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Abstract
Purpose How to discriminate different risks of recurrent nasopharyngeal carcinoma (rNPC) patients and guide individual 
treatment has become of great importance. This study aimed to explore the associations between deep learning signatures 
and biological functions as well as survival in (rNPC) patients.
Methods A total of 420 rNPC patients with PET/CT imaging and follow-up of overall survival (OS) were retrospectively 
enrolled. All patients were randomly divided into a training set (n = 269) and test set (n = 151) with a 6:4 ratio. We constructed 
multi-modality deep learning signatures from PET and CT images with a light-weighted deep convolutional neural network 
EfficienetNet-lite0 and survival loss DeepSurvLoss. An integrated nomogram was constructed incorporating clinical fac-
tors and deep learning signatures from PET/CT. Clinical nomogram and single-modality deep learning nomograms were 
also built for comparison. Furthermore, the association between biological functions and survival risks generated from an 
integrated nomogram was analyzed by RNA sequencing (RNA-seq).
Results The C-index of the integrated nomogram incorporating age, rT-stage, and deep learning PET/CT signature was 
0.741 (95% CI: 0.688–0.794) in the training set and 0.732 (95% CI: 0.679–0.785) in the test set. The nomogram stratified 
patients into two groups with high risk and low risk in both the training set and test set with hazard ratios (HR) of 4.56 (95% 
CI: 2.80–7.42, p < 0.001) and 4.05 (95% CI: 2.21–7.43, p < 0.001), respectively. The C-index of the integrated nomogram 
was significantly higher than the clinical nomogram and single-modality nomograms. When stratified by sex, N-stage, or 
EBV DNA, risk prediction of our integrated nomogram was valid in all patient subgroups. Further subgroup analysis showed 
that patients with a low-risk could benefit from surgery and re-irradiation, while there was no difference in survival rates 
between patients treated by chemotherapy in the high-risk and low-risk groups. RNA sequencing (RNA-seq) of data further 
explored the mechanism of high- and low-risk patients from the genetic and molecular level.
Conclusion Our study demonstrated that PET/CT-based deep learning signatures showed satisfactory prognostic predictive 
performance in rNPC patients. The nomogram incorporating deep learning signatures successfully divided patients into 
different risks and had great potential to guide individual treatment: patients with a low-risk were supposed to be treated 
with surgery and re-irradiation, while for high-risk patients, the application of palliative chemotherapy may be sufficient.
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Introduction

Nasopharyngeal carcinoma (NPC) is an endemic disease 
in southeastern Asia, southern China, and north Africa, 
accounting for 0.7% (29,079) of new cases in 2018 [1]. 
A relatively satisfactory locoregional control rate was 
obtained in the intensity-modulated radiation therapy 
(IMRT) era, with local failure rates of 5–14%. However, 
the local control for T4 disease was still challenging with 
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rates ranging from 74 to 80% [2]. Re-irradiation, sur-
gery, or systemic chemotherapy has been used as salvage 
treatment methods in recurrent NPC patients (rNPC). 
But neither local salvage nor the patient’s quality of life 
obtained satisfactory results because of the delicate bal-
ance between risk and benefits in these post-radiotherapy 
patients [3]. The efficacy and adverse effects of treat-
ment modalities above have not been compared in high 
evidence randomized controlled trials. In a case–control 
study involving patients with rT3–4 N0–1, the 5-year OS 
rates were similar between patients treated by chemother-
apy alone or re-irradiation [4]. Additionally, a previous 
study demonstrated that patients with low and interme-
diate-risk instead of high-risk could benefit from re-irra-
diation or surgery [5]. The tradeoff decisions between 
the chance of salvage and the risk of life-threatening 
adverse effects is a daunting dilemma for the oncologist 
and recurrent patients since severe re-irradiation-related 
adverse effects including massive hemorrhage or necrosis 
are frequent, accounting for a high proportion of mortal-
ity at 34.7% [6]. Therefore, how to discriminate high-
risk from low-risk recurrent patients and guide individual 
treatment becomes of great importance.

Sun et al. established a nomogram incorporating age, 
hypertension, rT-stage, and EBV DNA level to stratify 
different risk groups based on the total score derived from 
the nomogram model [5]. The model symbolized the first 
step to predict OS and guide individualized treatment, 
but the concordance index (C-index) of 0.687 was not 
satisfactory enough.

Recently, deep learning which integrates parameters 
derived from medical imaging like computed tomogra-
phy (CT), magnetic resonance imaging (MRI) or posi-
tron emission computer tomography (PET), and genomic 
data has become a promising field in oncology, provid-
ing important supplement information on cancer physi-
ology [7–12]. Peng et al. reported that PET/CT-based 
deep learning signatures could be used as a reliable and 
useful prognostic prediction tool that may help guide 
individualized induction chemotherapy in NPC patients 
[13]. Zhong and colleagues demonstrated that a nomo-
gram incorporating deep learning based on pre-treatment 
MRI images showed satisfactory predictive performance 
in the prognosis of patients with T3N1M0 treated with 
different regimens and promoted personalized treatment 
of NPC [14]. Advances in deep learning provide a simple, 
effective, and reliable means to identify certain character-
istics as well as molecular subgroups and divide different 
risk groups [7]. Clinical data incorporating deep learn-
ing signatures have consistently predicted excellent per-
formance in risk stratification and prognosis in patients 
with lung cancer, glioblastoma, gastric cancer, and breast 
cancer [15–19]. However, there is a lack of research on 

the associations between deep learning signatures and 
prognosis in rNPC patients.

In this study, we explored the associations among deep 
learning signatures of multi-modality CT images and PET 
images, biological functions revealed by RNA-seq, as well 
as survival in rNPC patients.

Materials and methods

Patients

This study was approved by the Clinical Research Eth-
ics Committee in Sun Yat-sen University Cancer Center 
(SYSUCC), and due to the observational nature of this 
retrospective study, the requirement for informed consent 
was waived.

Between October 2010 and May 2019, the medical 
records of 478 rNPC patients undergoing PET/CT with-
out distant metastases were screened. The eligibility 
criteria were as follows: (1) pathology confirmed or evi-
dence by PET/CT with a consistent clinical process of 
recurrence; (2) without distant metastasis; (3) adequate 
organ function; and (4) available clinical data and PET/
CT imaging data. Patients without treatment after diag-
nosis were excluded. Finally, 420 eligible patients were 
identified (Fig. 1).

Diagnosis and treatment

A series of evaluations were applied to patients including 
head and neck physical examination, nasopharyngoscopy 
with biopsy, nasopharynx and neck MRI, PET/CT, and 
blood tests.

Salvage treatment included re-irradiation, surgery, or 
systemic chemotherapy. Surgical approaches for endo-
scopic nasopharyngectomy were chosen based on the 
anatomical structure and extension of the tumor lesion 
by experienced otolaryngologists [20]. Re-irradiation 
was performed by intensity-modulated radiotherapy 
(IMRT) technology, with a total prescription dosage of 
60–70 Gy, divided into 30–35 fractions, 5 times a week 
on working days. Common palliative chemotherapy 
regimens included GP: gemcitabine (1 g/m2, days 1 and 
8) and cisplatin (75–80 mg/m2, day 1); TPF: docetaxel 
(60–75 mg/m2) or paclitaxel (135 mg/m2) in combina-
tion with cisplatin (60 mg/m2, day 1) and 5-fluorouracil 
(3–3.75 g/m2 civ120h); PF: cisplatin (80 mg/m2, day 
1) plus 5-fluorouracil (4 g/m2 civ120h); and TP: doc-
etaxel (75–80 mg/m2, day 1) combined with cisplatin 
(75–80 mg/m2, day 1). The intravenous chemotherapy 
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regimens were applied through a peripherally inserted 
central catheter every 3 weeks. The oral chemother-
apy regimen was the administration of capecitabine 
(1000 mg/m2) twice daily on days 1–14.

Clinical outcome and follow‑up

The primary outcome of our study was overall survival (OS), 
which was defined as the time from diagnosis to the date of 
death from any cause. After treatment, patients underwent 
a series of assessments every 3–6 months thereafter until 
death.

Deep learning model construction

We interpolated all PET/CT images and cropped regions of 
interest (ROIs) of each cross-section slice into square boxes. 

Deep convolutional neural networks (DCNNs) were con-
structed using these cropped images.

CT images, PET images, and ROIs were concatenated 
to build a multi-modality model. In DCNN training, we 
compared 5 classical light-weight structures and selected 
EfficientNet-lite0 (Supplementary Table S4, Supple-
mentary Table S5) [21]. The DCNN was trained with a 
survival loss, DeepSurv loss [22]. The neural network 
structure and loss function are provided in Supplemen-
tary Methods. For comparison, we also built two single-
modality models, CT-only model and PET-only model, 
using CT images and PET images, respectively. The 
details of data preprocessing and deep learning model 
training are provided in Supplementary Methods.

The output values of deep learning models were denoted 
as deep learning signatures.
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Fig. 1  Patients eligibility criteria and deep learning signature con-
struction workflow. (Left) Patients eligibility criteria. (Right Step 1) 
Cropping CT and PET images according to region of interest anno-
tated by clinicians. (Right Step 2) Building single-modality and 
multi-modality deep learning signatures from CT and PET cropped 

images using deep convolutional networks. (Right Step 3) Construct-
ing and validating clinical nomogram, deep learning nomogram, and 
integrated nomogram. (Right Step 4) Analyzing gene enrichment 
between high-risk group and low-risk group
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Nomogram construction

A deep learning multi-modality nomogram was built 
using a PET/CT deep learning signature. We also built 
a clinical nomogram with clinical factors selected from 
a univariate analysis and multi-variate analysis (Sup-
plementary Methods).

To integrate deep learning information and clinical infor-
mation, an integrated nomogram was built using a PET/CT 
deep learning signature and selected clinical factors.

Patients were divided into low-risk and high-risk 
groups, according to their nomogram outputs strati-
fied by a threshold learned in the training set (Supple-
mentary Methods). Subgroup analysis was performed 
based on the results of the high-risk and low-risk split, 
showing the robustness of nomogram on different 
patient groups.

RNA extraction, qualification, and sequencing

The association between integrated nomogram pre-
dictions and biological functions was analyzed by 
RNA-seq. TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA) was used to isolate the total RNA from 7 sam-
ples (high-risk, n = 5; low-risk, n = 2) of rNPC patients 
after diagnosis. The extraction of total cell RNA was 
performed with the help of the Novogene Bioinformat-
ics Institute (Beijing, China). The integrity and purity 
of RNA was assessed with agarose gel electrophoresis 
and the RNA Nano 6000 Assay Kit of the Bioanalyzer 
2100 system (Agilent Technologies, CA, USA). These 
libraries were sequenced on the Illumina HiSeq 4000 
platform, and 150 bp paired-end reads were generated 
after the index-coded samples were clustered. Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses with a p value of < 0.05 
were considered significantly enriched and the top 10 
most significantly enriched pathways of differentially 
expressed genes associated with different risk groups 
stratified by the integrated nomogram in rNPC patients 
were presented.

Statistical analysis

The categorical variables were displayed as the number 
of cases (%) and were compared with the chi-square test 
or Fisher’s exact test. Kaplan–Meier curves were per-
formed to assess the cumulative survival rates compared 
by the log-rank test. Concordance index (C-index) was 
used to assess the performance of nomograms. We used 
calibration curves with the Hosmer–Lemeshow test to 
evaluate the agreement between prediction survival 
probability and observed OS proportion. Area under the 

receiver operating characteristic (ROC) curve (AUC) 
was used to assess the classification performance of 
nomograms at given time points.

All analyses were performed by R (http:// www.R- 
proje ct. org, 4.0.2), and a two-tailed p value of < 0.05 was 
considered statistically significant.

Results

Patient characteristics and clinical nomogram

Five clinical factors associated with OS were provided, 
including sex, age, rT-stage, N-stage, and EBV DNA. 
All of them were balanced and distributed between 
the training set and test set (p > 0.05), except rT-stage 
(p = 0.010). The median follow-up time was 36.4 months 
(IQR 26.77–50.67) in the training set and 35.13 (IQR 
22.86–48.33) in the test set. At the end of the follow-up, 
the overall survival ratio was 59.9% (161/269) in the 
training set and 53.6% (81/151) in the test set, and there 
was no significant difference of death events distribu-
tion between the two sets (p = 0.120) (Table 1).

Using univar iable analysis and multi-var iable 
analysis with Akaike information criterion (AIC), we 
selected age and rT-stage, which were significantly 
related to OS (Table 2). We used Cox proportional haz-
ard regression (CPH) to build a clinical nomogram with 
these two clinical factors, and its C-index was 0.673 
(95% CI: 0.621–0.726, p < 0.001) in the training set and 
0.667 (95% CI: 0.607–0.728, p < 0.001) in the test set. 
For additional information from metabolic parameters, 
6 standardized uptake values (SUV) were provided, 
including mean, peak, and maximum SUV of tumor and 
lymph node. Tumor  SUVmax and tumor  SUVpeak were 
selected by univariable and multi-variable analyses. 
The clinical nomogram with metabolic parameters had 
a 0.693 C-index in the training set and 0.682 in the test 
set, which were better than the clinical nomogram with-
out metabolic parameters (Supplementary Table S2).

Deep learning signature

We built 3 deep learning signatures, including PET/CT 
signature, CT-only signature, and PET-only signature. 
All of these three deep learning signatures were signifi-
cantly related to OS (Table 2). The C-index of PET/CT 
signature was 0.722 (95% CI: 0.666–0.777, p < 0.001) 
in the training set and 0.722 (95% CI: 0.669–0.775, 
p < 0.001) in the test set. CT-only signature and PET-
only signature yielded C-index of 0.660 and 0.706 in 
the training set and 0.679 and 0.692 in the test set, 

http://www.R-project.org
http://www.R-project.org
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respectively. The prognostic performance of multi-
modality PET/CT signature was significantly better 
than both single-modality CT-only signature and PET-
only signature in the test set, with a higher C-index and 
better prognosis (Table 3, Supplementary Figure S1).

Integrated nomogram

To integrate clinical and deep learning information, we 
constructed an integrated nomogram with two selected 
clinical factors and PET/CT deep learning signatures 
(Fig. 2A). The C-index of the nomogram was 0.741 (95% 
CI: 0.688–0.794, p < 0.001) in the training set and 0.732 
(95% CI: 0.679–0.785, p < 0.001) in the test set. The 
integrated nomogram brought a significant improvement 

to the clinical nomogram in C-indices (Supplementary 
Table S1). The integrated nomogram was slightly better 
than the deep learning signature (Table 3, Fig. 3). How-
ever, after adding metabolic parameters, there were no sig-
nificant changes in C-indices, resulting in 0.742 and 0.729 
in the training set and test set (Supplementary Table S2).

When accessing the classification performance of our 
nomograms, the integrated nomogram also yielded 0.744 
AUC of 3-year OS in the training set and 0.776 AUC in 
the test set, which was the best compared with the clinical 
nomogram and deep learning nomogram (Supplementary 
Figure S2). Moreover, the calibration curve showed that the 
prediction OS of the integrated nomogram was highly accu-
rately matched with the observed OS with a p value > 0.05 
in both the training set and test set (Fig. 2B).

Table 1  Baseline clinical 
information of the training set 
and test set

EBV DNA, Epstein-Barr virus DNA; SUVmax/peak/mean, maximum/peak/mean standardized uptake value
*denotes p value less than 0.05
1 For SUV, missing values were filled with median of non-missing values of training set

Characteristics Training set (n = 269) Test set (n = 151) p value

Age (years), median (range) 47 (22–75) 50 (16–69) 0.231
Sex, no. (%) 0.561
 Male 198 (73.6) 108 (71.5)
 Female 71 (26.4) 43 (28.5)

rT-stage, no. (%) 0.010*
 T0 34 (12.6) 24 (15.9)
 T1 27 (10.0) 20 (13.2)
 T2 28 (10.4) 8 (5.3)
 T3 108 (40.1) 72 (47.7)
 T4 72 (26.8) 27 (17.9)

N-stage, no. (%) 0.315
 N0 170 (63.2) 88 (58.3)
 N1 78 (29.0) 51 (33.8)
 N2 11 (4.1) 4 (2.6)
 N3 10 (3.7) 8 (5.3)

EBV-DNA, no. (%) 0.990
 Undetectable 121 (45.0) 68 (45.0)
 Detectable 148 (55.0) 83 (55.0)

Treatment, no. (%) 0.428
 Surgery 79 (29.4) 45 (29.8)
 Re-radiation 161 (59.9) 85 (56.3)
 Chemotherapy 29 (10.8) 21 (13.9)

Tumor SUV, median (range)1

  SUVmax 8.88 (0.00–66.28) 8.88 (0.00–44.75) 0.838
  SUVpeak 6.10 (0.00–48.17) 6.10 (0.00–34.92) 0.916
  SUVmean 3.99 (0.00–16.47) 3.99 (0.00–11.07) 0.795

Lymph node SUV, median (range)1

  SUVmax 0.00 (0.00–32.92) 0.00 (0.00–20.62) 0.268
  SUVpeak 0.00 (0.00–17.21) 0.00 (0.00–16.24) 0.128
  SUVmean 0.00 (0.00–19.88) 0.00 (0.00–6.56) 0.550
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A cutoff value of 0.304 was learned from nomogram 
outputs in the training set, corresponding to a 50.76 total 
score in the integrated nomogram. This threshold could 

divide patients into two groups as high-risk and low-
risk. In the training set, the high-risk group had a higher 
3-year OS rate compared with the low-risk group (89.2% 

Table 2  Univariate hazard ratios of clinical factors, metabolic parameters, and deep learning signatures on the training set and test set

*denotes p value less than 0.05

Characteristics Training set (n = 269) Test set (n = 151)

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Sex 0.728 (0.455–1.163) 0.182 0.841 (0.492–1.438) 0.527
Age (years) 1.020 (1.002–1.039) 0.026* 1.024 (1.000–1.049) 0.045*
rT-stage (T0–2 vs. T3–4) 3.609 (2.189–5.950)  < 0.001* 3.533 (1.893–6.592)  < 0.001*
N-stage (N0 vs. other) 0.881 (0.673–1.154) 0.358 1.008 (0.749–1.357) 0.956
EBV-DNA (detectable vs. undetectable) 1.297 (0.884–1.904) 0.183 0.941 (0.589–1.505) 0.800
Tumor SUV SUVmax 1.043 (1.020–1.067)  < 0.001* 1.046 (1.021–1.072)  < 0.001*

SUVpeak 1.068 (1.037–1.100)  < 0.001* 1.066 (1.032–1.101)  < 0.001*
SUVmean 1.184 (1.084–1.293)  < 0.001* 1.247 (1.120–1.388)  < 0.001*

Lymph node SUV SUVmax 0.972 (0.935–1.010) 0.148 0.970 (0.926–1.015) 0.187
SUVpeak 0.964 (0.907–1.025) 0.240 0.962 (0.900–1.028) 0.246
SUVmean 0.921 (0.840–1.011) 0.085 0.942 (0.840–1.057) 0.308

Deep learning signature CT-only 3.185 (2.500–4.058)  < 0.001* 2.223 (1.714–2.883)  < 0.001*
PET-only 5.494 (3.644–8.283)  < 0.001* 2.237 (1.471–3.401)  < 0.001*
PETCT 2.751 (2.021–3.744)  < 0.001* 2.458 (1.698–3.559)  < 0.001*

Table 3  C-indices of clinical, 
deep learning, and integrated 
nomograms on the training set 
and test set

*denotes p value less than 0.05

Nomograms Training set (n = 269) Test set (n = 151)

C-index (95% CI) p value C-index (95% CI) p value

Clinical 0.673 (0.621–0.726)  < 0.001* 0.667 (0.607–0.728)  < 0.001*
Deep learning CT-only 0.660 (0.601–0.719)  < 0.001* 0.679 (0.613–0.745)  < 0.001*

PET-only 0.706 (0.649–0.762)  < 0.001* 0.692 (0.633–0.752)  < 0.001*
PETCT 0.722 (0.666–0.777)  < 0.001* 0.722 (0.669–0.775)  < 0.001*

Integrated 0.741 (0.688–0.794)  < 0.001* 0.732 (0.679–0.785)  < 0.001*
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Fig. 2  Integrated nomogram of clinical factors and PET/CT deep 
learning signatures and its calibration curves. A An integrated nomo-
gram was built from clinical factors and PET/CT deep learning sig-
natures to predict overall survival. B The 3-year overall survival rate 

calibration curves of integrated nomogram in training set and test 
set. The p value of calibration was calculated by Hosmer–Lemeshow 
goodness-of-fit tests
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vs. 64.7%), with a hazard ratio (HR) of 4.56 (95% CI: 
2.80–7.42, p < 0.001). The threshold value remained valid 
in the test set with an HR of 4.05 (95% CI: 2.21–7.43, 
p < 0.001, OS rate: 89.7% vs. 50.5%) (Fig. 3). The prog-
nostic ability of the integrated nomogram was kept in 
patient subgroups when stratified with sex (male or 
female), EBV DNA (undetectable or detectable), N-stage 
(N0 or N1–N3), or treatment type (surgery or re-irradi-
ation) (Fig. 4). Detailed clinical information differences 
between the high-risk group and low-risk group are 
shown in Supplementary Table S3.

Association between high‑ and low‑risk deep 
learning characteristics and biological processes

Seven patients (4 from the training set and 3 from the test 
set) with RNA-seq data were stratified into the high-risk 
group and low-risk group by the integrated nomogram. 
Heatmaps of the gene expression revealed the difference 
between the two risk groups (Supplementary Figure S3). The 
enriched pathways of differentially expressed genes were 
implemented by a GO enrichment analysis and identified 
pathways including apical plasma membrane, cell–matrix 

adhesion, cell-substrate adhesion extracellular matrix, extra-
cellular matrix organization, extracellular matrix structural 
constituent, positive regulation of cell migration, skeletal 
system development, and structural molecule activity. The 
analysis of KEGG pathway enrichment showed that the 
differentially expressed genes (DEGs) were involved in 
pathways including complement and coagulation cascades, 
ECM-receptor interaction, focal adhesion, human papillo-
mavirus infection, NOD-like receptor signaling pathway, 
PI3K-Akt signaling pathway, protein digestion and absorp-
tion, proteoglycans in cancer, ribosomes, and staphylococcus 
aureus infection (Fig. 5).

Discussion

To the best of our knowledge, this study presents the first 
attempt to investigate the multiscale intratumor heterogene-
ity associated with biological functions and survival in rNPC 
by deep learning signatures.

In this work, we constructed a multi-modality DCNN to 
generate deep learning signatures from joint CT and PET 
images. Our multi-modality deep learning signatures had 
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better prognostic ability than single-modality deep learning 
signatures and clinical factors. To further improve our deep 
learning signatures, our integrated nomogram with deep 
learning information and clinical information can divide 
patients with newly diagnosed rNPC into low-risk group 
and high-risk group. Patients in the low-risk group were 
characterized by better OS and better survival with surgery 

and re-irradiation than high-risk group. When using RNA-
seq, the prediction of our integrated nomogram was found 
to be associated with biological functions with enrichment 
of downregulated cell growth and development related path-
ways in the low-risk group.

Currently, the rTNM staging system has limitations in 
predicting the survival rate of rNPC patients. As shown 
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Fig. 4  Subgroup risk stratification of recurrent nasopharyngeal car-
cinoma using integrated nomogram. Kaplan–Meier curves of inte-
grated nomogram in patient subgroups, which were grouped by sex: 
male (A) vs. female (E), EBV-DNA: undetectable (B) vs. detectable 
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pvalue

< 0.001apical plasma membrane

p.adjust

< 0.001cell−matrix adhesion

< 0.001cell−substrate adhesion

< 0.001extracellular matrix

< 0.001
extracellular

matrix organization

< 0.001
extracellular matrix

structural constituent

< 0.001
positive regulation

of cell migration

< 0.001skeletal system development

< 0.001structural molecule activity

0.003

0.001

0.003

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.002

−0.6

−0.3

0.0

0.3

R
u

n
n

in
g

 E
n

r
ic

h
m

e
n

t 
S

c
o

r
e

GO Enrichment

−5

0

5

5000 10000 15000

Rank in Ordered Dataset

R
a

n
k
e

d
 L

is
t 

M
e

tr
ic

pvalue

< 0.001
Complement and

coagulation cascades

p.adjust

< 0.001ECM−receptor interaction

< 0.001Focal adhesion

< 0.001Human papillomavirus infection

< 0.001
NOD−like receptor

signaling pathway

< 0.001PI3K−Akt signaling pathway

< 0.001
Protein digestion

and absorption

< 0.001Proteoglycans in cancer

< 0.001Ribosome

< 0.001
Staphylococcus

aureus infection

< 0.001

0.006

< 0.001

< 0.001

0.004

< 0.001

< 0.001

0.011

0.005

< 0.001

−0.4

0.0

0.4

R
u

n
n

in
g

 E
n

r
ic

h
m

e
n

t 
S

c
o

r
e

KEGG Enrichment

−5

0

5

5000 10000 15000

Rank in Ordered Dataset

R
a

n
k
e

d
 L

is
t 

M
e

tr
ic

A B

Fig. 5  Biological functions associated with risk group stratification of 
integrated nomogram. A Top 10 Gene ontology (GO) pathways asso-
ciated with integrated nomogram risk stratification. B Top 10 Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways associated 
with integrated nomogram risk stratification



European Journal of Nuclear Medicine and Molecular Imaging 

1 3

by our results, the integrated nomogram performed better 
than the clinical system in the risk stratification in both 
the training set and test set, (C-index: 0.741 and 0.732 vs. 
0.673 and 0.667 in the training and test set, respectively), 
indicating the potential advantages of deep learning sig-
natures. The tumor TNM system was developed based on 
the extent of tumor invasion. However, even patients with 
the same tumor stage may have a different prognosis due to 
tumor heterogeneity [23, 24]. Therefore, traditional clini-
cal tumor staging cannot provide enough information for 
prognosis. Moreover, the deep learning signature carries 
information about intratumoral heterogeneity, which was 
reported to be a significant prognostic factor [25].

Plasma EBV DNA has been widely recognized as a prom-
ising biomarker in clinical practice for NPC [26–28]. In our 
study, EBV DNA did not have statistical significance in uni-
variable analysis and multi-variable analysis. This phenom-
enon could be explained as the sensitivity of EBV DNA was 
significantly higher in treatment-naive patients than those 
with locoregional recurrent tumors. As a consequence, the 
level of EBV DNA in rNPC patients was often divided into 
detectable EBV DNA levels and undetectable ones, which 
makes it less meaningful [29].

Standardized uptake value (SUV) was shown to be sup-
plementary to the PET/CT-based radiomics nomogram in 
lymphovascular invasion prediction [30]. In our study, tumor 
 SUVmax and tumor  SUVpeak were significantly associated 
with OS, but could not improve the performance of the inte-
grated nomogram. This could be explained by the correla-
tion and collinearity between the SUV and deep learning 
signature (Pearson’s r > 0.4).

Subgroup analysis showed that low-risk patients could 
benefit from the locoregional treatment including surgery 
and re-irradiation, while there was no difference in sur-
vival rates between patients treated by chemotherapy in two 
groups. The balance between risks and benefits was very 
delicate among them; therefore, it was difficult to benefit 
from local treatments of re-irradiation and endoscopic naso-
pharyngectomy. For re-irradiation, given the risks of late 
toxicities from the previous course of RT, it was difficult for 
patients to tolerate another course of RT. Especially the high 
incidence of fatal adverse events including severe temporal 
lobe necrosis, mucosal necrosis, and massive hemorrhage 
after re-irradiation, which were reported to be 13%, 16%, 
and 16%, respectively [3]. For patients with bone, nerve, or 
vascular invasion, the difficulty of salvage surgical resection 
was greatly increased. Therefore, patients undergoing sal-
vage surgical resection need to be strictly selected. Given the 
clue that the therapeutic value of salvage surgery and re-irra-
diation would be weakened in high-risk rNPC patients, the 
management of high-risk patients should be a top priority 
regarding palliative care and the improvement in the quality 

of life, and the application of palliative chemotherapy may 
be sufficient.

Recently, the emergence of deep learning has resulted in 
significant improvements in the predictive performance of 
prognosis in malignancy. Our research innovatively provided 
spatial transcriptome sequencing data to further explore the 
mechanism on high- and low-risk patients from the genetic 
and molecular levels. Through an enrichment analysis, we 
found that pathway association with the cytoskeleton and 
cell migration were significantly upregulated in high-risk 
patients, which further supported the results that high-risk 
patients tended to have a poor prognosis.

Limitations were inevitable in our study and were 
acknowledged. Firstly, the quality of life, acute and late 
adverse effects during and after treatment were not docu-
mented and analyzed due to the retrospective nature of the 
study. Secondly, tissues for sequencing were obtained from 
only a few patients. Thirdly, the data were collected from 
a single center and external verification may be required. 
Therefore, results of our research should be further vali-
dated in well-designed prospective studies in the future.

Conclusion

In conclusion, our study demonstrated that PET/CT-based 
deep learning signatures showed satisfactory prognostic 
predictive performance in rNPC patients. The nomo-
gram incorporating deep learning signatures successfully 
divided patients into different risks and had great potential 
to guide individual treatment: low-risk patients were sup-
posed to be treated with surgery and re-irradiation while 
the management of high-risk patients should pay more 
attention to palliative care and the improvement in the 
quality of life, hence the application of palliative chemo-
therapy may be sufficient.
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