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Abstract

Graph Contrastive Learning (GCL) establishes a new paradigm for learning graph
representations without human annotations. Although remarkable progress has
been witnessed recently, the success behind GCL is still left somewhat mysterious.
In this work, we first identify several critical design considerations within a general
GCL paradigm, including augmentation functions, contrasting modes, contrastive
objectives, and negative mining strategies. Then, to understand the interplay of
different GCL components, we conduct comprehensive, controlled experiments
over benchmark tasks on datasets across various domains. Our empirical studies
suggest a set of general receipts for effective GCL, e.g., simple topology augmenta-
tions that produce sparse graph views bring promising performance improvements;
contrasting modes should be aligned with the granularities of end tasks. In addi-
tion, to foster future research and ease the implementation of GCL algorithms, we
develop an easy-to-use library PyGCL, featuring modularized CL components,
standardized evaluation, and experiment management. We envision this work to
provide useful empirical evidence of effective GCL algorithms and offer several
insights for future research.

1 Introduction

The past few years have witnessed rapid advances in Graph Neural Networks (GNNs) [1, 2], which
have become the de facto framework for analyzing graph-structured data. As the most GNN models
focus on (semi-)supervised learning, which requires access to abundant labels, recent trends in Self-
Supervised Learning (SSL) have led to a proliferation of studies on learning graph representations
without relying on human annotations. Among them, Contrastive Learning (CL) is a major area of
interest and has already achieved comparable performance with supervised counterparts in many
representation learning tasks [3–12].

Recently, remarkable progress has been made to adapt CL for the graph domain. A typical Graph
Contrastive Learning (GCL) method constructs multiple graph views via stochastic augmentation
of the input graph and then learns representations by contrasting positive samples against negative
ones. For each node being an anchor instance, its positive samples are often chosen as the congruent
representations in other views, while negatives are selected from other nodes within the given graph
or other graphs within the batch. Although GCL has constituted a new paradigm of SSL in the
graph domain and achieved promising results, recent studies [13–19] seem to resemble each other
with very limited nuances from the methodological perspective. Moreover, most existing work only
provides model-level evaluation and the contributing factors leading to the success of GCL still
remain somewhat mysterious, which calls for a deeper understanding of different GCL components.
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Towards this end, we try to shed light on how these GCL algorithms succeeded through the lens
of empirical evaluation of critical design considerations. We first propose a general contrastive
paradigm that characterizes previous work in a limited design space of four design dimensions:
(a) data augmentation functions, (b) contrasting modes, (c) contrastive objectives, and (d) negative
mining strategies. Note that we include no model-specific design considerations such as the number
of attention heads for graph attentive encoders. To the best that we are aware, these four dimensions
cover a wide range of options that are representative in open literature.

Then, we systematically study the empirical performance of different design dimensions through
controlled experiments over benchmark tasks on a set of datasets across a variety of domains. Through
the empirical studies, we attempt to provide answers to the following questions:

• What is the most contributory component in an effective GCL algorithm?
• How do different design considerations affect the model performance?
• Do these design considerations favor certain types of data or end tasks?

It is noted that there have been several survey papers on self-supervised graph representation learning
[20–22]. However, to the best of our knowledge, none of existing work provides rigorous empirical
evidence on the impact of each component in GCL.

We summarize several key findings of the empirical study, which we hope could benefit the graph
SSL community for developing future algorithms. Our experiments suggest a set of general recipes
for effective GCL algorithms:

• GCL algorithms benefit the most from topology augmentation that produces sparse graph views. In
addition, bi-level augmentation on both topology and feature levels further improves the perfor-
mance.

• Overall, same-scale contrasting modes are desirable. The contrasting modes should also be chosen
according to the granularity of downstream tasks.

• The InfoNCE objective obtains stable, consistent performance improvements under all settings yet
requires a large number of negative samples.

• Several recently proposed negative-sample-free objectives have great potential for reducing compu-
tational burden without compromising on performance.

• Current negative mining strategies based on calculating embedding similarities bring limited
performance improvements to GCL.

In addition, to foster future research, we develop PyGCL, an easy-to-use PyTorch framework,
featuring commonly used, modularized GCL components, standardized evaluation, and experiment
management. We hope the use of PyGCL will greatly relief the burden of comparing existing
baselines and developing new algorithms. The PyGCL is open-sourced at https://github.com/G
raphCL/PyGCL.

2 A General Paradigm of GCL and its Design Dimensions

2.1 Problem Formulation

Let G = (V, E) denote a given graph, where V = {vi}Ni=1, E ⊆ V × V represent the node set and the
edge set respectively. We further denote the feature matrix and the adjacency matrix as X ∈ RN×F

and A ∈ {0, 1}N×N , where xi ∈ RF is the feature of vi and Aij = 1 iff (vi, vj) ∈ E . In the setting
of unsupervised representation learning, there is no given class information of nodes or graphs during
training. Our objective is to learn a GNN encoder f(·) receiving the graph features and structure as
input and producing node embeddings in a low dimensionality. We denote H = f(X,A) ∈ RN×F ′

as the learned representations of nodes, where hi is the embedding of node vi. For graph-oriented
tasks, we can further obtain a graph-level representation s = r(H) ∈ RF ′

of G that aggregates
node-level embeddings. Note that the readout function r(·) might be a simple permutation-invariant
function such as mean or sum pooling, or may be parameterized by a neural network. These
representations can be used in downstream tasks, such as node/graph classification and community
detection.
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Figure 1: A general GCL model. At first, two graph views are generated via data augmentation
functions. Then, the two graphs are fed into a shared graph neural network to learn representations,
which are then optimized with a contrastive objective that pulls congruent representation pairs in
the two views together while pushing others away. Additional negative mining techniques may be
employed to improve the model performance.

2.2 A General Paradigm of GCL

We decompose GCL algorithms from four dimensions: (a) data augmentation functions, (b) con-
trastive mode, (c) contrastive objective, and (d) negative mining strategies. These four components
constitute the design space of interest in this work.

At each iteration of training, we first perform stochastic augmentation to generate multiple graph
views from the input graph. Specifically, we sample two augmentation functions t1, t2 ∼ T to
generate graph views G̃1 = t1(G) and G̃2 = t2(G), where T is the set of all possible transformation
functions to be discussed in the next section. We then obtain node representations for the two views
using a shared GNN encoder f(·), denoted by U = f(X̃1, Ã1) and V = f(X̃2, Ã2) respectively.
Optionally, we may obtain graph representations for each graph view through a readout function r(·):
s1 = r(U) and s2 = r(V ).

For every node embedding vi being the anchor instance, the contrasting mode specifies a positive
set P(vi) = {pi}Pi=1 and a negative set Q(vi) = {qi}Qi=1. In a pure unsupervised learning setting,
we only consider congruent samples in each graph view; in other words, embeddings in the two
augmented graph views corresponding to the same node or graph constitute the positive set. When
label supervision is given, the positive set may be enlarged with samples belonging to the same
class [23]. Moreover, we may employ negative mining strategies to improve the negative sample
set by considering the relative similarity (i.e. the hardness) of negative samples. Finally, we use a
contrastive objective J to score these specified positive and negative pairs.

2.2.1 Design Dimensions

In the following, we succinctly list implementations of these four design dimensions considered in
this work. For details of each implementation, we refer readers of interest to Appendix F.

• Data augmentation. The purpose of data augmentation is to generate congruent, identity-
preserving positive samples of the given graph. Most GCL work involves bi-level augmentation
techniques: topology (structure) and feature augmentation.

– Topology augmentation: (1) Edge Removing (ER), (2) Edge Adding (EA), (3) Edge Flipping
(EF), (4) Node Dropping (ND), (5) Subgraph induced by Random Walks (RWS), (6) diffusion
with Personalized PageRank (PPR), and (7) diffusion with Markov Diffusion Kernels (MDK).

– Feature augmentation: (1) Feature Masking (FM) and (2) Feature Dropout (FD).

• Contrasting modes. For an anchor instance, contrasting modes determine the positive and negative
sets at different granularities of the graph. In mainstream work, three contrasting modes are
widely employed: (1) local-local CL and (2) global-global CL, which contrast embeddings at
the same scale, and (3) global-local CL, which contrasts cross-scale embeddings. Note that the
space of contrasting mode depends on downstream tasks. Only local-local and global-local CL are
applicable for node datasets, where all three mode can be used for graph datasets.
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Table 1: Summary of representative GCL models within the proposed paradigm.

Method Primary task Topology
augmentation

Feature
augmentation

Contrasting
mode

Dual
branches?

Contrastive
objective

DGI [13] Node classification — — Global-local ✗ JSD
GMI [15] Node classification — — Global-local ✗ SP-JSD

InfoGraph [19] Graph classification — — Global-local ✗ SP-JSD
MVGRL [14] Node & graph classification PPR — Global-local ✓ JSD

GCC [24] Transfer learning RWS — Local-local ✗ InfoNCE
GraphCL [16] Graph classification RWS/ND/EA/ED FD Global-global ✓ InfoNCE
GRACE [17] Node classification ER MF Local-local ✓ InfoNCE

GCA [18] Node classification ER MF Local-local ✓ InfoNCE
BGRL [25] Node classification ER MF Local-local ✓ BL
GBT [26] Node classification ER MF Local-local ✓ BT

• Contrastive objectives. Contrastive objectives are used to measure the similarity of positive
samples and the discrepancy between negatives. We consider the following objective functions that
rely on negative samples: (1) Information Noice Contrastive Estimation (InfoNCE), (2) Jensen-
Shannon Divergence (JSD), and (3) Triplet Margin loss (TM). Moreover, we also analyze the
following objectives that eschew the need of explicit negative samples: (4) the Bootstrapping Latent
loss (BL), (5) Barlow Twins (BT) loss, and (6) VICReg loss.

• Negative mining strategies. Recent work argues that CL algorithms benefits from hard negative
samples (i.e. samples difficult to distinguish from an anchor instance). In this work, we consider
the following four negative mining strategies: (1) Hard Negative Mixing (HNM), (2) Debiased
Contrastive Learning (DCL), (3) Hardness-Biased Negative Mining (HBNM), and (4) Conditional
Negative Mining (CNM).

2.2.2 Discussions on Representative GCL Methods

We give a brief summary of existing representative GCL methods as shown in Table 1 and discuss
how they fit into our proposed paradigm. We note that negative mining strategies have received scant
attention in current GCL literature and thus are omitted in the table.

Dual branches vs. single branch. We notice that most work leverages a dual-branch architecture
following SimCLR [8] that augments the original graph twice to form two views and designates
positive samples across two views. For some global-local CL methods like DGI [13] and GMI [15],
they employ an architecture with only one branch. In this case, negative samples are obtained by
corrupting the original graph. Different from the aforementioned augmentation schemes that generate
congruent pairs to model the joint distribution of positive pairs, we resort to the term corruption
functions, which approximate the product of marginals.

Stronger augmentation. Unlike GRACE [17] and GraphCL [16] that employ uniform edge/feature
perturbation, GCA [18] proposes to perform adaptive augmentation based on importance scores of
edges and features. In this work, to involve less hyperparameters as possible, we focus on “uniform”
augmentation schemes only.

Variants of contrasting modes. GMI [15] extends DGI [13] by further considering the agreement
between raw node/edge features and node/edge representations. Because it requires much more
computational resources, our experiments exclude this implementation of contrasting mode. In
addition, there are several recent methods [27, 28] involve contrasting between local/global and
context representations, which are usually derived from graph clustering algorithms. Considering the
generality of the experiments, we shall leave studying these variants as a future direction.

3 Empirical Studies

In the following section, we first introduce experimental configurations and then summarize the results
and observations regarding each particular component in the proposed paradigm. We refer interested
readers to Appendix B for more information on the evaluation protocols and implementations.

Evaluation configurations. We conduct experiments on a variety of medium- to large-scale datasets
widely used in literature, ranging from academic networks to chemistry molecules. For fair compari-
son, we closely follow previous studies on datasets preprocessing [13, 16–19, 25, 29, 30]. We mainly
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Table 2: Statistics of datasets used for unsupervised learning experiments.

Dataset Domain Task #Graphs Avg. #nodes Avg. #edges #Features #Classes

Wiki Knowledge base Unsupervised
node

classification

1 11,701 216,123 300 10
Computer Social networks 1 13,752 245,861 767 10

CS Citation networks 1 18,333 81,894 6,805 15
Physics Citation networks 1 34,493 247,962 8,415 5

NCI1 Biochemical molecules Unsupervised
graph

classification

4110 29.87 32.30 — 2
PROTEINS Bioinformatics 1,133 39.06 72.82 29 2
IMDB-M Social networks 1,500 13.00 65.94 — 3
COLLAB Social networks 5,000 74.49 2457.78 — 3

evaluate models with different design considerations on two essential tasks: (1) unsupervised node
classification and (2) unsupervised graph classification. For all experiments, we follow the linear
evaluation scheme used by DGI [2]. Particularly, the models are first trained in an unsupervised
manner and the resulting embeddings are fed into a linear classifier to fit the labeled data. We evaluate
each model using ten random splits and report the averaged accuracies (%) as well as standard
deviation scores.

Datasets. We conduct experiments on a variety of medium-scale datasets widely used in open
literature, ranging from academic networks to chemistry molecular datasets, including Wiki-CS
(Wiki) [31], Amazon-Computer (Computer), Coauthor-CS (CS), and Coauthor-Physics (Physics) [29]
for node classification and NCI1 [32], PROTEINS-full (PROTEINS) [33], IMDB-MULTI (IMDB-M),
and COLLAB [34] for graph classification. The statistics of all datasets is summarized in Table 2.

Implementation details. We choose Graph Convolutional Networks (GCNs) [1] as the encoder for
all node tasks and use Graph Isomorphism Networks (GINs) [35] for all graph tasks. For projector
functions, we utilize an additional MultiLayer Perceptron (MLP) model. To ensure convincing
experiments and observations, we first perform an exhaustive search over the entire design space.
Then, we select and report representative results to reveal common, useful practices. With the aim of
conducting controlled experiments, we fix as many variables, e.g., the GNN encoder architecture,
embedding dimensions, the number of epochs, and activation functions, as possible for every dataset.

3.1 Data Augmentation

⋄ Augmentation: eval ⋄ Contrasting mode: L–L ⋄ Objective: InfoNCE ⋄ Negative mining strategy: None

We first investigate how data augmentation affectss the performance of GCL. Specifically, we apply
different data augmentation functions to generate two views, leverage the InfoNCE objective, and
contrast local-local (node) representations. Except for specific augmentation functions used, all other
settings are kept the same. Below, we first report performance on different topology and feature
augmentation functions. Then, we examine the use of compositional data augmentation schemes: (1)
structure- and feature-level augmentations and (2) deterministic plus stochastic augmentations.

Observation 1. Topology augmentation greatly affects model performance. Augmentation
functions that produce sparser graphs generally lead to better performance.

Table 3 summarizes the results of employing different topology and feature augmentations. It is
evident that the performance of GCL is highly dependent on the choice of topology augmentation
functions. We observe that models that remove edges (ER, MDK, ND, PPR, and RWS), compared to
models that add edges (EA), in general achieve better performance, which suggests that augmentation
functions produce sparser graph views are preferable. We also find that Random Walk Sampling
(RWS) achieves better performance on node datasets, while Node Dropping (ND) favors graph tasks.
Although random walk sampling is able to better extract local structural patterns, the graph datasets
used in our study are of relatively small scales (< 500 nodes per graph). Therefore, we suspect that
these random-walk-based sampling strategies may be confined and a simple node dropping scheme
generally outperforms other augmentations on graph-level tasks.

To see how sparsity of the resulting views affect the performance, we further conduct sensitivity anal-
ysis on three models with ND, ER, and EA augmentation respectively by varying the dropping/adding
probabilities on the CS dataset. The prediction accuracy along with the total number of edges in the
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Table 3: Classification performance with different topology and feature augmentation. The best
performance is highlighted in boldface and the second-to-best underlined. OOM indicates Out-Of-
Memory on a 24GB GPU.

Aug.
Node Graph

Wiki CS Physics Computer NCI1 PROTEINS IMDB-M COLLAB

None 68.52±0.39 90.76±0.05 93.69±0.73 80.62±0.62 58.49±2.21 70.94±1.13 45.07±1.70 66.21±0.92

To
po

.

EA 72.65±0.43 92.73±0.10 94.77±0.05 83.40±0.64 70.80±0.55 71.17±0.63 44.80±1.43 68.12±0.63
ER 76.38±0.21 92.83±0.17 95.21±0.05 87.84±0.76 73.03±0.48 72.55±0.11 45.17±1.64 68.13±0.82
EF 74.10±0.67 92.99±0.15 94.88±0.06 86.68±0.73 73.95±0.49 70.64±1.67 44.15±1.21 67.92±0.93
ND 77.47±0.32 92.81±0.08 95.99±0.12 87.01±0.54 72.12±1.38 72.54±0.43 47.03±1.14 70.73±0.78
PPR 69.28±0.22 92.25±0.07 OOM 85.06±0.53 58.70±0.51 71.69±1.12 45.27±0.85 68.51±0.67

MKD 69.87±0.12 92.62±0.14 OOM 82.46±0.58 57.21±0.31 71.31±0.11 45.07±1.16 68.09±0.88
RWS 76.74±0.20 93.48±0.08 95.04±0.11 87.60±0.63 75.11±1.14 71.79±0.82 44.95±0.82 70.85±0.89

Fe
at

. FM 76.74±0.34 91.55±0.11 94.12±0.21 85.05±0.51 64.87±0.36 71.35±0.79 45.36±1.68 70.52±0.35
FD 76.68±0.16 91.83±0.08 94.20±0.16 84.93±0.46 63.21±0.51 71.60±1.61 46.44±0.96 70.69±1.33
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Figure 2: Sensitivity analysis with various topology augmentation probabilities on the CS dataset.

produced graphs is plotted in Figure 2. From Figures 2a and 2b, we observe that model performance
improves as more nodes or edges are dropped and degenerates when the removal probability is
overly high. As seen in Figure 2c, the performance of EA augmentation downgrades greatly when
more edges are added. In general, these results accord with our observations that many real-world
graphs are inherently sparse [36, 37]. When too many edges are added, they connect nodes that are
semantically unrelated, bringing noise to the generated graph view and thus deteriorating the quality
of learned embeddings.

Observation 2. Feature augmentation brings additional benefits to GCL. Compositional aug-
mentation at both structure and attribute level benefits GCL the most.

From Table 3, we observe that the performance of models employing feature augmentation solely
is inferior to that use topology augmentation but still higher than the baseline performance. The
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Figure 3: Performance on models using compositional augmentation at topology and feature levels.
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Figure 4: Performance on models using composition of stochastic and deterministic augmentation.

improvements brought by the two feature augmentation schemes could be explained from the fact
that FM and FD resemble applying the dropout [38] technique on the input layer. Also, we see that in
general FM slightly outperforms FD, which suggests the use of a shared feature mask for all node
features, though their performance difference is not that significant.

Furthermore, Figure 3 presents the results in the case of hybrid augmentation at both topology and
feature levels. It is clear that the use of feature augmentation in addition to structure augmentation
benefits GCL, demonstrating that both topology and structures are important for learning graph
representations.

Observation 3. Deterministic augmentation schemes should be accompanied by stochastic
augmentation.

In Table 3, we find that using two deterministic augmentation functions PPR and MDK independently
does not always result in promising performance. We also find that prior studies [14] usually leverage
stochastic augmentation (e.g., node dropping) after deterministic augmentation like PPR. Therefore,
we utilize another set of joint augmentation of stochastic and deterministic augmentation functions,
where the performance is summarized in Figure 4. It is seen that the joint scheme improves the vanilla
deterministic augmentation by a large margin. Recall that our contrastive objective is essentially
aimed to discriminate between samples from the data distribution and samples from some noise
distributions [39, 40]. Therefore, a stochastic augmentation scheme is needed to better approximate
that noise distribution.

3.2 Contrasting Modes and Contrastive Objectives

⋄ Augmentation: ND + FM ⋄ Contrasting mode: eval ⋄ Objective: eval ⋄ Negative mining strategy: None

The next experiments are concerned with how contrasting modes and contrastive objectives affect the
model performance. We train the model with different contrasting modes and contrastive objectives,
with the topology augmentation set to ND and the feature augmentation to FM. Except that embedding
sizes are fixed, other hyperparameters are tuned to obtain the best performance under each experiment
for fair comparison.

We first experiment with negative-sample-based contrastive objectives: InfoNCE, JSD, and TM.
Besides contrastive objectives that rely on negative samples, we also investigate three negative-sample-
free objectives: BL, BT, and VICReg. Table 4 presents the experimental results on unsupervised
classification tasks. It should be noted that BT and VICReg losses need to compute the covariance of
latent embedding vectors and thus are not compatible with the global-local mode.

Observation 4. Same-scale contrasting generally performs better. Downstream tasks of different
granularities favor different contrasting modes.

What stands out from the table is that contrasting local-local pairs achieves the best performance on
node-level classification, while the global-global mode performs better on graph-level tasks. This
suggests us to use same-scale contrasting modes, which is consistent with the practices used in
recent literature [5, 8, 16–18, 41–44]. A possible explanation for this result is that, in global-local
contrasting, all node embeddings within the graph constitute the positive samples for each graph
embedding. In other words, the global-local mode pulls every node-graph pair together in the
embedding space, which may lead to suboptimal performance in downstream tasks.
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Table 4: Performance with different objectives and contrasting modes. L–L, G–L, and G–G denote
local-local, global-local, and global-global contrasting modes. The best results for objectives (row-
wise) and contrasting modes (column-wise) are highlighted in boldface and underline respectively.

(a) Unsupervised node classification

Obj.
Wiki CS Physics Computer

L–L G–L L–L G–L L–L G–L L–L G–L

InfoNCE 79.09±0.15 77.73±0.94 92.45±0.83 90.60±0.06 95.95±0.92 93.23±0.96 88.15±0.59 76.24±0.93
JSD 78.83±0.95 78.71±0.19 92.18±1.00 91.31±0.62 94.32±0.28 94.12±0.04 82.02±0.76 78.27±0.05
TM 78.42±0.88 76.53±0.85 91.91±0.31 90.11±0.61 94.11±0.60 92.78±0.12 69.67±0.88 76.38±0.75

BL 76.83±0.80 75.34±0.43 93.10±0.94 88.55±0.43 94.81±0.98 94.09±0.83 87.79±0.94 85.43±0.23
BT 80.41±0.15 — 94.16±0.02 — 96.55±0.12 — 86.86±0.97 —

VICReg 80.79±0.12 — 93.46±0.08 — 95.59±0.23 — 86.39±0.32 —

(b) Unsupervised graph classification

Obj.
NCI1 PROTEINS IMDB-M COLLAB

L–L G–L G–G L–L G–L G–G L–L G–L G–G L–L G–L G–G

InfoNCE 73.10±0.83 72.35±0.21 73.95±0.89 73.28±0.62 71.57±0.92 75.73±0.09 48.16±0.64 47.36±0.48 49.69±0.44 73.25±0.34 70.92±0.22 73.72±0.12
JSD 73.56±0.32 73.29±0.31 70.93±0.17 73.88±0.31 73.15±0.42 73.67±0.45 48.31±1.17 48.61±1.21 48.31±1.35 70.40±0.31 72.62±0.35 71.60±0.32
TM 72.43±0.21 71.21±0.19 72.31±0.22 72.17±0.51 72.13±1.48 73.78±0.47 48.38±0.20 47.75±1.24 48.58±0.62 68.85±0.45 69.47±0.20 72.97±0.47

BL 77.22±0.13 75.97±0.23 76.70±0.31 77.75±0.43 77.32±0.21 78.17±0.59 54.64±0.43 54.21±1.01 55.32±0.21 73.95±0.25 73.35±0.24 74.92±0.33
BT 72.49±0.22 — 70.53±1.11 74.87±0.68 — 74.38±0.56 48.50±0.65 — 49.53±0.42 71.70±0.53 — 73.00±0.42

VICReg 72.31±0.34 — 71.60±0.36 74.61±1.15 — 74.38±0.57 46.75±1.47 — 50.28±0.55 68.88±0.34 — 72.50±0.31

Furthermore, the contrasting mode should be chosen according to the granularity of end task, i.e. local-
local for node-level tasks and global-global for graph-level tasks. In accordance with the presented
results, recent studies [45–47] have made a similar finding for learning visual representations.
They demonstrate that being pretrained on instance-level pretext tasks (i.e. contrasting image-level
embeddings in the same batch), current CL models achieve suboptimal performance in fine-grained
downstream tasks, e.g., semantic segment that requires pixel-level details.

Observation 5. Among negative-sample-based objectives, the use of InfoNCE objective leads to
consistent improvements across all settings.

Table 4a indicates that InfoNCE achieves the best performance among contrastive objectives that need
negative samples, which is demonstrated to be effective by many recent methods [4, 7, 8, 48, 49].
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Figure 5: Sensitivity analysis of the pa-
rameter τ in the InfoNCE objective.

Among these negative-sampling-based objectives, recent studies have
already revealed that the InfoNCE loss has an intrinsic ability to per-
form hard negative sampling [23], which may explain its superior
performance compared to other objectives. Particularly, one very re-
cent study in computer vision [50] shows that the use of a temperature
parameter τ in the InfoNCE objective acts as an adjustment factor to
exert penalties on hard negative samples. To verify this on GCL, we
further conduct sensitivity analysis on this temperature parameter on
both node (CS) and graph (IMDB-M) datasets as shown in Figure 5.
We observe that with the increase of τ , the performance improves at
first and downgrades later, with not much performance fluctuation.
According to Wang and Liu [50], the InfoNCE objective pays less attention to hard negatives as τ
increases. This hardness-aware behavior demonstrates the importance of striking a balance between
separation of hardest negative samples (τ → 0+) and global uniformity (τ → ∞) on GCL.

Observation 6. Bootstrapping Latent and Barlow Twins losses obtain promising performance
on par with their negative-sample-based objectives yet reduce the computational burden.

Table 5: Memory usage (MB) on the
PROTEINS dataset of different con-
trastive objectives.

Obj. L–L G–L G–G

InfoNCE 6,311 2,977 2,271
JSD 6,309 2,845 2,269
TM 6,271 2,977 2,269

BL 2,235 2,247 2,187
BT 2,419 — 2,201

VICReg 2,465 — 2,232

Surprisingly, we find the performance obtained by employing these
negative-sample-free objectives sometimes even surpasses their
negative-sample-based counterparts, which suggests a promising fu-
ture direction of finding efficient solutions free of negative samples
for GCL. As opposed to negative-sample-based objectives, the BL,
BT, and VICReg losses eschew the need of explicit negative sam-
ples and thus greatly reduce the computational burden. To see this,
we summarize the memory consumption in Table 5, from which we
clearly observe that these three losses use much less memory than
other objectives without negative samples.
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3.3 Negative Mining Strategies

⋄ Augmentation: ND + FM ⋄ Contrasting mode: L–L ⋄ Objective: InfoNCE ⋄ Negative mining strategy: eval

We firstly probe the explicit use of negative mining strategies on top of contrastive objectives, which
essentially measure similarity (i.e. hardness) of each negative pair and upweights hard negative
samples. Among the examined negative mining strategies, DCL develops debasing terms to select
truly negative samples so as to avoid contrasting same-label instances; other strategies propose to
upweight hard negative samples (points that are difficult to distinguish from an anchor) and remove
easy ones that are less informative to improve the discriminative power of the GCL model.

Observation 7. Existing negative mining techniques based on calculating embedding similarities
bring limited benefit to GCL.

We train four models on three node classification datasets (due to out-of-memory error on Physics)
using the local-local mode with the InfoNCE objective. The performance comparison of different
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Figure 6: Performance of negative mining strategies.

negative mining strategies is shown in Figure 6. It is apparent
that the four negative mining strategies studied in this exper-
iment bring limited improvements to GCL. Although slight
improvements can be observed under certain hyperparameter
configurations, which proves the explicit modeling of hard neg-
atives is useful for GCL, their performance in general rarely
matches the best performance reported with other contrastive
objectives (cf. Table 4a).

We note that in existing formulation of negative sampling techniques, the sample hardness is measured
by inner product of sample embeddings. Since we are in a fully unsupervised setting, no label (i.e.
class) information can be accessed during training. Under existing contrasting modes, for one anchor
sample, the contrastive objective pushes all different representations away, irrespective of their real
semantic relations. What is even worse, most GNN models tend to produce similar embeddings
for neighboring nodes regardless of semantic classes [51–54], which may further bias the selection
of hard negatives. Therefore, we argue that there is disagreement between semantic similarity and
example hardness. By selecting hard negative samples merely according to similarity measure of
embeddings, these hard negatives are potentially positive samples, which produces adverse learning
signals to the contrastive objective. For an illustrative example and more detailed discussions, please
refer to Appendix D. We find that our discovery reminiscent to one very recent study in visual CL
[50], which recommends an adaptive scheduling scheme for the temperature parameter when using
InfoNCE as the contrastive objective, such that hard but false negatives could be tolerated as the
training progresses.

3.4 Additional Experiments

We perform additional experiments on large-scale datasets and ablation studies on the batch normal-
ization module used in the bootstrapping latent loss. Due to space constraints, we briefly discuss our
findings as follows. Readers of interest may refer to Appendix C for detailed discussions.

More evaluation tasks and metrics on large-scale datasets with edge features. Currently, since
the experiments are limited to medium-scale datasets, we conduct a further study assessing how
existing GCL work scales to large-scale graphs using two open graph benchmarks [55] datasets. In
the experiments, we examine the performance of different data augmentation due to the presence of
edge features, contrasting modes, and contrastive objectives on binary graph classification and graph
regression, which are measured in terms of AUC-ROC and MAE, respectively. It is shown that the
experimental results are still in keeping with observations made in the main texts.

Ablation studies on the Batch Normalization module for the Bootstrapping Latent loss. Previous
work [56] hypothesizes that the use of Batch Normalization (BN) in existing work compensates
for improper initialization for contrastive learning models, instead of introducing implicit negative
samples. To see its impact on GCL performance, we perform ablation studies by using BN or not in
three critical components in the BL loss, i.e. the GNN encoder, the projector, and the predictor, on
the node classification task. The results show that using BN in the GNN encoder solely is almost
sufficient to obtain promising performance.

9



4 Conclusion, Limitations, and Outlook

In this paper, we first present a taxonomy for GCL, where we categorize existing work from four
aspects: data augmentations, contrasting modes, contrastive objective, and negative mining strategies.
Then, we analyze the design choices for each GCL component by conducting extensive empirical
studies over a comprehensive set of benchmarking tasks and datasets. Our rigorous empirical
study reveal several interesting findings of GCL components that may be helpful for developing
future algorithms. We also provide an open-sourced PyTorch-based library PyGCL to facilitate the
implementation of GCL models. While GCL has already demonstrated strong empirical performance
across a variety of downstream tasks, it is still in its infancy with many challenges left widely open.
We hope our work provides several practical guidelines for future research in this vigorous field.

Due to limited space, some limitations of our work need to be acknowledged.

• Limited design considerations. In this work, we consider limited design considerations, namely
four design dimensions. An issue that is not addressed in this study is what role do many other
model-specific factors, e.g., whether to employ a projection head in the InfoNCE objective and
what graph encoders should be employed, play in GCL.

• Limited downstream tasks. Our empirical study only includes experiments on node- and graph-
level classification and graph-level regression; a boarder range of downstream tasks of different
granularities, e.g., link prediction and community detection, may be beneficial to draw more
convincing conclusions.

• Lack of theoretical justification. Our work only presents empirical studies which has thrown up
many questions in need of further theoretical justification for better understanding the underlying
mechanisms of GCL, for instance, the performance guarantees of certain contrasting modes and
how to appropriately measure and select hard negative samples for contrastive objectives in the
graph domain.

Our empirical findings also suggest several future directions that may be helpful for fully unleashing
the power of GCL.

• Towards automated augmentation. We understand that topology augmentation is of paramount
importance to GCL. However, existing work leverages manually designed ad-hoc augmentation
strategies, which may result in suboptimal performance. Recent studies in graph structure learning
pave a principled way to learn optimal structures of graph-structured data [37], which we argue
could be used for automatically learn augmentation functions suitable for GCL pretext tasks.

• Understanding the performance gap between pretext and downstream tasks. We empirically
demonstrate the correlation between the choice of end tasks and contrastive objectives, yet calls for
a thorough understanding for the performance gap between pretext and downstream tasks. We have
found that there is some progress in this regard [57], but it is far from fully explored.

• Structure-aware negative sampling. Unlike in computer vision fields, similar visual features
may naturally correlate to closer semantic categories, measuring the hardness through embedding
similarities in graph-structured data is more difficult. A series of earlier work in network embedding
proposes solutions from structural aspects [58–60]. However, how to integrate rich structure
information for modeling better negative distributions for GCL is still left unexplored.
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