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a b s t r a c t 

Localization is a critical subtask in object detection, which is closely related to spatial information of ob- 

jects. Most current detectors simply rely on the fitting ability of deep neural networks to regress towards 

numerical targets such as coordinates of object boxes. Training deep networks for sufficient fitting abil- 

ity requires a large number of annotations that are expensive to obtain. In this work, we fully exploit 

limited annotations by extracting label geometry to improve localization performance on small datasets. 

We generate distance transform of bounding box edges according to localization labels, with which we 

supervise intermediate outputs of networks pixel by pixel to reconstruct object geometry for localization. 

Distance transform is sensitive to box edges and provides geometric gradients flowing into boundaries. 

We learn such gradients to enhance geometric-aware features through a coupled training with regression, 

and use it to refine regressed boxes in an evolutionary manner in inference. Extensive experiments are 

implemented to demonstrate the effectiveness of our method. Our method can be applied in applications 

that required human-machine interaction, such as the driver-assistance system in autonomous driving, by 

providing accurate detections to assist humans in making better decisions. 

© 2022 Elsevier B.V. All rights reserved. 

1

d

m

i

p

v

p

i

d

b

t

i

d

a

m

t

4

n

t

a

e

o

t

d

c

p

b

a

w

t

H

t

f

p

d

h

0

. Introduction 

Object detection is a fundamental task in computer vision, and 

etecting accurate bounding boxes is of great importance in many 

odern applications such as traffic monitoring [1–5] , surveillance 

n smart Internet of Things (IoT) [6,7] , medical pre-diagnosis sup- 

ort [8] , smart manufacturing [9] , anomaly detection [10] , and ad- 

anced tasks with unknown objects [11,12] . Object detection also 

lays an important role in applications involving human-machine 

nteraction, such as the driver-assistance system in autonomous 

riving, where accurate detections can assist humans in making 

etter decisions. Despite differences in design details of various de- 

ection frameworks, most object detectors [13–15] rely on bound- 

ng box regression to localize objects, which is effective to pre- 

ict continuous variables such as offsets. Though this paradigm has 

chieved impressive performance, it still leaves room for improve- 

ent. For example, the localization task is heavily related to spa- 

ial information of objects, but the regression targets are usually 

-d vectors for the network to fit, which have neither structure 
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or geometric information aligned with input images. Thus detec- 

ors entail strong fitting ability to bridge the gap between inputs 

nd targets. In addition, detectors employ deep neural networks to 

xtract features for regression, whereas spatial details such as fine 

bject boundaries may be lost during consecutive strides and fea- 

ure poolings, which limits the precision of localization. 

Recently, keypoint-based detectors [16–19] have been greatly 

eveloped. They output heatmaps with object keypoints such as 

orners [16,19] and centers [17,18] highlighted, and then group key- 

oints with similar embeddings to enclose objects with bounding 

oxes. These methods convert numerical labels into spatial space, 

nd learn geometry-aware features which are spatially aligned 

ith corresponding keypoints. Keypoints can reflect the exact spa- 

ial extent of objects, thus lead to better localization performance. 

owever, as keypoints of multiple objects are simultaneously ac- 

ive on the same heatmap, the keypoint-based detectors often suf- 

er incorrect keypoint clustering which greatly affects detection 

erformance. In addition, as the localization performance highly 

epends on the accuracy of keypoint detection, this keypoint-based 

ethod is susceptible to appearance missing on object boundaries, 

specially when heavy occlusion occurs. 

https://doi.org/10.1016/j.patrec.2022.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.01.004&domain=pdf
mailto:huxy@njust.edu.cn
https://doi.org/10.1016/j.patrec.2022.01.004
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To take advantage of both keypoint-based and regression-based 

ethods, we propose an architecture on regression-based FCOS 

15] to learn label geometry, with which we regularize the deep 

egression networks for accurate localization. We convert bound- 

ng box labels to 2-d maps, distance transform masks of box edges, 

o spatially supervise intermediate outputs of the detector. The in- 

ermediate supervision constrains the optimization path of neural 

etworks, thus the detector can impose more attention on spatial 

nformation in training. 

Supervised by distance transform labels, the intermediate out- 

uts reconstruct some weak (i.e., bounding box edges) but suffi- 

ient geometric information from deep networks. It is intuitive to 

ntegrate the learned geometry into the regression branch to im- 

rove localization performance. Inspired by Active Contour Models 

20] and its variant of active rays [21,22] which apply constraints 

f image geometry such as gradients to iterative parameter update, 

e couple regressed boxes with intermediate masks in a similar 

volutionary manner to incorporate geometric regularization into 

egression. We construct an energy function on predicted distance 

ransforms, and evolve regressed boxes via minimizing the energy 

unction, the minimum of which defines the final sides of bound- 

ng boxes. 

Our main contributions can be summarized as follows: 

1. We propose an architecture of learning object geometry hidden 

in numerical labels to improve object localization. An interme- 

diate supervision is imposed on deep networks to enforce spa- 

tial regularization in training, which benefits side-aware feature 

learning. 

2. We couple reconstructed geometry, distance transform of box 

edges, with regression in training to enhance regression fea- 

tures, and iteratively evolve regressed boxes in inference to re- 

fine object locations. 

. Related works 

.1. Geometry in loss functions 

Some methods [23–25] take geometry such as distance and area 

f boxes into account when designing loss functions for regression. 

oU loss in UnitBox [23] is the first to consider overlap between 

oxes and regress four sides of a predicted box as a whole unit. 

t is designed to alleviate the sensitivity to variant object scales in 

ommonly adopted � n -norm losses, such as � 2 -norm [26] and � 1 - 

mooth loss [13] . Since then, more geometric properties are con- 

idered, such as the smallest convex shapes enclosing predictions 

nd targets in GIoU loss [24] , central point distance in DIoU loss 

25] , and aspect ratio in CIoU loss [25] . These losses converge faster

n training, and bring better performance in inference. 

.2. Geometry in localization targets 

Most detectors apply a top-down manner to detect objects, and 

egress offsets from densely tiled anchors [13] or candidate loca- 

ions [15] to generate bounding boxes. Their targets are 4-d vectors 

elated to bounding box coordinates, and the prediction of contin- 

ous variables enables fine-tuning of object locations. CornerNet 

16] introduces a new perspective to the localization task. It de- 

ects bounding boxes from high-resolution heatmaps in a bottom- 

p style. The localization target of this kind of detectors is directly 

ssociated with geometry, such as heatmaps of corners [16,19] and 

enters [17,18] , and the geometric structure among keypoints are 

xplicitly considered when grouping them into bounding boxes 

17,18] . To take advantage of the two kinds of detectors, we super- 

ise our model with both localization targets. Besides the conven- 

ional targets for the regression branch, we apply distance trans- 
54 
orm of box edges to supervise intermediate outputs of our detec- 

or, and further couple the intermediate prediction with regressed 

oxes for joint training and iterative refinement in inference. 

.3. Geometry in feature fusion 

Geometric information can also be integrated into neural net- 

orks via feature fusion. Common choices of geometric features 

re object edges [27] , image gradients [27] , semantic segmentation 

27] , masks of bounding boxes [28] , corner heatmaps [28] , and so

n. These features, which are either extracted from other models 

r jointly trained as a new task along with object detection, are 

dded or concatenated to backbone layers of detectors. Different 

rom these methods that imposing object geometry on features, 

e directly couple learned geometry with regressed boxes to re- 

ne object locations, and enhance side-aware features via distance 

ransform learning. 

. Regularizing deep networks with label geometry 

.1. Learning from label geometry 

The localization label of an object is usually coordinates of 

 

x min , y min , x max , y max ) for corners or ( x min , y min , h, w ) with the size 

f bounding box. We convert it to distance transform of box edges 

o construct spatial supervision. The transformed labels can reflect 

patial information of objects, including aspect ratios and scales of 

bjects, the scope of object extension, as well as the absolute po- 

ition of an object in the image. The distance transform maps also 

rovide geometric gradients pointing to edges of boxes. We con- 

ider such spatial information hidden in labels as label geometry, 

nd utilize it to regularize deep networks in the spatial space. Each 

round-truth distance transform responds to a unique and com- 

lete bounding box of an object. This allows all pixels of box edges 

ncluding occluded ones to be supervised in the boundary learn- 

ng. Due to the one-to-one correspondence, the confusion of pix- 

ls in the overlapping area belonging to which object can also be 

voided. Correspondingly, predictions of different objects should be 

xclusively generated on different maps, and should also have high 

esolution to retain sufficient spatial details. 

Based on above considerations, we employ the mask branch in- 

roduced by CondInst [29] to generate distance transform for each 

nstance, and build the mask branch on FPN layer P3 after a series 

f (e.g., 4) Conv-ReLU layers to generate high-resolution masks, as 

hown in Fig. (1 ). The mask branch applies three 1 × 1 convo- 

utions with 8 channels to decouple instance-aware features and 

enerate instance masks separately. Kernels θ ∈ R 

d of the three 

onvolution filters are dynamically generated by controller heads 

hich employ the same structure as the classification head, i.e., 

 Conv-ReLU layers on each FPN level. Each kernel θx,y generated 

rom feature location (x, y ) is either associated with one candidate 

bject or the background according to the assignment of positive 

amples. We feed θx,y of K positive locations into the mask branch 

o generate distance transform of K positive instances separately. 

he outputs are then upsampled with bilinear interpolation to 1/4 

f the original image as applied in CondInst. 

In implementation, the mask branch outputs two kinds of dis- 

ance transform denoted by D and B , and both maps are processed 

y projection before being sent into the evolution module. We ex- 

lain the design motivation and details of this part of structure in 

ection (3.3) . 
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Fig. 1. Illustration of the architecture. Generated by the mask branch, D and B have 2 channels for distance transform along horizontal and vertical directions, which are 

further projected to 1-d vectors to iteratively evolve box b (0) for refined locations. 
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.2. Evolution of bounding boxes 

Inspired by Active Contour Models (ACM) [20] and its variant 

f active rays [21,22] , we employ an evolution fashion to couple 

econstructed geometry with regressed boxes. 

We first parameterize the bounding box via rays. Given a refer- 

nce center (x, y ) inside an object, points located on box sides can 

e represented by polar coordinates 

p x,y (ρ, θ ) = 

[
x + ρ cos (θ ) 
y + ρ sin (θ ) 

]
, (1) 

here ρ ∈ [0 , + ∞ ) is the radius reaching from the reference point

o the side, and θ ∈ [0 , 2 π) is the angle starting from x -axis. In

act, we do not need every point on sides to form a bounding 

ox. Four points { p i } 3 i =0 
are sufficient, i.e., the leftmost and right- 

ost points horizontally extending from (x, y ) to bounding box 

ides, the topmost and bottommost points vertically extending 

rom (x, y ) , where 

p i = 

[
x + ρi cos (i �θ) 
y + ρi sin (i �θ) 

]
(2) 

ith �θ set to π /2. 

We then design an energy function E(p) of the candidate box 

or evolution. Inspired by Cheng et al. [22] , E(p) consists of a data

erm E data and a balloon term E balloon , and is defined as 

(p) = 

3 ∑ 

i =0 

[ E data (p i ) + βE balloon (p i ) ] , (3) 

here E data (p i ) provides force from both inside and outside to- 

ards the box edge, and E balloon (p i ) serves as an extra outward 

xpanding force to modulate the whole energy E(p) with a hy- 

erparameter β , as well as encourages outward expansion from a 

mall initialization. Following [22] , the data and balloon term in 

q. (3) are formulated as, 

 data (p i ) = D (p i ) , (4) 

 balloon (p i ) = B (p i ) 
(

1 − ρi 

ρmax 

)
, (5) 

here D and B are both the simplest Euclidean distance transform 

nd each pixel value is the distance to the nearest bounding box 
55 
ide. The only difference of them is that we mask out the exterior 

f bounding boxes in B to keep single outward forces, as shown in 

ig. (1 ). Both D (p i ) and B (p i ) are obtained by bilinearly sampling

oint p i from distance transform map D and B . Symbol ρmax is the 

aximum radius a box can reach within the image. 

The minimum of E(p) leads to the optimal box of an object. To 

nd p that minimizes E(p) , we compute partial derivatives of each 

erm w.r.t the single variable ρ , and set them to zero. For partial 

erivatives of E data (p) , we get 

∂E data (p) 

∂ρi 

= 

∂D (p i ) 

∂x 
cos (i �θ) + 

∂D (p i ) 

∂y 
sin (i �θ) , (6) 

here we resort to Cartesian coordinates to compute derivatives 

ith Sobel filters. As for E balloon (p) , we consider B to be constant 

ithin a small vicinity of p i for approximation, thus we get 

∂E balloon (p) 

∂ρi 

≈ −B (p i ) 

ρmax 
. (7) 

e evolve the radius of each ray as below, 

(t+1) 
i 

= ρ(t) 
i 

− �t 

(
∂E data (p) 

∂ρ(t) 
i 

+ β
∂E balloon (p) 

∂ρ(t) 
i 

)
, (8) 

here �t is a hyperparameter of the time step, and ρ(0) 
i 

is initial- 

zed with regressed boxes. Through iterative update of radius, we 

ncorporate side information into regression in training. Regressed 

oxes can be further refined in the same evolutionary manner in 

nference. 

.3. Projection 

Considering that each distance transform D and B only responds 

o one target, the background pixels will dominate the whole im- 

ge. In addition, only pixels near regressed box edges are used for 

volution. Thus equally supervising all values on the 2-d masks 

ay distract attention from effective pixels to redundant ones. Ac- 

ording to Eqs. (6) –(8) , the radius is only updated in four single

-d directions. As �θ is set to π /2, the partial derivative of E data 

nvolves either ∂ D (p i ) / ∂ x or ∂ D (p i ) / ∂ y . Therefore, we decouple the

-d learning of mask D and B to 1-d x and y components to reduce

edundant supervision. 

We separately predict horizontal and vertical components of 

nergy maps through the mask branch, resulting in D , B ∈ R 

H×W ×2 
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Table 1 

Performance of different �t and β when N = 1 . 

�t β AP AP 70 AP 80 AP 90 E M H 

1.0 0 66.0 94.2 85.5 45.4 91.66 92.05 91.93 

0.5 66.7 94.4 86.5 46.4 96.96 92.66 92.60 

0.1 65.1 93.9 84.6 43.9 98.76 92.05 91.82 

0.5 0.5 66.1 94.3 85.7 44.9 94.86 92.16 92.13 

0.2 66.7 94.4 86.2 47.2 99.03 92.67 92.76 

0.1 66.7 94.5 86.5 46.5 98.10 92.47 92.45 

0 66.7 94.4 86.5 46.4 96.96 92.66 92.60 

Table 2 

Performance with different number of iterations N in training when 

�t = 0 . 5 and β = 0 . 1 . 

N AP AP 70 AP 80 AP 90 E M H 

1 66.7 94.5 86.5 46.5 98.10 92.47 92.45 

2 66.9 94.6 86.8 45.6 98.55 92.56 92.63 

3 66.5 94.4 85.9 46.4 92.04 92.68 92.66 

4 66.6 94.0 86.1 46.5 93.60 93.01 92.76 

5 66.6 94.4 86.3 46.0 91.88 92.39 92.34 

Table 3 

Performance with candidate number K in inference. 

K AP AP 70 AP 80 AP 90 AP S 70 AP M 70 AP L 70 

100 66.0 92.9 85.7 45.6 89.0 92.9 95.1 

200 66.6 94.2 86.4 45.4 90.2 94.2 95.9 

500 66.9 94.6 86.8 45.6 90.2 94.6 96.4 

1000 66.9 94.6 86.8 45.6 90.2 94.6 96.4 
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s shown in Fig. (1 ). Maps D and B are then projected along the

orizontal and vertical direction with max-pooling to pass salient 

ide information to the final 1-d vectors. Finally, projected D and 

 are sent to the evolution module to iteratively update regressed 

oxes. We summarize the evolution process in Algorithm (1 ). 

Algorithm 1: Evolution of bounding boxes. 

Input : 
The set of regressed boxes: B. 
Projected distance transform: horizontal D h and B h ∈ R W , and vertical 
D v and B v ∈ R H . 
The number of iterations, step length, and the weight of the balloon 
term: N, �t , and β . 
// Box P x r ,y r in B is represented in polar coordinates of 
(x min , y min , x max , y max ) as 

P x r ,y r := (x r − ρ2 , y r − ρ3 , x r + ρ0 , y r + ρ1 ) . 

// (x r , y r ) is a reference point inside an object which can be bounded 
by box P x r ,y r . 
// ρ0 , ρ1 , ρ2 , ρ3 are distance from (x r , y r ) to the right, bottom, left, 
top edge of P x r ,y r , respectively. 

Output : The set of evolved boxes: ˆ B 
ˆ B ← ∅ 

for each positive ( x r , y r ) do 
for i = 1 , 2 , . . . , N do 

// According to Eqs.~(6)–(8) 

ρ0 ← ρ0 − �t 

(
∂D h (x ) 

∂x 

∣∣
x = x r + ρ0 

− βB h (x ) 
∣∣

x = x r + ρ0 

)
ρ1 ← ρ1 − �t 

(
∂D v (y ) 

∂y 

∣∣
y = y r + ρ1 

− βB v (y ) 
∣∣

y = y r + ρ1 

)
ρ2 ← ρ2 − �t 

(
− ∂D h (x ) 

∂x 

∣∣
x = x r −ρ2 

− βB h (x ) 
∣∣

x = x r −ρ2 

)
ρ3 ← ρ3 − �t 

(
− ∂D v (y ) 

∂y 

∣∣
y = y r −ρ3 

− βB v (y ) 
∣∣

y = y r −ρ3 

)
end 
P x r ,y r ← (x r − ρ2 , y r − ρ3 , x r + ρ0 , y r + ρ1 ) 
ˆ B ← 

ˆ B ∪ { P x r ,y r } 
end 

.4. Training and inference 

Our detector is optimized by a multi-task loss 

 = L cls + L center + L 

(0 ,N) 
bbox 

+ L D + L B , (9) 

here L cls is the focal loss [14] for classification, and L center is the 

ross-entropy loss for center-ness, following FCOS [15] . We employ 

IoU loss [24] for L bbox to supervise the initial regressed box b (0) 

nd the final evolved box b (N) , and adopt dice loss [30] for L D 

nd L B to supervise projected D and B . We supervise 1-d x and

 components of distance transform as explained in Section (3.3) . 

ut for D , in implementation, we directly learn 1-d x and y deriva-

ives used in Eq. (6) , as we find this leads to faster convergence

n training and more robust performance in inference. Ground- 

ruth derivatives are obtained by applying Sobel filters with kernel 

 −1 , 0 , 1] on projected D . 

In inference, we forward input images through the network to 

btain classification scores s x,y , center-ness scores c x,y , regressed 

oxes b (0) 
x,y , and kernel parameters θx,y . We select locations (x, y ) 

ith top K scores s x,y to generate D and B , and use them to it-

ratively evolve b (0) 
x,y . Following FCOS [15] , we use the product of 

 x,y and c x,y to rank evolved boxes b (N) 
x,y , and finally apply non- 

aximum suppression (NMS) to filter out redundant boxes. 

. Experiments 

We conduct experiments on the challenging KITTI [31] dataset 

o evaluate our method. KITTI contains 7481 images for training 

nd 7518 images for testing. We split the original training set by 

andomly sampling 2046 images for validation. KITTI applies Av- 

rage Precision (AP) to evaluate predictions with matching overlap 
56 
o less than 70%, and provides three levels of difficulties, i.e., Easy 

E), Moderate (M), and Hard (H). We also evaluate detailed perfor- 

ance of AP on different matching IoUs and object sizes, i.e., Small 

S), Medium (M), and Large (L), as well as Average Recall (AR). 

.1. Implementation details 

Our detector is built on top of FCOS [15] , and employs ResNet- 

0 augmented with FPN as the backbone. We initialize the back- 

one with weights pretrained on ImageNet [32] , and use an SGD 

ptimizer with 0.0 0 01 weight decay and 0.9 momentum for train- 

ng. We train networks with a batch size of 4 for 12 epochs on a

ingle GTX 2080Ti GPU. The initial learning rate is set to 0.005, and 

educed by 10 at epoch 8 and 11, respectively. We also apply a lin- 

ar warm-up scheme for the first 500 iterations. Input images are 

esized to [800, 1333] without changing the original ratio. In infer- 

nce, we apply NMS with a threshold of 0.7, and evaluate results 

ith scores higher than 0.05. 

Our method involves four hyperparameters in the bounding box 

volution, i.e., the update step �t , the weight of the balloon term 

, the maximum radius ρmax , and training iterations N. In im- 

lementation, we do not assign an exact value to ρmax . Since β
nd 1/ ρmax are both coefficients of B (p i ) when putting Eq. (7) into

q. (8) , we simply use β to represent β/ ρmax to conduct parame- 

er setting experiments, and choose hyper-parameter β and ρmax 

ogether. According to Tables (1 ) and (2 ), we set { �t , β , N} to {0.5,

.1, 2} as default in all our experiments. As for the candidate num- 

er K in inference, we set it to 500 according to Table (3 ). 

.2. Ablation study 

Reconstructed geometry. We first validate the effectiveness of our 

ethod, including the learning of label geometry and coupling re- 

onstructed geometry with regression, as shown in Table (4 ). Com- 

ared with the baseline FCOS (1st row), a simple learning of D and 

 (2nd row) brings an average of 2.8% AP gain. The improvement is 

ainly for higher matching IoU, e.g., AP is improved by 1.7% AP 
70 
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Table 4 

Ablations on the effectiveness of reconstructed geometry. 

Learning 

geometry 

Evolving boxes in 

AP AP 70 AP 80 AP 90 AP S 70 AP M 70 AP L 70 AR AR S AR M AR L 
Training Inference 

✗ ✗ ✗ 61.6 92.0 81.1 37.7 84.0 92.3 95.5 81.0 72.6 80.6 85.8 √ 

✗ ✗ 64.4 93.7 83.9 41.7 88.3 93.9 95.8 82.4 76.0 81.9 86.4 √ 

✗ 
√ 

62.5 93.9 83.3 36.2 88.6 93.9 95.9 81.4 73.9 81.0 85.8 √ √ 

✗ 65.5 93.8 85.7 43.3 89.1 94.2 96.2 82.8 76.2 82.5 86.7 √ √ √ 

66.9 94.6 86.8 45.6 90.2 94.6 96.4 83.5 77.4 83.0 87.5 

Fig. 2. Performance evaluated under different matching IoUs (left) and object sizes (right) with different iterations in inference. Error bars indicate one standard deviation. 

Table 5 

Detection performance on different occlusion levels. 

Occl. [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0] 

FCOS 75.17 64.29 43.92 17.77 13.03 

Ours 83.47 75.27 64.62 44.73 20.95 

Gains + 8.30 + 10.98 + 20.70 + 26.96 + 7.92 
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Table 6 

Performance with similar parameters and computations. 

Parm (M) / Comp (GFLOPs) AP AP 70 AP 80 

FCOS (32.84 / 154.05) 60.87 ±1.02 91.7 ±0.69 80.2 ±1.15 

FCOS ∗ (34.02 / 180.37) 60.96 ±0.61 91.7 ±0.25 80.5 ±0.68 

Ours-lite (34.37 / 177.29) 65.80 ±0.10 94.2 ±0.08 85.5 ±0.17 
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hile AP 90 is improved by 4.0% AP. This indicating that spatially 

egularizing the intermediate output of deep neural networks ben- 

fits the learning of side-aware features for localization. But when 

e evolve regressed boxes with learned D and B in inference (3rd 

ow), the performance degrades. The reason may be that without 

upervising evolved boxes in training, D and B are not well learned 

o properly interact with regressed boxes. In the fourth row, we 

ointly train evolved and regressed boxes. Even though there is no 

volution in inference, results of the single regressed boxes are im- 

roved by 3.9% AP over FCOS. With further refinement in inference 

the last row), we surpass FCOS by an average of 5.3% AP. 

Iterations in inference. We experiment with different iterations 

n inference, and depict results along with FCOS in Fig. (2 ), where 

esults reported as error bars are obtained by training with the 

ame configuration for 5 times. The maximum gain appears when 

ncreasing iterations from 0 to 1, and the performance becomes 

table after 2 iterations, thus 2 iterations in inference is sufficient 

or our method. 

Performance under occlusions. As KITTI does not provide detailed 

cclusion levels, we calculate occlusion ratios of objects by our- 

elves. Due to the lack of segmentation labels, we use Intersec- 

ion over Foreground (IoF), i.e., occluded intersection over current 

ounding box area, to compute the occlusion ratio. Performance 

f our detector as well as FCOS under different occlusions are 

eported in Table (5 ). We outperform FCOS on occlusions within 

0.5,1.0] by an average of +14.97% AP. 

Complexity analysis. The full version of our detector involves 

lightly more parameters (38.14M vs. 32.84M) and computation 

205.01G vs. 154.05G) than the baseline FCOS. This overhead 
57 
ainly occurs at additional controller heads which predict dy- 

amic convolution kernels for the mask branch. Therefore, the in- 

erence time is a little longer than FCOS. Given an input image 

f dimension 800 × 1333, our detector with a ResNet-50 back- 

one and 2 iterations in inference on average runs 62.9 ms vs. 

3.3 ms of FCOS on a single GTX 2080 Ti GPU. However, this over- 

ead can be avoided. As our initially regressed boxes still out- 

erforms the baseline with a large margin as shown in Fig. (2 ), 

e can simply keep the additional structures in training, and dis- 

ard them in inference, to improve the base model without ad- 

itional parameters or inference time. For a fair comparison with 

COS, we also propose a lite version of our method. We lighten the 

tructure of the controller head as well as Convs before the mask 

ranch to one Conv-ReLU layer. We then add one more convolu- 

ional layer on FCOS heads to construct a baseline with similar pa- 

ameters and computations with our lite version (34.02M/180.37G 

s. 34.37M/177.29G). As shown in Table (6 ), our lite version still 

utperforms FCOS ∗ (65.80% vs 60.96%), indicating improvements by 

ur method are not due to more parameters and computation. 

Visualization. Fig. (3 ) shows some visualization examples of fea- 

ures, where features of different objects especially the small ones 

enerated by our detector separate from each other, whereas fea- 

ures generated by FCOS mostly stick together. This implies that 

ur instance-aware geometric supervision does constrain the learn- 

ng of features. When predicted bounding boxes are sufficiently 

eparated from each other, missed detection of clustered objects 

aused by false suppression of NMS may be reduced. Benefitting 

rom this, we improve the recall performance from 81.0% AR of 

COS to 83.5% AR. In addition, features of small objects generated 
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Fig. 3. Visualization of feature maps for small (S), medium (M), and large (L) objects on KITTI. 

Fig. 4. The overall performance comparison of FCOS and our detector under different metrics on KITTI. 

Table 7 

Comparisons to state-of-the-art detectors with the best/second best AP (%) on KITTI. 

Method Backbone Epoch 

Car Cyclist Pedestrian 

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard 

CornerNet [16] Hourglass-104 210 81.71 80.87 74.16 83.84 79.04 75.73 55.56 46.32 42.17 

CentripetalNet [17] Hourglass-104 210 87.90 88.50 87.78 84.98 83.88 81.67 69.66 59.55 54.72 

RetinaNet [14] ResNet-50 12 86.96 87.18 85.62 39.42 38.71 36.80 26.23 24.44 21.05 

RepPoints [33] ResNet-50 12 96.87 90.41 88.94 87.60 78.36 75.25 53.37 48.73 42.93 

FCOS [15] ResNet-50 12 97.90 91.24 90.31 87.57 79.02 77.54 52.50 46.82 42.78 

FoveaBox [34] ResNet-50 12 98.42 93.44 89.57 79.54 76.41 74.90 52.73 47.90 42.31 

GFL [35] ResNet-50 12 99.49 91.94 91.69 86.40 76.50 73.74 53.69 47.55 42.66 

Ours ResNet-50 12 98.55 92.56 92.63 86.97 80.29 77.22 64.47 57.17 51.66 

Table 8 

Performance of our method extended to FoveaBox. 

Method AP AP 70 AP 80 AP 90 AP S 70 AP M 70 AP L 70 

FoveaBox 61.3 91.8 80.7 37.6 83.0 92.9 94.3 

+ Ours 64.4 92.6 84.0 43.6 85.3 93.5 95.4 

Gains + 3.1 + 0.8 + 3.3 + 6.0 + 2.3 + 0.6 + 1.1 
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y our detector are highly illuminated against the background, ex- 

laining the large improvement on AP S shown in Fig. (4 ), where an 

verage of 5.5% AP gain is obtained (89.5% vs. 84.0%). 

.3. Comparison to state-of-the-art detectors 

We compare the proposed method to other state-of-the-art de- 

ectors as shown in Table (7 ). Our detector is trained with the 

ame configuration as well as hyperparameters as in ablation ex- 

eriments except that the initial learning rate is set to 0.001 on 

yclist and Pedestrian , and the NMS threshold is set to 0.5 in infer-

nce. Without bells and whistles, our method achieves comparable 

esults to state-of-the-art detectors. 

.4. Extension to other detectors 

Our method can also be applied to other state-of-the-art detec- 

ors such as FoveaBox [34] . Training with the original configuration 

f FoveaBox, our approach obtains an average of 3.1% AP gain over 

he baseline as shown in Table (8 ). The improvement is mainly for 
58 
igher matching IoU and small objects, e.g., AP 90 is improved by 

.0% and AP S 
70 

increases by 2.3%, which is consistent with the im- 

rovement over FCOS. 

. Conclusion 

In this paper, we propose an architecture to learn geometric in- 

ormation hidden in numerical localization labels. By spatially su- 

ervising intermediate outputs and coupling reconstructed geome- 

ry with regressed boxes, our detector gets improved performance 

n localization. Experiments constructed on KITTI demonstrate the 

ffectiveness of our method. 
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