1

i2
9: end for

10: W̃ t ← [w̃t
1 w̃t

2 · · · w̃t
n](vertically stack)

11: Send θt−1, wt−1
i and W̃ t to client i for i ∈ St

12: Receive θti , w
t
i from client i for i ∈ St

13: θt ←
∑

i∈St
niθ

t
i∑

i∈St
ni

14: end for
15: return θT

Client:
1: Receive θt−1, wt−1

i and W̃ t from the server.
2: W = [wt−1

i W̃ t](vertically stack)
3: for e = 1, . . . , E do
4: Forward and Backward normally with W̃ t fixed.
5: end for
6: Send θti , w

t
i to the server.

FedFV: federated face verification via equivalent class embeddings﻿	

1 3

4 � Experiment

4.1 � Datasets

CASIA-Webface [38] contains nearly 0.5M face image data
of about 10K identities. In our experiments, we randomly
select 1000 identities from those who had at least 30 images
to form an 30K face image dataset as our training set. Thus,
we have 1000 clients in our experiments. To test the perfor-
mance of FedFV on face verification task, we evaluate on
three test benchmarks, LFW [30], CFP-FP [32] and AgeDB-
30 [31] (Fig. 3). All face images in training set and test set
were re-sized to 64 × 64.

LFW [30] is a face dataset used for unconstrained face
recognition which contains about 13,000 face images of
5749 identities, and among them there are 1680 identities
who have two or more face images. This is a dataset often
used for face verification test. Its testing protocol provides a
list containing 6000 pairs of face images.

Fig. 3   Example pairs of all
test sets. Each face image
has already been aligned and
resized to 64 × 64 . The first col-
umn is the positive pairs and the
second column is the negative
pairs. LFW [30] focuses on the
unconstrained face verification,
CFP-FP [32] focuses on the
frontal profile face verification
and AgeDB-30 [31] focuses
on the face verification of age
invariance

Table 1   Verification accuracy on several test benchmarks. FedFV-n
denotes the FedFV method with n equivalent class embeddings

Bold values represent the highest accuracy on the current test set

Method LFW(%) AgeDB-30(%) CFP-FP(%)

FedFV-1 63.55 55.32 58.56
FedFV-5 78.73 59.58 70.22
FedFV-10 81.18 64.45 73.09
FedFV-50 82.50 66.48 74.50
FedFV-100 82.63 66.68 74.10
FedFV-500 83.22 66.83 74.23
FedFV-1000 83.03 67.05 74.94

Table 2   Verification accuracy when using different number of class
embeddings to generate one equivalent class embedding

Bold values represent the highest accuracy on the current test set
We use 100 equivalent class embeddings by default. Thus, FedFV(k)
denotes FedFV with 100 equivalent class embeddings, each of which
is generated by fusing k real class embeddings. Basically, the more
class embeddings are fused, the lower accuracy, but the impact is not
great

Method LFW(%) AgeDB-30(%) CFP-FP(%)

FedFV(2) 82.63 66.68 74.10
FedFV(3) 82.90 66.23 74.30
FedFV(5) 83.00 66.52 73.76
FedFV(10) 82.43 66.27 73.69
FedFV(50) 81.30 64.55 73.37
FedFV(100) 81.47 64.87 72.87

CFP [32] contains 500 identities and each identity has 10
frontal face images and 4 profile face images. It is used for
frontal-frontal (FF) and frontal profile (FP) face verification.
In this paper, we use CFP-FP [32] to evaluate FedFV, which
contains 7000 pairs of frontal profile face images.

AgeDB-30 [31] focus on the problem of face verification
of different ages. It contains 6000 pairs of face images with
a age difference of 30 years.

The face image pairs of all the datasets above are half-
positive and half-negative.

4.2 � Experiment settings

In our experiments, we use the same backbone as FedUV
[27] in face verification test which contains five basic blocks
and a FC layer. Each basic block consists a Convolution
layer, a Relu layer, a Maxpool layer and a Groupnorm [39]

	 L. Liu et al.

1 3

layer. We set the dimension of image feature to 512 so the
number of channels for all Convolution layer is 64, 128, 256,

512 and 512 respectively. If FedUV [27] is used, there is a
Scaling layer in the last.

We train all the models using FedAvg [18] algorithm with
1 local epoch and 15,000 rounds with eight clients selected
in each round. In client’s local training, we use SGD opti-
mizer with initial learning rate of 0.1 and the learning rate
is divided by 10 at 10,000 and 13,000 round. FedAwS [29]
and FedUV [27] are trained with the loss functions proposed
in their own paper respectively. Centralized training and our
proposed method FedFV are trained with the loss function
described in Eq. (2).

4.3 � Ablation study

In FedFV, we have a hyper-parameter n which is the number
of the equivalent class embeddings. In Table 1, we explore
the effect of the number of the equivalent class embeddings
on the accuracy on test benchmarks. The results show that

Fig. 4   ROC curves for models trained with FedAwS [29], FedUV-
511 [27], FedFV-100 and centralized training on three benchmarks.
FedUV-511 denotes FedUV with code length of 511. It shows that
three federated methods have comparable performances on LFW [30]

but FedFV-100 outperforms other federated methods on CFP-FP [32]
and AgeDB-30 [31]. The method of centralized training always per-
forms best on all benchmarks

Table 3   Verification accuracy of different methods. Centralized
means that training model in a non-federated manner

Bold values indicate that Centralized is the best method. Italic values
represent the highest accuracy of the current test set when using fed-
erated learning method
Our method performs best among all federated methods in these three
face verification benchmarks

Method LFW(%) AgeDB-30(%) CFP-FP(%)

Centralized 86.68 69.27 77.17
FedAwS [29] 82.47 59.53 69.56
FedUV-127 [27] 78.83 56.35 68.03
FedUV-255 [27] 79.42 57.23 68.41
FedUV-511 [27] 81.60 58.93 68.63
FedFV-100 82.63 66.68 74.10

FedFV: federated face verification via equivalent class embeddings﻿	

1 3

more equivalent class embeddings lead to higher perfor-
mance of the models. We can see that the fastest increment
occurs when n changes from 1 to 5 and when n gets larger
and larger, the accuracy of the model increases more and
more slowly until saturation. Thus, when only considering
accuracy, the larger n is better. However, in real life, com-
munication cost is a problem that must be considered in
federated learning. In FedFV, larger n means larger commu-
nication cost of download as there is no need to upload the
equivalent class embeddings. If the data type is float32, the
size of one 512-d equivalent class embedding is 2K. When
n is 100, the size is 200K which basically puts no pressure
on today’s download bandwidth. However when n is 1000,
the size is 2M, which puts more pressure on download band-
width without a significant improvement on accuracy. Thus,
we finally set n to 100 in rest experiments.

4.4 � Number of class embeddings used

In each of the above experiments, each equivalent class
embedding is generated by fusing two real class embed-
dings. If only using two class embeddings will still leak
some information, such as the semi-hypersphere informa-
tion of the original class embeddings, causing a certain risk,
it will be safer to fuse with three or more class embeddings,
because in this time, clients cannot even obtain the semi-
hypersphere information. Then, whether the fusion of three
or more class embeddings will work, we have carried out
some experiments.

The results are shown in Table 2. We can see that, basi-
cally, when generating a equivalent class embedding, the
more class embeddings used, the lower accuracy we will
obtain because more information will be lost. But even using

Fig. 5   Similarity distribution of class embeddings of different meth-
ods. It shows that most of the cosine similarities of all pairs of class
embeddings in centralized learning are around −0.35 which is about
110◦ . Most of the similarities of FedAwS and FedUV are around 0

(90◦ ) while the similarity distribution obtained by our method is
most similar to that of centralized learning and most of them are also
around −0.35 so that our method can obtain performance close to
centralized learning

	 L. Liu et al.

1 3

a lot of class embeddings, this accuracy drop will not be very
large, especially when the number is less than 10, the accu-
racy is nearly the same. Thus, when considering to safer gen-
erate equivalent class embeddings, the best number of class
embedding used is 3 as it will not reduce the accuracy and
will not bring more computational overhead to the server.

4.5 � Comparison with other methods

In this section, we compare our method with the existing
federated methods and centralized training on the test bench-
marks mentioned above. The results are shown in Fig. 4 and
Table 3. We can see that there is no doubt that centralized
training always performs best on all benchmarks. In the
remaining federated methods, our method FedFV outper-
forms other methods on all benchmarks and improves the
accuracy of LFW [30], CFP-FP [32] and AgeDB-30 [31] by
0.16%, 4.54% and 7.15% respectively. Although our method
has little improvement in LFW [30], we can see that the
accuracy of three federated methods is very close to that of
centralized training. We believe that LFW [30] is a simpler
test benchmarks than the other two benchmarks as it does
not have the interference of complex changes, such as age
changes, perspective changes, etc. Therefore, the federated
methods are easy to achieve the performance that is not
much different from centralized training and thus our method
has not improved much. When it turns to CFP-FP [32] and
AgeDB-30 [31], there is a large gap between the accuracy of
centralized training and the two federated methods FedAwS
[29] and FedUV [27]. Our method can effectively narrow the
performance gap between federated methods and centralized
training on these difficult test benchmarks.

To explore the learned embedding, we further conduct
an experiment about the similarities between the learned
class embeddings. When the training process is finished,
we calculate the cosine similarities of all possible pairs of
class embeddings and make statistics on them. The results
of different methods are shown in Fig. 5 .

From Fig. 5, it is shown that firstly the cosine similar-
ity distribution obtained by our method is most similar to
that of centralized learning and this is an important reason
why FedFV can achieve good performance that close to the
method of centralized learning comparing to FedAwS and
FedUV. In addition, most of the cosine similarities of all
pairs of class embeddings in centralized learning and in
FedFV are around −0.35 which is about 110◦ while most of
the similarities in FedAwS and FedUV are around 0 which
is 90◦ . This indicates that FedFV is indeed able to keep the
classes embeddings away from each other. In conclusion,
our method FedFV can obtain the similarity distribution
similar to that of centralized learning and can keep the class
embedding away from each other so that FedFV can get bet-
ter performance than FedAwS and FedUV.

5 � Conclusion

In this paper, we proposed a new framework FedFV to train
a face verification model in the federated setting where each
client has only access to one class and clients are not allowed
to share class embeddings with each other. In our method,
the server will gather all clients’ class embeddings and use
them to generate some equivalent class embeddings. The
clients will receive these equivalent class embeddings and
use them to calculate the negative loss term so that all class
embeddings can be equivalently separate from each other.
Our experiment results show that our method outperforms
the existing methods FedAwS [29] and FedUV [27] on sev-
eral face verification test benchmarks. However, our method
still has a disadvantage that our method needs the clients
exchange their class embeddings with the server compared
with FedUV [27]. This will be what we hope to improve
next.

Acknowledgements  This work was supported in part by the Strategic
Priority Research Program of Chinese Academy of Sciences, Grant
No. XDA27040300, Jiangsu Key Research and Development Plan (No.
BE2021012-2), and NSFC 61906195, 61876182.

Declarations 

Conflict of interest  The authors have no competing interests to declare
that are relevant to the content of this article.

References

	 1.	 O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S.,
Hernandez, G.V., Krpalkova, L., Riordan, D., Walsh, J.: Deep
learning vs. traditional computer vision. In: Science and Informa-
tion Conference, pp. 128–144 (2019). Springer

	 2.	 Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.:
Deep learning for computer vision: a brief review. Comput. Intell.
Neurosci. 2018 (2018)

	 3.	 Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.:
Deep learning advances in computer vision with 3d data: a survey.
ACM Comput. Surv. (CSUR) 50(2), 1–38 (2017)

	 4.	 LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. Proc. IEEE 86(11),
2278–2324 (1998)

	 5.	 Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-
tion with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 25, 1097–1105 (2012)

	 6.	 Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition
(2015)

	 7.	 Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Clos-
ing the gap to human-level performance in face verification. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2014)

	 8.	 Sun, Y., Wang, X., Tang, X.: Deep learning face representation
from predicting 10,000 classes. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
1891–1898 (2014)

FedFV: federated face verification via equivalent class embeddings﻿	

1 3

	 9.	 Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face rep-
resentation by joint identification-verification. In: NIPS, pp.
1988–1996 (2014). http://​papers.​nips.​cc/​paper/​5416-​deep-​learn​
ing-​face-​repre​senta​tion-​by-​joint-​ident​ifica​tion-​verif​icati​on

	10.	 Sun, Y., Wang, X., Tang, X.: Deeply learned face representations
are sparse, selective, and robust. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
2892–2900 (2015)

	11.	 Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified
embedding for face recognition and clustering. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2015)

	12.	 Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature
learning approach for deep face recognition. In: European Confer-
ence on Computer Vision, pp. 499–515 (2016). Springer

	13.	 Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface:
Deep hypersphere embedding for face recognition. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017)

	14.	 Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z.,
Liu, W.: Cosface: Large margin cosine loss for deep face recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2018)

	15.	 Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angu-
lar margin loss for deep face recognition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2019)

	16.	 Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G.,
Cummings, R., D’Oliveira, R.G.L., Eichner, H., Rouayheb,
S.E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi,
B., Gibbons, P.B., Gruteser, M., Harchaoui, Z., He, C., He, L.,
Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi,
G., Khodak, M., Konečný, J., Korolova, A., Koushanfar, F.,
Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R.,
Özgür, A., Pagh, R., Raykova, M., Qi, H., Ramage, D., Raskar,
R., Song, D., Song, W., sTICH, S.U., Sun, Z., Suresh, A.T.,
Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang,
Q., Yu, F.X., Yu, H., Zhao, S.: Advances and Open Problems
in Federated Learning (2021)

	17.	 Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learn-
ing: concept and applications. ACM Trans. Intell. Syst. Technol.
(TIST) 10(2), 1–19 (2019)

	18.	 McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas,
B.A.: Communication-efficient learning of deep networks from
decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of
the 20th International Conference on Artificial Intelligence and
Statistics. Proceedings of Machine Learning Research, vol. 54,
pp. 1273–1282 (2017). PMLR. https://​proce​edings.​mlr.​press/​
v54/​mcmah​an17a.​html

	19.	 Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning:
challenges, methods, and future directions. IEEE Signal Pro-
cess. Mag. 37(3), 50–60 (2020). https://​doi.​org/​10.​1109/​MSP.​
2020.​29757​49

	20.	 Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman,
A., Ivanov, V., Kiddon, C., Konečný, J., Mazzocchi, S., McMa-
han, H.B., Overveldt, T.V., Petrou, D., Ramage, D., Roselander,
J.: Towards Federated Learning at Scale: System Design (2019)

	21.	 Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh,
A.T., Bacon, D.: Federated Learning: Strategies for Improving
Communication Efficiency (2017)

	22.	 Hsu, T.-M.H., Qi, H., Brown, M.: Measuring the Effects of Non-
Identical Data Distribution for Federated Visual Classification
(2019)

	23.	 Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
Suresh, A.T.: Scaffold: Stochastic controlled averaging for fed-
erated learning. In: International Conference on Machine Learn-
ing, pp. 5132–5143 (2020). PMLR

	24.	 Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
Smith, V.: Federated Optimization in Heterogeneous Networks
(2020)

	25.	 Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the
Objective Inconsistency Problem in Heterogeneous Federated
Optimization (2020)

	26.	 Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný,
J., Kumar, S., McMahan, H.B.: Adaptive Federated Optimization
(2021)

	27.	 Hosseini, H., Park, H., Yun, S., Louizos, C., Soriaga, J., Well-
ing, M.: Federated Learning of User Verification Models Without
Sharing Embeddings (2021)

	28.	 Bojanowski, P., Joulin, A.: Unsupervised learning by predicting
noise. In: International Conference on Machine Learning, pp.
517–526 (2017). PMLR

	29.	 Yu, F., Rawat, A.S., Menon, A., Kumar, S.: Federated learning
with only positive labels. In: International Conference on Machine
Learning, pp. 10946–10956 (2020). PMLR. https://​proce​edings.​
mlr.​press/​v119/​yu20f.​html

	30.	 Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled
faces in the wild: a database for studying face recognition in
unconstrained environments. In: Learned-Miller, E., Ferencz, A.,
Jurie, F. (eds) Workshop on Faces in ’Real-Life’ Images: Detec-
tion, Alignment, and Recognition, Marseille, France (2008).
https://​hal.​inria.​fr/​inria-​00321​923

	31.	 Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia,
I., Zafeiriou, S.: Agedb: The first manually collected, in-the-wild
age database. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops (2017)

	32.	 Sengupta, S., Chen, J.-C., Castillo, C., Patel, V.M., Chellappa,
R., Jacobs, D.W.: Frontal to profile face verification in the wild.
In: 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 1–9 (2016). https://​doi.​org/​10.​1109/​WACV.​
2016.​74775​58

	33.	 Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss
for convolutional neural networks. In: ICML, vol. 2, p. 7 (2016)

	34.	 Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: Normface: L2 hyper-
sphere embedding for face verification. In: Proceedings of the
25th ACM International Conference on Multimedia. MM ’17, pp.
1041–1049. Association for Computing Machinery, New York,
NY, USA (2017). https://​doi.​org/​10.​1145/​31232​66.​31233​59

	35.	 Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax
for face verification. IEEE Signal Process. Lett. 25(7), 926–930
(2018). https://​doi.​org/​10.​1109/​LSP.​2018.​28228​10

	36.	 Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F.,
Augenstein, S., Eichner, H., Kiddon, C., Ramage, D.: Federated
Learning for Mobile Keyboard Prediction (2019)

	37.	 Duong, C.N., Truong, T.-D., Luu, K., Quach, K.G., Bui, H., Roy,
K.: Vec2face: Unveil human faces from their blackbox features in
face recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6132–6141 (2020)

	38.	 Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning Face Representation
from Scratch (2014)

	39.	 Wu, Y., He, K.: Group normalization. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV) (2018)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://papers.nips.cc/paper/5416-deep-learning-face-representation-by-joint-identification-verification
http://papers.nips.cc/paper/5416-deep-learning-face-representation-by-joint-identification-verification
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MSP.2020.2975749
https://proceedings.mlr.press/v119/yu20f.html
https://proceedings.mlr.press/v119/yu20f.html
https://hal.inria.fr/inria-00321923
https://doi.org/10.1109/WACV.2016.7477558
https://doi.org/10.1109/WACV.2016.7477558
https://doi.org/10.1145/3123266.3123359
https://doi.org/10.1109/LSP.2018.2822810

	FedFV: federated face verification via equivalent class embeddings
	Abstract
	1 Introduction
	2 Related work
	2.1 Face verification
	2.2 Federated learning

	3 Method
	3.1 Equivalent class embedding
	3.2 Federated face verification

	4 Experiment
	4.1 Datasets
	4.2 Experiment settings
	4.3 Ablation study
	4.4 Number of class embeddings used
	4.5 Comparison with other methods

	5 Conclusion
	Acknowledgements
	References

