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Knowledge graph embedding acts as a pivotal role in predicting the missing information in knowledge
graphs (KGs). Due to the evolving nature of real-world KGs, one requires the ability to make predictions
for newly emerging entities besides those already observed at training time. Current studies have made
great efforts to develop a neighborhood aggregator and embed out-of-knowledge-graph (OOKG) entities
inductively, with less focus on exploiting the similarity between the existing and newly emerging enti-
ties. Attaching importance to such similarity helps facilitate semantic transfer. In this work, we propose a
similarity-aware aggregation network for embedding out-of-knowledge-graph entities. Motivated by the
fact that similar entities are likely to occur in common graph context, we skillfully design a similarity-
aware function, which measures the distance of each entity pair based on the contextual gap.
Moreover, we aggregate the neighborhood surrounding the target entity and its similarity information
by query-specific attention weights, which are optimized during the learning process. Extensive experi-
ments on knowledge graph completion task show that our method achieves substantial improvements
over baselines.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge graphs (KGs) have recently become an effective tool
for a wide range of applications such as machine translation [1],
question answering [2] and recommendation [3] [4]. A typical KG
may contain billions of facts in the form of triples, which is usually
far from complete [5]. It becomes necessary to conduct knowledge
graph completion for enhancing its utility for downstream applica-
tions [6]. In the real-world scenario, KGs often evolve fast with out-
of-knowledge-graph (OOKG) entities added frequently. As reported
in [7], around 200 OOKG entities emerge every day on the knowl-
edge graph DBpedia [8]. In this sense, one should predict the miss-
ing triples not only about the existing entities, but also about the
newly emerging ones.

Knowledge graph embedding has proven to be useful in han-
dling the prediction task with the ever-increasing scale of KGs.
The basic idea is to encode entities and relations in a low-
dimensional space, which allows complex vector operations [6].
Most methods are designed in a transductive manner, where all
test entities are assumed to be available in training time. Once
new entities arrive, they need to retrain from scratch. This may
induce substantially increased overhead due to frequently added
entities [9]. To relieve this issue, some researchers resort to an
inductive manner, where new entities are inferred according to
the neighborhood properties in KGs. The first attempt [9] intro-
duces the graph neural network (GNN) on the KG, which generates
the embeddings of new entities by aggregating all their available
neighbors. A related but different method [10] incorporates well-
designed aggregation functions into transductive models so as to
guide the inductive learning procedure towards reasonable solu-
tions. A better method [11] distinguishes the importance of neigh-
borhood, and improves the aggregator with attention mechanisms,
where the attention weights are estimated by either logic rules or a
neural network. A recent, state-of-the-art method [12] further sim-
plifies the attention weight estimation and conceives a more effi-
cient OOKG embedding framework.

As far as we know, while much attention has been given to
effectively aggregate the neighborhood information, there are
few attempts in the literature to make the aggregator more power-
ful by incorporating the similarity between the existing and newly
emerging entities. The values in adding such similarity for predict-
ing missing facts are as follows. On the one hand, compared to
observed entities, newly emerging entities often have few connec-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.03.063&domain=pdf
https://doi.org/10.1016/j.neucom.2022.03.063
mailto:zhengya.sun@ia.ac.cn
https://doi.org/10.1016/j.neucom.2022.03.063
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


M. Li, Z. Sun and W. Zhang Neurocomputing 491 (2022) 186–196
tions, without enough information to obtain sound representa-
tions. On the other hand, the graph context between two entities
may possess similarity to some extent, which can be an important
source of evidence for relating an existing entity to an unseen
entity. Exploiting such similarity helps facilitate semantic transfer
and benefit the prediction about unseen entities. As shown in
Fig. 1, suppose A.Wiggins is an OOKG entity, and only appears in
two facts, i.e., (A.Wiggins, profession, Athlete) and (A.Wiggins,
son_of, M.Payne). According to the similarities between their graph
context, A.Wiggins is semantically related to two existing entities,
e.g., C.Parker and S.Curry, with different intensities. Here, by an
intuitive comparison, we find that the existing entity S.Curry is
more similar to A.Wiggins, due to the fact that they have an addi-
tional common edge (son_of). This implies that more semantic of S.
Curry would be transferred to the newly emerging entity, which
helps infer the missing fact (A.Wiggins, play_in, NBA).

Thus, in this paper, we propose a similarity-aware aggregation

network SLAN for OOKG entity embeddings. This is motivated by
the fact that similar entities are likely to occur in common graph
context. Specifically, we conceive a similarity-aware function,
which efficiently measures the distance of each entity pair by com-
paring their neighbor context and edge context. In this sense, given
a target entity, we are allowed to retrieve an entity similarity list
with different intensities. We then characterize the influence of
the neighborhood surrounding each target entity and its similarity
information by query-specific attention weights, which can be
optimized during the learning process. When predicting the miss-
ing facts about the OOKG entities, we exploit the embeddings
obtained by aggregating the neighborhood along with the similar
counterparts in the learned aggregation network. Experimental
studies indicate the superiority of our method compared to the
state-of-the-art baselines on the task of knowledge graph
completion.

Our contributions are three folds:

� We propose a novel aggregation network for embedding OOKG
entities, which can jointly leverage the similarity and neighbor-
hood information.
� We propose a simple yet powerful similarity measure, which
can efficiently obtain the similarity between entities based on
their neighbor context and edge context.
Fig. 1. An example for predicting the missing triple, where A.Wiggin
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� The experimental results validate that our method can achieve
substantial improvements over existing state-of-the-art meth-
ods, especially when there exist few neighbors surrounding
the OOKG entities.

This paper is organized as follows. In Section 2, we survey and cat-
egorize the related studies. In Section 3, we present our similarity-
aware aggregation network SLAN. In Section 4, we conduct experi-
ments to test our method. Finally, we conclude our paper in
Section 5.
2. Related work

In this section, we will introduce some representative works
that are most related to our study.
2.1. Transductive embedding methods

Generally, transductive embedding methods apply different
principles to design the score functions [13] [14], which can be
roughly categorized into three groups: translational model, bilin-
ear model and neural network model. TransE [15] is the basic
translational model that translates the subject entity embedding
es to the object entity embedding eo by the relation embedding r,
formally as es þ r � eo. There are many extensions of TransE [15]
that project entities into different subspaces, such as TransR [16],
TransH [17] and TransD [18]. The pioneering work of the bilinear
model is RESCAL [19]. In this model, each entity is associated with
a vector to capture its latent features, while each relation is repre-
sented as a matrix to model pairwise interactions between latent
features. Extensions of RESCAL, such as DistMult [20], restrict the
relational matrix to the diagonal matrix. Neural network models
utilize complex neural structures to encode the knowledge graph.
M-DCN [21] and IE_RCN [22] apply the convolutional neural net-
work to generate expressive feature embeddings. M-DCN [23] pro-
poses a heterogeneous graph neural network framework for
learning knowledge graph embedding. However, in the face of
OOKG entities, these methods usually need to repeat training from
scratch, which is rather time-consuming.
s is emerging as an OOKG entity with two auxiliary neighbors.
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2.2. Inductive embedding methods with neighborhood alone

To address the OOKG entity embedding problem, somemethods
are proposed to represent the newly emerging entities via their
neighborhood information. MEAN [9] applies GNN along with a
mean pooling function to compute the embeddings of OOKG enti-
ties. GEN [24] proposes a meta-learning framework to extrapolate
the knowledge from seen to unseen entities. And oDistMult [10]
introduces a simple yet efficient training algorithm to optimize
its well-designed aggregation functions for embedding OOKG enti-
ties. To characterize the unordered and unequal natures of entities’
neighbors, LAN [11] employs an attention mechanism and pro-
poses an aggregator called logic attention network. InvTransE
[12] further simplifies the attention mechanism and introduces
correlation-based and degree-based weights to characterize the
different contribution of neighbors. However, these attention
mechanisms pay so much attention to the reversible relations that
they can not deal with a low redundancy dataset. Besides, consid-
ering that newly emerging entities often have very few nearby
neighbors, only neighborhood information is deficient for embed-
ding OOKG entities.

2.3. Inductive embedding methods with additional information

Instead of purely relying on neighborhood, several methods
exploit additional information to obtain the embeddings of OOKG
entities. DKRL [25] explores bag-of-words and deep convolutional
neural models to build representations for new entities according
to text descriptions. IKRL [26] proposes a novel image embodied
knowledge representation learning model, which leverages the
visual information from entity images to represent the OOKG
entity. Since external resources are not always available and hard
to acquire, other methods try to extract rules from the existing
knowledge graph, which can naturally generalize to the OOKG
entities. GraIL [27] presents a graph neural network framework
to represent logical rules in the knowledge graph, which can induc-
tively predict the relations between unseen entities. VN network
[28] constructs the logic and symmetric path rules to capture more
virtual neighbors for embedding OOKG entities. However, to gener-
alize to newly emerging entities, these methods need to select the
suitable rules from a large amount of candidates, which is intract-
able when the OOKG entities emerge frequently. Compared with
these methods, we introduce the contextual similarity information
for enhancing OOKG entity embeddings, which is simple yet
powerful.

2.4. Similarity measure methods

There are some works trying to measure similarities between
nodes in the field of simple isomorphic graphs [29] [30]. The time
requirement limits their capability of managing the knowledge
graph with vast entities and multiple relations. A few researchers
exploit the external sources such as domain concepts and content
to measure the similarity of each entity pair in the knowledge
graph [31]. However, such information suffers from incomplete-
ness and inconsistency present in the data [32]. In contrast, we
exploit the self-contained semantic information to measure the
distance of each entity pair based on the contextual gap.

3. Method

In this section, we introduce a similarity-aware aggregation

network SLAN, which allows to obtain an entity’s embedding by
fusing the similarity and neighborhood information as illustrated
in Fig. 2. The three crucial components of SLAN, introduced in
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the next subsections, are: (i) how to measure the similarity
between any two entities; (ii) how to aggregate the similar entities
and the neighborhood for a target entity; (iii) how to optimize the
embeddings that well match the aggregation network.

3.1. Background and notation

A knowledge graph G can be considered as a multi-relational
graph, which usually contains many facts in the form of triples,
namely G ¼ fðes; r; eoÞjes 2 E; r 2 R; eo 2 Eg, where E and R repre-
sent the set of entities and relations. In addition, for an entity ei,
we divide its neighborhood according to the relations’ directions:
outgoing neighborhood NoðeiÞ ¼ fðr; eÞjðei; r; eÞ 2 Gg and incoming
neighborhood NiðeiÞ ¼ fðr; eÞjðe; r; eiÞ 2 Gg.

Knowledge graph embedding methods usually define a score
function on each fact to measure its plausibility. In this respect,
the score function assigns a higher value to a positive triple than
that to a negative one. In this paper, we apply the widespread
translational model TransE [15], whose score function can be
described as follows,

f ðes; r; eoÞ ¼ �jes þ r� eoj; ð1Þ

where es; r; eo 2 Rd correspond to the input embeddings of the sub-
ject entity, the relation and the object entity, respectively, and d is
the embedding dimension. These embeddings are optimized by
maximizing the total plausibility of observed facts. After that, the
resulting embeddings are utilized to predict the missing entity in
any given triple ð?; r; eoÞ or ðes; r; ?Þ, where r is the query relation.
As the missing triples may contain newly emerging entities, one
requires to incorporate an aggregation network to facilitate the
inference of the OOKG entity embeddings at the test time.

3.2. Similarity search

This section introduces how to search for the similar counter-
parts in terms of any entity in the knowledge graph. It is well
known that similar entities are likely to occur in common graph
context. Here, we explore the graph context from two perspectives,
i.e., neighbor context and edge context, which both belong to struc-
tural information surrounding the target entity and carry its cer-
tain semantic properties.

Neighbor Context. Given the target entity ei, we treat its neigh-
boring entities, along with the relations, as the neighbor context,
namely CnðeiÞ ¼ fðr; eÞjðei; r; eÞ 2 Gg _ fð�r; eÞjðe; r; eiÞ 2 Gg. It is
the most common context and is widely used in the field of knowl-
edge graph embedding[33] . In this work, we apply the Jaccard
index [34] to measure the neighbor context similarity Sn between
entity ei and ej as follows,

Snðei; ejÞ ¼ jCnðeiÞ ^ CnðejÞj
jCnðeiÞ _ CnðejÞj ; ð2Þ

where j:j denotes the number of elements. Intuitively, the more
similar neighbor contexts two entities have, the more similar these
entities are. Due to the fact that knowledge graphs are usually
sparse [35], there exist few common neighbor contexts between
each entity pair. In this sense, only neighbor context is not enough.
Thus, we additionally utilize the edge context to locate more poten-
tial similar entities.

Edge Context. Edge context refers to all kinds of relations rele-
vant to the target entity ei, namely
CeðeiÞ ¼ frjðei; r; eÞ 2 Gg _ f�rjðe; r; eiÞ 2 Gg. Actually, the relations
can provide us with valuable information about the types of the
entities [36], which are largely deficient in the KGs. We make up
for such information and measure the edge context similarity Se
between ei and ej as follows,



Fig. 2. The illustration of SLAN. Given a target entity (marked in red), we search the knowledge graph to obtain its similar entities (marked in yellow). Besides, we identify its
incoming neighborhood (marked in blue) and outgoing neighborhood(marked in green). The similarity and the neighborhood information will be fused for embedding the
target entity.
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Seðei; ejÞ ¼ jCeðeiÞ ^ CeðejÞj
jCeðeiÞ _ CeðejÞj : ð3Þ

To reinforce the advantages of neighbor context similarity and edge
context similarity, we obtain the final similarity measure Sðei; ejÞ
between ei and ej as follows,

Sðei; ejÞ ¼ Snðei; ejÞ þ a � Seðei; ejÞ
1þ a ; ð4Þ

where a weights the influence between Snðei; ejÞ and Seðei; ejÞ. Here
we can derive the value of a by computing their information quan-
tity. Given two triples ðei; r1; e1Þ and ðej; r2; e2Þ, let X denotes the
event that ei and ej have the common neighbor context (formally
as r1 ¼ r2; e1 ¼ e2), and Y denotes the event that they have the com-
mon edge context (formally as r1 ¼ r2). According to the informa-
tion theory, the quantity for X is lgðne � nrÞ, and that for Y is lgðnrÞ,
where ne and nr denote the number of entities and relations. Thus,
we can obtain a by

a ¼ lgðnrÞ
lgðnenrÞ : ð5Þ

Search Complexity. As we need to compute the similarity value
(refer to Eq. 4) for each entity-pair (ei; ej) in the knowledge graph,
the time complexity is Oðn2

e ðd1 þ d2ÞÞ, where d1 and d2 are the aver-
age number of the elements from neighbor context and edge con-
text for an entity. We notice that the entity pairs without common
edge context, namely jCeðeiÞ ^ CeðejÞj ¼ 0, account for a large part of
the total number of entity pairs in the knowledge graph. In this
case, the similarity values between these entity pairs should be
zero, namely Sðei; ejÞ ¼ 0. To reduce the time requirement, we pref-
erentially traverse all the relations between any entity pair (ei; ej)
to compute the value of jCeðeiÞ ^ CeðejÞj, which can be implemented
efficiently due to the limited number of relations. Suppose there
are on average de � ne entities that have common edge context
with an entity, then the time complexity becomes
Oðnedeðd1 þ d2ÞÞ. To reduce the space requirement, we only store
the top-k (k� ne) similar entities for a given entity. Here we use
the matrix Mind 2 Rne�k to store the indexes of the top-k similar
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entities in terms of each entity, and Mval 2 Rne�k to store the corre-
sponding similarity values. Then, the space complexity becomes
OðnekÞ.

3.3. Aggregation network

In this section, we present the aggregation network, which
comprises the transform module and the aggregator module, to
aggregate the similar entities and the neighborhood for the target
entity.

3.3.1. Transform module
The transform module aims to encode the information from

similarity and neighborhood, respectively, which results in the
candidate embeddings of the target entity ei. Here, we apply differ-
ent transition functions tailored for different information. In terms
of the similarity information, we directly obtain the candidate
embedding of ei by the identity mapping function as follows,

TsðejÞ ¼ ej; ej 2NsðeiÞ; ð6Þ
where ej denotes the input embedding of ej, and NsðeiÞ denotes the
top-k similar entity set of ei, which obtained by retrieving the
matrix Mind. In terms of the neighborhood information, we follow
the translational assumption [12] that regards a relation as a geo-
metric translation between entities, and obtain the candidate
embedding of ei by the translational functions as follows,

Tnðej; rjÞ ¼
ej � rj; ðej; rjÞ 2NoðeiÞ
ej þ rj; ðej; rjÞ 2NiðeiÞ

�
: ð7Þ

where ej and rj denote the input embeddings of ej and rj. Thus, the
candidate embedding set of the target entity ei can be defined as
PðeiÞ ¼ fTsðejÞjej 2NsðeiÞg _ fTnðej; rjÞjðej; rjÞ 2NiðeiÞ _NoðeiÞg.

3.3.2. Aggregator module
The aggregator module reduces all the resulting candidate

embeddings of ei to the aggregation embedding by the weighted
average. Note that candidate embeddings make different contribu-
tion to the representation of the taget entity depending on which
relations will be queried. Thus, we propose the query-specific
attention mechanisms to estimate the importance of these candi-
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dates. Formally, given the target entity ei, the attention weight of
the similarity candidate TsðejÞ is measured by

asimjji;q ¼ Sðei; ejÞ � juT
s wrq j; ej 2NsðeiÞ; us 2 Rd; ð8Þ

where Sðei; ejÞ denotes the similarity value between ei and ej which

is obtained by retrieving the matrix Mval, and wrq 2 Rd is an addi-
tional embedding associated with the query relation rq. Through
trial and error tuning in our implementation, we notice that the
influence of the neighborhood around the target entity varies
mostly according to the involved relations and the query relation.
In particular, the query relation often interacts with different rela-
tions to certain degree. For example, the query relation live_in has
a stronger interaction with the relation born_in than with the rela-
tion son_of. Formally, given the target entity ei, the attention weight
of the neighborhood candidate Tnðej; rjÞ is measured by

aneijji;q ¼
juT

n1
ðwrj � wrq Þj; ðej; rjÞ 2NoðeiÞ; un1 2 Rd;

juT
n2
ðwrj � wrq Þj; ðej; rjÞ 2NiðeiÞ; un2 2 Rd;

(
ð9Þ

where � is Hadmard product, and wrj is an additional embedding
associated with the neighboring relation rj. Finally, to obtain the
aggregation embedding of the target entity ei, we design the aggre-
gation function that aggregates the candidate embeddings via the
corresponding attention weights as follows,

ei ¼ 1
Z
½

X
ej2NsðeiÞ

asimjji;q � TsðejÞ þ
X

ðej ;rjÞ2NoðeiÞ_NiðeiÞ
aneijji;q � Tnðej; rjÞ	; ð10Þ

where Z ¼P
ej2NsðeiÞa

sim
jji;q þ

P
ðej ;rjÞ2NoðeiÞ_NiðeiÞa

nei
jji;qis a normalization

constant.

3.4. Training objective

The training procedure for OOKG entity representation learning
is proposed in Algorithm 1. After aggregating the candidate
embeddings from the similarity and neighborhood information,
we are ready to optimize the input embeddings and the output
of the aggregator. To make the aggregation network approximate
what is expected of the OOKG entity embeddings and make the
input embeddings aware of the aggregation operation, we follow
[10], and formulate the training objective as

L ¼ L1 þ k � L2 þ k � L3; ð11Þ
where the hyper-parameter k > 0 is used to trade off the weight of
different losses. L1; L2; L3 are three margin-based ranking losses
defined as follows,

L1 ¼
X

ðes ;r;eoÞ2D1

X
ðes 0;r0;eo 0Þ2D2

½c� f 1ðes; r; eoÞ þ f 1ðes0; r0; eo0Þ	þ; ð12Þ

L2 ¼
X

ðes ;r;eoÞ2D1

X
ðes 0;r0;eo 0Þ2D2

½c� f 2ðes; r; eoÞ þ f 2ðes0; r0; eo0Þ	þ; ð13Þ

L3 ¼
X

ðes ;r;eoÞ2D1

X
ðes 0;r0;eo 0Þ2D2

½c� f 3ðes; r; eoÞ þ f 3ðes0; r0; eo0Þ	þ; ð14Þ

where D1 and D2 denote the positive and negative triple set,
½x	þ ¼ maxð0; xÞ; c > 0 denotes the margin value, and f 1; f 2; f 3 are
the score functions for a triple ðes; r; eoÞ, which are defined as
follows,

f 1ðes; r; eoÞ ¼ �jes þ r� eoj; ð15Þ

f 2ðes; r; eoÞ ¼ �jeA
s þ r� eoj; ð16Þ

f 3ðes; r; eoÞ ¼ �jes þ r� eA
o j: ð17Þ
190
where eA
s and eA

o denote the aggregation embeddings of es and eo.
When inferring the missing triples about OOKG entities at the test
time, we can exploit the learned aggregation network to obtain
their embeddings, and apply the score function f 2 or f 3 to measure
the plausibility of the candidate triples in which the OOKG entities
occurs as the subjects or the objects.

Note that the ideas we develop are general and can be applied
to other translational models as well, such as TransR [16], TransH
[17] and TransD [18].

Algorithm1: Training Procedure of SLAN

Input:
The positive triples and negative triples T ¼ fðes; r; eoÞg;
The loss function L; The score functions f 1; f 2; f 3;
The similarity matricesMind and Mval; The iteration number
N;
1: repeat
2: for: each min-batch Tbdo
3: scores; labels ½	;
4: forðes; r; eoÞ; label in Tbdo
5: es; r; eo  LookupEmbedding(es; r; eo);
6: NiðesÞ;NoðesÞ;NiðeoÞ;NoðeoÞ  LocateNeighborhood
(es; eo);
7: NsðesÞ;NsðeoÞ  RetrieveSimilarity(Mi; es; eo);
8: PðesÞ  Transform(NsðesÞ;NiðesÞ;NoðesÞ); Eqs.
6 and 7
9: PðeoÞ  Transform(NsðeoÞ;NiðeoÞ;NoðeoÞ);
Eqs. 6 and 7
10: eAs ; e

A
o  Aggregate(PðesÞ;PðeoÞ); Eq. 10

11: scores.append
([f 1ðes; r; eoÞ; f 2ðes; r; eoÞ; f 3ðes; r; eoÞ]); Eqs. (15)–(17)
12: labels.append(label);
13: end for
14: UpdateParams(L; scores; labels); Eq. 11
15: end for
16: n ¼ nþ 1;
17: untiln < N
4. Experiment

In this section, we evaluate our method on the task of knowl-
edge graph completion. Afterwards, we test its performance when
there exist few neighbors surrounding the newly emerging enti-
ties. Finally, we carry out a case study to demonstrate the effective-
ness of exploiting similarity information.

4.1. Dataset

In the experiment, the test set of datasets should contain OOKG
entities that are unseen during training. The work [11] constructs
required datasets FB15K-sub(10%) and FB15K-obj(10%) based on
FB15K [15], which are the benchmark datasets for our experiment.
Besides, since FB15K contains many redundant relations and is not
recommended for further experiments in the knowledge graph
[37], we select three low redundancy datasets FB15K237 [38],
WN18RR [37] and YAGO3-10 [37] to construct more required data-
sets according to a similar protocol used in [11] as follows.

� Sampling OOKG entities: We select the entities that appear in
the original test set, and randomly sample R ¼ f10%;20%g of
these entities to form the candidate unseen entities U0. For an
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entity e 2 U0 , if it does not have any neighbors in the original
training set, such entity is filtered out, yielding the final unseen
entity set U.
� Filtering and splitting training set: To ensure that OOKG entities
would not appear in final training set, we split the original
training set into two datasets: the new training set and auxil-
iary set. For a triple ðes; r; eoÞ in original training set, if
es R U ^ eo R U, it is added to the new training set. Then, we
select the entities that appear in the new training set, and form
the final existing entity set E. In addition, if es 2 U ^ eo 2 E or
es 2 E ^ eo 2 U, it is added to the auxiliary set, which serves as
the existing neighbor for OOKG entities at the test time.
� Forming the new validation set: For a triple ðes; r; eoÞ in the orig-
inal validation set, if es 2 E ^ eo 2 E, it is selected to form the
new validation set.
� Forming the new test set: For a triple ðes; r; eoÞ in the original
test set, if es 2 U ^ eo 2 E or es 2 E ^ eo 2 U, it is selected to form
the new test set.

The statistics for the these eight datasets are listed in Table 1.
The code and datasets along with their corresponding splits are
available at https://github.com/lmdgit/OOKG.

4.2. Implementation

In this paper, given an entity, we randomly sample 16 incoming
neighbors and 16 outgoing neighbors. Zero padding is used when
the number of corresponding neighbors is less than 16. We con-
duct all the experiments on a GPU-enabled (NVIDIA GeForce RTX
3090) Linux machine. During training, SGD algorithm is used,
and the number of batches is 128. We train our model until conver-
gence but stop at most 2000 rounds. In addition, we fine-tune the
hyper-parameters on the validation dataset. Here we use the func-
tion f 1ðes; r; eoÞ to compute the score of the triple ðes; r; eoÞ in the
validation set, since all entities are available. The ranges of the
hyper-parameters for the grid search are set as follows: embedding
dimension d 2 f50;100;200g , SGD learning rate lr 2 5:0;10:0f g,
margin value c 2 f1;2;4;6;8;10;12g , the dimension of similarity
matrix k 2 f4;8;16g, the weight of loss function
k 2 f0:1;0:2;0:5g. Table 2 lists the optimal configurations of SLAN.
Table 1
Statistics of datasets used in the experiments. Here a denotes the similarity weight in Eq.

Dataset #Rel #Ent #OOKG-Ent #Train

FB15K-sub(10%) 1323 12193 2102 108854
FB15K-obj(10%) 1325 12275 1947 99783

FB15K237(10%) 237 13443 1029 227863
FB15K237(20%) 237 12378 2061 192144

WN18RR(10%) 11 39785 505 82587
WN18RR(20%) 11 39154 993 79610

YAGO3-10(10%) 37 121381 789 963086
YAGO3-10(20%) 37 120554 1503 906539

Table 2
Optimal configurations of SLAN on the datasets.

Dataset d lr c K

FB15K-sub(10%) 200 5.0 8.0 16
FB15K-obj(10%) 200 5.0 8.0 16
FB15K237(10%) 100 5.0 4.0 16
FB15K237(20%) 100 5.0 6.0 16
WN18RR(10%) 100 5.0 10.0 4
WN18RR(20%) 100 5.0 10.0 4
YAGO3-10(10%) 100 10.0 1.0 16
YAGO3-10(20%) 100 10.0 1.0 16
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4.3. Knowledge graph completion

Knowledge graph completion aims to predict the missing triples
about OOKG entities under the supervision of the existing knowl-
edge graph, which is the most important benchmark task for
knowledge graph embedding.

Evaluation protocol: For each test triple ðes; r; eoÞwhere es or eo
is an OOKG entity, the other entity which exists in the KG is
removed and replaced by each of the entities in E to create a set
of corrupted triples. We use ‘Filtered’ setting protocol [17], which
will not take any corrupted triples that appear in the existing KG
into account. Then, the scores of those corrupted triples are com-
puted. We rank the valid test triple and corrupted triples in
descending order of their scores. The following evaluation metrics
are employed: mean reciprocal rank(MRR) and the proportion of
the valid test triples ranking in top n predictions (Hits@n). Higher
MRR, higher Hits@n indicate better performance.

Baselines: MEAN [9], oDistMult [10], LAN [11] and InvTransE
[12] are selected as baselines. As there exist several variants of oDi-
stMult in the original paper [10], we apply the version oDistMult-
ERAvg that achieves better performance. In addition, InvTransE
applies two attention weights named corr and deg. And we find
that the method InvTransE(corr) has a deficiency that it doesn’t
discuss how to design the corr attention when there is no correla-
tion between the query and the target entity’s neighboring rela-
tions. In this case, we modify InvTransE(corr) and employ the
same mean pooling on the neighborhood as MEAN [9].
4.3.1. Comparison with state-of-the-art methods
Here we select the state-of-the-art inductive embedding meth-

ods as baselines. Since the corresponding original papers did not
test these embedding methods on some of following datasets, we
retrain MEAN, LAN and oDistMult based on the codes provided
by the authors [10] [11] to enable a comprehensive comparison.
As the code of InvTransE is not public, we re-implement it using
the open source toolkit OpenKE [39], and list the hyper-
parameter setting of these baselines in the appendix A. The evalu-
ation results are reported in Tables 3–6. We could observe that:
4.

#Valid #Auxiliary #Test a

11339 249798 2811 0.42
10190 261341 2987 0.42

14717 42178 3354 0.36
12160 72726 6173 0.36

2891 3903 508 0.18
2786 6561 872 0.18

4479 114274 789 0.24
4221 169271 1333 0.24

k

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

https://github.com/lmdgit/OOKG


Table 3
Comparison with state-of-the-art embedding methods on FB15K-sub(10%) and FB15K-obj(10%).

FB15K-sub(10%) FB15K-obj(10%)

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

MEAN* 0.310 22.2 34.8 48.0 0.251 17.1 28.0 41.0
LAN* 0.394 30.2 44.6 56.6 0.314 22.7 35.7 48.2

oDistMult 0.222 15.9 23.9 34.7 0.197 12.8 22.4 32.8
InvTransE(corr) 0.320 24.4 35.1 46.5 0.240 17.0 26.5 37.6
InvTransE(deg) 0.287 21.0 31.5 43.4 0.208 13.8 23.4 34.1

SLAN 0.417 34.2 45.6 56.1 0.323 25.6 35.9 45.4

Results marked by * are taken from [11], and others are reproduced based on the public code [10] [39].

Table 4
Comparison with state-of-the-art embedding methods on FB15K237(10%) and FB15K237(20%).

FB15K237(10%) FB15K237(20%)

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

MEAN 0.233 15.6 25.5 37.7 0.238 15.9 25.7 39.5
LAN 0.262 18.9 28.4 41.0 0.265 18.7 28.9 42.2

oDistMult 0.220 15.5 23.9 34.7 0.232 16.6 25.0 36.3
InvTransE(corr) 0.260 18.1 28.9 40.9 0.269 18.9 29.9 43.0
InvTransE(deg) 0.268 18.8 29.5 43.0 0.276 19.4 30.5 44.2

SLAN 0.303 22.1 33.1 47.1 0.307 22.0 33.9 48.1

Table 5
Comparison with state-of-the-art embedding methods on WN18RR(10%) and WN18RR(20%).

WN18RR(10%) WN18RR(20%)

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

MEAN 0.097 4.7 11.0 19.9 0.104 4.8 12.7 20.5
LAN 0.119 5.3 14.1 25.2 0.118 7.0 12.6 21.5

oDistMult 0.280 21.2 30.3 41.1 0.264 19.6 29.7 38.5
InvTransE(corr) 0.100 6.1 11.8 17.6 0.087 5.3 10.0 15.0
InvTransE(deg) 0.148 9.6 17.1 24.4 0.139 9.0 15.9 22.6

SLAN 0.297 23.3 34.0 41.7 0.286 22.8 31.5 40.3

Table 6
Comparison with state-of-the-art embedding methods on YAGO3-10(10%) and YAGO3-10(20%).

YAGO3-10(10%) YAGO3-10(20%)

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

MEAN 0.051 3.1 5.2 10.2 0.042 1.7 3.8 9.1
LAN 0.104 6.1 10.9 19.7 0.097 5.1 10.1 19.5

oDistMult 0.106 6.2 11.3 19.8 0.104 5.6 11.2 20.7
InvTransE(corr) 0.095 5.6 9.9 17.6 0.103 6.1 10.7 18.1
InvTransE(deg) 0.086 5.2 8.3 16.5 0.090 4.9 9.9 16.2

SLAN 0.136 8.6 14.6 23.7 0.143 9.6 14.7 23.3

Table 7
The aggregation functions of SLAN-S, SLAN-T and SLAN-A.

Method Aggegation function for the target entity ei

SLAN-S ei ¼ 1
Z ½
P
ðej ;rjÞ2NoðeiÞ_NiðeiÞa

nei
jji;q � Tnðej ; rjÞ	

SLAN-T ei ¼ 1
Z ½
P

ej2NsðeiÞa
sim
jji;q � ej þ

P
ðej ;rjÞ2Noðei Þ_Ni ðeiÞa

nei
jji;q � ej 	

SLAN-A ei ¼ 1
Z ½
P

ej2NsðeiÞTsðejÞ þ
P
ðej ;rjÞ2NoðeiÞ_NiðeiÞTnðej; rjÞ	
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� SLAN outperforms the baselines on almost of the metrics, which
demonstrates the effectiveness of our method and the correct-
ness of our intuition analysis.
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� Due to the fact that there exist many reversible relations in
FB15K-sub(10%) and FB15K-obj(10%), embedding methods
which focus on this relatedness between relations will achieve
better performance, such as LAN.



Table 8
The ablation study of SLAN on the knowledge graph completion task.

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

FB15K237(10%) FB15K237(20%)

SLAN-S 0.289 20.2 32.3 46.1 0.290 20.7 32.4 46.2
SLAN-T 0.280 20.2 30.8 43.3 0.274 19.4 30.8 44.1
SLAN-A 0.283 20.9 30.8 43.1 0.274 19.7 30.3 43.7
SLAN 0.303 22.1 33.1 47.1 0.307 22.0 33.9 48.1

WN18RR(10%) WN18RR(20%)

SLAN-S 0.291 22.8 33.8 40.3 0.282 22.2 31.0 39.9
SLAN-T 0.247 19.9 26.8 33.7 0.258 20.1 29.3 36.1
SLAN-A 0.091 6.1 9.9 15.0 0.086 6.1 8.7 13.2
SLAN 0.297 23.3 34.0 41.7 0.286 22.8 31.5 40.3

YAGO3-10(10%) YAGO3-10(20%)

SLAN-S 0.116 6.3 12.5 21.5 0.112 6.4 11.7 20.5
SLAN-T 0.104 6.1 10.5 20.0 0.102 6.0 10.5 18.8
SLAN-A 0.125 7.9 13.2 21.0 0.124 7.2 12.9 22.7
SLAN 0.136 8.6 14.6 23.7 0.143 9.6 14.7 23.3
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� Compared with LAN that also applies attention weights for
neighborhood aggregation, SLAN achieves an improvement of
6.1% on HITS@10 on FB15K237(10%), 16.5% on WN18RR(10%)
and 4.0% on YAGO-10(10%).

4.3.2. Ablation study
To test the effectiveness of each component of SLAN, we present

three variants in this section. The difference among these variants
is their aggregation functions (refer to Eq. 10) that output the
embeddings of target entities, which are listed in Table 7. Specifi-
cally, the method SLAN-S removes the similarity information from
SLAN. SLAN-T changes the transform module and obtains the tar-
get entity’s neighborhood candidates by directly performing an
identity mapping on the neighboring entities in Eq. 7. And SLAN-
A changes the aggregator module and applies a simple mean pool-
ing on the candidate embeddings to output the final aggregation
embeddings. The evaluation results are listed in Table 8 and we
could observe that:

� From the results of knowledge graph completion, we justify that
each component of our method is effective and can improve the
performance consistently.
� Compared with SLAN-S, SLAN can achieve a 2.0% improvement
on MRR on YAGO3-10(10%) and 3.0% improvement on YAGO3-
10(20%), which demonstrates that exploiting the similarity
information can benefit the prediction about OOKG entities.
� Our attention mechanisms work better on the datasets
WN18RR(10%) and WN18RR(20%), which can achieve around
20% improvement on MRR on both datasets. The reason may
be that there exists strong interaction between the relations
in WN18RR, which can be effectively captured by our attention
mechanisms.

4.3.3. Generalization to other translational methods
Since the ideas in this paper are general and can be applied to

other translational methods, such as TransR [16], TransH [17]
and TransD [18], we use the score functions of these methods to
Table 9
The evaluation results with different translational scoring functions.

FB15K237(10%)

MRR HITS@1 HITS@3 HITS

SLAN(TransH) 0.301 21.3 33.5 47
SLAN(TransR) 0.261 18.2 28.6 40
SLAN(TransD) 0.292 20.8 31.9 45

SLAN(TransE) 0.303 22.1 33.1 47
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modify the transition function in Eq. 7 according to [12], and
design the loss functions in Eqs. (12)–(14) for testing the general-
ization performance of SLAN. From Table 9, we could observe that:

� Our method can empower the widespread translational meth-
ods with the ability to represent OOKG entities inductively.
Among these methods, SLAN(TransE) can achieve stable and
consistent performance.
� Compared with other translational models, SLAN(TransR) per-
forms poorly on this task. The reason may be that TransR has
more parameters to be learned in the training process, which
limits its capability of generalizing to the OOKG entities.

4.3.4. Parameter analysis
Semantic search: When measuring the similarity for each

entity pair, we use the weight a to characterize the influence of
neighbor context and edge context in Eq. 4. In this section, we
investigate the effect of SLAN with different values of a. Evaluation
results are reported in Table 10 and we could observe that SLAN
with the value computed by Eq. 5 works generally better than
other constants, which demonstrates that the effectiveness of our
proposal that derives a based on the information quantity, and
we can improve the capability of SLAN by combining neighbor con-
text and edge context properly.

Training procedure: In the training process, we propose the
loss function (refer to Eq. 11) to optimize our proposal. To explore
the effect of the weight k in the training loss, the following exper-
iments are conducted with k 2 f0:1;0:2; 0:5g on FB15K237(10%)
and FB15K237(20%). From the results in Table 11, we could observe
that the training weight k has a impact on the performance of
SLAN, and a proper scheduling of k can result in more expressive
embeddings for the OOKG entities.
4.3.5. Evaluation time analysis
Since new entities may emerge frequently, it’s necessary for

embedding methods to efficiently predict the missing triples about
OOKG entities. Thus, we conduct this experiment to test the eval-
YAGO-10(10%)

@10 MRR HITS@1 HITS@3 HITS@10

.0 0.128 7.7 13.7 23.2

.9 0.058 2.5 5.7 12.2

.8 0.164 10.9 18.3 27.2

.1 0.136 8.6 14.6 23.7



Table 10
Parameter analysis on similarity weight a.

FB15K237(10%) WN18RR(10%) YAGO-10(10%)

MRR HITS@1 MRR HITS@1 MRR HITS@1

SLAN(a ¼ 1) 0.296 21.1 0.287 22.5 0.123 7.6
SLAN(a ¼ 0) 0.298 21.4 0.293 23.0 0.126 7.9
SLAN(a ¼ a
) 0.303 22.1 0.297 23.3 0.136 8.6

Note that a
 denote the value derived by Eq. 5.

Table 11
Parameter analysis on training loss weight k.

FB15K237(10%) FB15K237(20%)

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

SLAN(k ¼ 0:1) 0.291 20.9 32.0 45.8 0.301 21.2 33.3 47.8
SLAN(k ¼ 0:2) 0.303 22.1 33.1 47.1 0.307 22.0 33.9 48.1
SLAN(k ¼ 0:5) 0.299 21.9 32.3 46.3 0.303 21.4 33.8 47.9

Fig. 3. Comparison of evaluation time between SLAN and the baselines.
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uation time of above embedding methods. The results are reported
in Fig. 3, and we could observe that:

� Compared with the baselines, SLAN can achieve the state-of-
the-art performance without significantly increasing the evalu-
ation time.
� The embedding method LAN generally requires longer evalua-
tion time than other models, due to its complicated attention
mechanism which is time-consuming.

4.4. Sparsity analysis

To further illustrate our improvements, the following experi-
ments are conducted to verify the capabilities of our method of
Fig. 4. Comparison on the OOKG en
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dealing with the sparsity problem, when there exist few neighbors
surrounding the newly emerging entities. Take the dataset
FB15K237(10%) for an example, for each OOKG entity, the average
ratio of existing neighbors in auxiliary set is around 40. Thus, to
test our method’s performance on the sparse scenario, we remove
the triples in the auxiliary set and ensure that each OOKG entity
has no more than N (N = 2,4,8,16,32) neighbors. Then, the remain-
ing auxiliary set along with the test set are used to evaluate our
method. Experimental results of SLAN and baselines are plotted
in Fig. 4. We can observe that the sparsity problem will lead to
drastically performance reduction for the baselines that only rely
on neighborhood information. And the performance of our method
decreases slightly as the neighbor N reduces. The experiments jus-
tities with different neighbors.



Table 12
The sample cases. The left column contains the OOKG subject entity and the query relation. The middle column contains the information of the subject’s similar entities ranked in
a descending order according to the similarity value. The right column contains the ranked prediction from SLAN and SLAN-S. The correct predictions are marked in bold.

Subject and Query The information of similar entities Predicted Object from SLAN and SLAN-S

profession(Christopher Guest)->Actor SLAN: Actor, Screenwriter, Film_Producer,
Michael McKean profession(Harry Shearer)->Screenwriter Musician, Comedian
query: profession profession(Fred Willard)->Actor SLAN-S: Composer, Film_Director, Musician

profession(Eugene Levy)->Screenwriter Television_Director, Film_Producer

genre(WALL-E)->Comedy SLAN: Comedy, Science_Fiction, Drama,
Up genre(Ratatouille)->Comedy Action_Film, Musical

query: genre genre(War Horse)->Drama SLAN-S: Science_Fiction, Comedy, Musical,
genre(Rango)->Action Film Action_Film, Drama

country(Tower Hamlets)->United Kingdom SLAN: United_Kingdom, England,
City of London country(Newham)->United Kingdom Greater_London, West_Midlands, Warwickshire
query: country country(Enfield)->United Kingdom SLAN-S: Greater_London, England,

country(Aachen)->United Kingdom United_Kingdom, Oxfordshire, Enfield

Table 13
Hyperparameters used to train the embedding methods in our paper.

Method FB15K237(10%) FB15K237(20%) WN18RR(10%) WN18RR(20%) YAGO3-10(10%) YAGO3-10(20%)

MEAN d ¼ 100; c ¼ 5:0;
Ep ¼ 2000

d ¼ 100; c ¼ 6:0;
Ep ¼ 2000

d ¼ 100; c ¼ 20:0;
Ep ¼ 2000

d ¼ 100; c ¼ 25:0;
Ep ¼ 2000

d ¼ 100; c ¼ 2:0;
Ep ¼ 2000

d ¼ 100; c ¼ 1:0;
Ep ¼ 2000

LAN d ¼ 100; c ¼ 3:0;
Ep ¼ 2000

d ¼ 100; c ¼ 4:0;
Ep ¼ 2000

d ¼ 100; c ¼ 10:0;
Ep ¼ 1000

d ¼ 100; c ¼ 10:0;
Ep ¼ 1000

d ¼ 100; c ¼ 1:0;
Ep ¼ 1000

d ¼ 100; c ¼ 1:0;
Ep ¼ 1000

oDistMult d ¼ 200;
lr ¼ 0:001;
reg ¼ 0:0;
Ep ¼ 1000

d ¼ 200;
lr ¼ 0:001;
reg ¼ 0:0;
Ep ¼ 1000

d ¼ 200;
lr ¼ 0:01;

reg ¼ 0:001;
Ep ¼ 1000

d ¼ 200;
lr ¼ 0:01;
reg ¼ 0:01;
Ep ¼ 1000

d ¼ 200;
lr ¼ 1:0;

reg ¼ 0:001;
Ep ¼ 2000

d ¼ 200;
lr ¼ 1:0;

reg ¼ 0:01;
Ep ¼ 2000

InvTransE d ¼ 100; c ¼ 4:0;
Ep ¼ 2000

d ¼ 100; c ¼ 4:0;
Ep ¼ 2000

d ¼ 100; c ¼ 10:0;
Ep ¼ 1000

d ¼ 100; c ¼ 10:0;
Ep ¼ 1000

d ¼ 100; c ¼ 1:0;
Ep ¼ 1000

d ¼ 100; c ¼ 1:0;
Ep ¼ 1000

d: embedding dimension; lr: learning rate; c: margin; reg: regularization rate; Ep: training epochs.
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tify the potential value of similarity information when dealing with
the sparsity problem.

4.5. Case study

In this section, we would like to show how similar entities con-
tribute to inferring the missing triple about OOKG entities. We
sample some cases from the test set of FB15K237(10%) and evalu-
ate the performance of SLAN and SLAN-S. From Table 12, we have
the following observations. First, exploiting similarity information
can facilitate semantic transfer and benefit the prediction about
the unseen entity. In the first case, Guest and Willard are the sim-
ilar entities of the subject McKean, and the semantic that they are
Actors can be utilized by SLAN to infer the missing fact (Michael
McKean, profession, Actor). Second, our similarity measure can
effectively obtain the similar entities for a target entity. In the sec-
ond case, the subject Up and its top-2 similar entities are all ani-
mated comedy. And in the third case, the subject and its top-3
similar entities are all boroughs in London. This case study analysis
can demonstrate the effectiveness of exploiting similarity informa-
tion to enhance the OOKG entity embeddings.
5. Conclusion

In this paper, we propose a novel similarity-aware aggregation
network for effectively embedding OOKG entities. We first mea-
sure the similarity between entities based on their neighbor con-
text and edge context. Additionally, we design query-specific
attention weights to aggregate the similarity and neighborhood
information. Experimental results show that our method achieves
consistent improvements compared with the state-of-the-art
baselines.

Currently, we assume that all the neighbors surrounding the
OOKG entity are concurrent, which ignores the temporal informa-
195
tion. In fact, due to the evolving nature of the knowledge graphs,
the occurrence time of these neighbors may be different. And the
temporally adjacent neighbors will have a major impact on the tar-
get entity’s representation. In the future, we plan to study how to
leverage this temporal information for enhancing OOKG entity
embeddings.
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Appendix A. Hyperparameters

We report here the hyperparameter setting used for each
embedding methods in our experiments.

Table 13
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