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Abstract. This paper proposes a novel model for video generation and
especially makes the attempt to deal with the problem of video gen-
eration from text descriptions, i.e., synthesizing realistic videos con-
ditioned on given texts. Existing video generation methods cannot be
easily adapted to handle this task well, due to the frame discontinuity
issue and their text-free generation schemes. To address these problems,
we propose a recurrent deconvolutional generative adversarial network
(RD-GAN), which includes a recurrent deconvolutional network (RDN)
as the generator and a 3D convolutional neural network (3D-CNN) as
the discriminator. The RDN is a deconvolutional version of conventional
recurrent neural network, which can well model the long-range temporal
dependency of generated video frames and make good use of conditional
information. The proposed model can be jointly trained by pushing the
RDN to generate realistic videos so that the 3D-CNN cannot distin-
guish them from real ones. We apply the proposed RD-GAN to a series
of tasks including conventional video generation, conditional video gen-
eration, video prediction and video classification, and demonstrate its
effectiveness by achieving well performance.

Keywords: Video generation · RD-GAN · GAN

1 Introduction

Image generation has drawn much attention recently, which focuses on synthe-
sizing static images from random noises or semantic texts. But video generation,
i.e., synthesizing dynamic videos including sequences of static images with tem-
poral dependency inside, has not been extensively studied. In this work, we wish
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to push forward this topic by generating better videos and dealing with a rarely
investigated task of text-driven video generation.

The task here can be defined as follows: given a text describing a scene in
which someone is doing something, the goal is to generate a video with similar
content. This is challenging since it involves language processing, visual-semantic
association and video generation together. A straightforward solution is to gen-
eralize the existing video generation models for this task. But it is not optimal
due to the following reasons: (1) conventional video generation directly generates
videos from noises but not from semantic texts as our case, and (2) existing video
generation models mostly suffer from the visual discontinuity problem, since they
either directly ignore the modeling of temporal dependency of generated videos,
or simply consider it in a limited range with 3D deconvolution.

In this paper, we propose a recurrent deconvolutional generative adversarial
network (RD-GAN) for conditional video generation. The proposed RD-GAN
first represents given semantic texts as latent vectors with skip-thoughts [8], and
exploits a generator named recurrent deconvolutional network (RDN) to gener-
ate videos in a frame-by-frame manner based on the latent vectors. The RDN
can be regarded as a deconvolutional version of conventional recurrent neural
network by replacing all the full connections with weight-sharing convolutional
and deconvolutional ones. Accordingly, its hidden states now are 2D feature
maps rather than 1D feature vectors, which efficiently facilitates the modeling of
spatial structural patterns. After the generation, the generated videos are then
fed into a discriminator which uses 3D convolutional neural network (3D-CNN)
to distinguish from non-generated real videos. The generator and discriminator
in RD-GAN can be jointly trained with the goal to generate realistic videos
that can confuse the discriminator. To demonstrate the effectiveness of our pro-
posed RD-GAN, we perform various experiments in terms of conventional and
conditional video generation, video prediction and classification.

Our contributions are summarized as follows. To the best of our knowledge,
we make the attempt to study the problem of sentence-conditioned video gen-
eration, which is a rarely investigated but very important topic for the current
research interest on generative models. We propose a novel model named recur-
rent deconvolutional generative adversarial networks to deal with the task, which
is demonstrated to achieve good performance in a wide range of both generative
and discriminative tasks.

2 Related Work

Image Generation. With the fast development of deep neural networks, the
generative models have made great progress recently. As we know, Tijmen [19]
proposed capsule networks to generate images and Dosovitskiy et al. [2] gen-
erated 3D chairs, tables and cars with deconvolutional neural networks. There
are also some other works [15,26] using supervised methods to generate images.
Recently, the unsupervised methods, such as variational auto-encoder (VAE)
[7] and generative adversarial network (GAN) [3] have attracted much atten-
tion. Gregor et al. [4] found that they can generate simple images by imitating
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human painting based on the recurrent variational autoencoder and the atten-
tion mechanism. The autoregressive models proposed by Oord et al. [21] modeled
the conditional distribution of the pixel space and also achieved good experimen-
tal results. Compared with other methods, GAN has a relatively better perfor-
mance on such tasks and various models [1,18,24,25] based on GAN generated
appealing synthetic images. Beside that, conditional image generation has also
been extensively studied. At first, simple variables, attributes or class labels
[9,12] were used to generate specific images. Furthermore, researchers try to use
unstructured text to do this work. For instance, Reed et al. [14] used the text
descriptions and object location constraints to generate images with conditional
PixelCNN. The later works [13,27] built upon conditional GAN yielded 64 × 64
or larger scale images of birds and flowers from text descriptions successfully.

Video Generation. Before we go into our video generation model, it is essen-
tial to review the recent advance related to video prediction and generation.
[6,28] inspired us in terms of video continuity. Compared with video predic-
tion, there is no context information in the video generation task. Vondrick et
al. [22] first came up with a “violence” generative model which can directly
yield fixed length videos from 3D deconvolution. However, the 3D deconvolu-
tion causes more serious loss of information than 1D and 2D deconvolution. In
order to fix this problem, Saito et al. [16] proposed TGAN which tried to find all
the latent vectors of continuous frames with the thought that videos are com-
posed of images. And they used 1D and 2D deconvolution to generate video
frame by frame. Unfortunately, their results do not have good continuity as they
expected. MoCoGAN [20] decomposing motion and content for video genera-
tion, but their model lack understanding of semantics. In this work, we propose
recurrent deconvolutional generative adversarial network (RD-GAN) including
a recurrent deconvolutional network (RDN) to handle the current problems in
video generation and well exploit the conditional constraints.

3 Recurrent Deconvolutional Generative Adversarial
Network

The architecture of our proposed recurrent deconvolutional generative adversar-
ial network for generating videos with text condition is shown in Fig. 1. The
RD-GAN is built upon the conventional generative adversarial network (GAN),
which has two sub-networks: a generator and a discriminator. The generator is
a recurrent deconvolutional network (RDN) which tries to generate more real-
istic videos, whose input is sequential concatenated vectors of noise sampled
from Gaussian distribution and text embedding by skip-thoughts [8]. While the
discriminator is a 3D convolutional neural network (3D-CNN) which tries to dis-
tinguish input videos between two classes: “real” and “fake”. During the binary
classification, it also exploits the text embedding that concatenated with video
feature maps in the discriminator. These two sub-networks are jointly trained
by playing a non-cooperative game, in which the generator RDN tries to fool the
discriminator 3D-CNN while the discriminator aims to make few mistakes. Such
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Fig. 1. The proposed recurrent deconvolutional generative adversarial network (RD-
GAN) for generating videos with text condition. The sentence is encoded into an 28-
dimensional vector by skip-thoughts [8] and linear operation. In the generator, the
text vector and an 100-dimensional vector sampled from Gaussian distribution are
concatenated as input. Then the text vector is copied 4 times and the same 16 text
vectors are stacked as 28×1×4×4 feature maps before being fed into the penultimate
layer of discriminator.

a competitive scheme has been demonstrated to be effective for training genera-
tive models [3]. In the following, we will present the generator and discriminator
in details.

3.1 Recurrent Deconvolutional Network as Generator

The task of video generation based on semantic texts mainly encounters two chal-
lenges. One is how to extract suitable information from texts and associate it with
the content of generated videos. It can be solved by exploiting recent advances
in areas of natural language processing and multimodal learning. The other one
is how to well model both long-range and short-range temporal dependencies of
video frames, which focus on global slow-changing and local fast-changing pat-
terns, respectively. The exist methods either just consider the local fast-changing
ones with 3D convolutions or directly ignore the modeling of temporal depen-
dency by treating each frame generation as a separate procedure.

To well model the long-term temporal dependency during video generation,
we propose a recurrent deconvolutional network (RDN) as shown in Fig. 2. The
RDN has a deep spatio-temporal architecture, whose input is a combination of
noise and the vector extracted from the given text and the output is a sequence
of generated video frames. Weight sharing is widely used in the temporal and
the spatial direction, which can effectively reduce the number of parameters and
contribute to model stability.

The whole network can be regarded as a nonlinear mapping from seman-
tic texts to desired videos. In particular, in the spatial direction, there is a
deep deconvolution network at each timestep for frame-wise generation. Between
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adjacent levels of feature maps, deconvolution, batch normalization and ReLU
activation are successively used to upscale the frame size by a factor of 2.

In the temporal direction, it is a broad recurrent convolution network, in
which pairwise feature maps at adjacent timesteps are connected by convolu-
tions. It means that when predicting one video frame, the result can be directly
modulated by its previous frame and recursively depends on other previous
frames in a long temporal range. The formulation of inferring feature maps Hi,t

at the i-th level and the t-th timestep is:

Hi,t = a(b(Hi−1,t ∗̂ Wi−1,t + Hi,t−1 ∗ Ui,t−1 + Bi,t)) (1)

where ∗ and ∗̂ represent temporal convolution and spatial deconvolution opera-
tions, respectively. Ui,t−1 and Wi−1,t contain the filter weights of temporal con-
volution and spatial deconvolution, respectively. Bi,t denotes the bias weights.
a(·) and b(·) are ReLU activation function and batch normalization operation,
respectively. Due to the recurrent scheme, our RDN can flexibly produces videos
with any length.
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Fig. 2. The proposed recurrent deconvolutional network as the generator. The input
is vector1 and all vectors in the top level are 1D vectors connected by linear trans-
formation. The rest are 2D feature maps connected by convolutions and we use blue
arrows to represent them. While green arrows refer to deconvolution, which enlarges
the scale of images in the spatial direction. The sizes of images and feature maps are
annotated in the figure. All the different parameters are in the dashed box, and the
rest are consistent with these parameters. (Best viewed in color)
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3.2 Modified 3D Convolutional Neural Network as Discriminator

The role of a discriminator is to identify the authenticity by classifying a given
video into two classes: “real” and “fake”. Considering that 3D convolutional
neural network (3D-CNN) performs very well in the task of video classification,
so we directly exploit it as our discriminator.

We make a few changes to the 3D-CNN as follows: (1) the last two linear
layers are replaced by one 3D convolution layer, (2) the original sizes of some
layers are reduced as the size of our video frame is 64 × 64, (3) 3D batch nor-
malization, leakyReLU activation function and 3D max-pooling are used after
each 3D convolution, and (4) the text embedding by skip-thoughts is combined
in the penultimate layer.

3.3 Learning

The weights of both generator and discriminator can be jointly trained by using
the following objective:

min
θG

max
θD

Ex∼pdata(x)[logD(x|t; θD)]+

Ez∼pz(z)[log(1 − D(G(z; θG)|t; θD))]
(2)

where θG and θD represent the parameters of generator and discriminator,
respectively. pdata(x) is the distribution of real videos x. z denotes the noise
which is sampled from Gaussian distribution and t is the text condition. The
object will reach the global optimum when pG(z) = pdata. However, it is usu-
ally infeasible to obtain the global optimum, so we usually use gradient-based
methods such as stochastic gradient descent (SGD) [11] to find a good local
equilibrium.

All the network weights are initialized by sampling from a Gaussian distri-
bution with a mean of 0 and standard deviation of 0.02. We use the ADAM
solver to optimize all the parameters, in which the learning rate is 0.0002 and
the momentum is 0.5. To speed up the training procedure, we first use all the
images in video segments to train an image-based GAN, which has the same
architecture in the spatial direction as the proposed RD-GAN. Then we use the
learned weights as pretrained weights for the RD-GAN and fine-tune all the
weights on videos. In fact, we can alternatively remove such a pretraining step
with a longer training time.

4 Experiments

4.1 Dataset and Implementation Details

The UCF-101 [17] dataset is used during the training process. It contains 13,320
videos belonging to 101 different classes of human actions. Because there are
many classes of videos in the UCF-101, it is very difficult for our model to
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learn such a complex data distribution. As a result, we use videos belonging
to the same class to train a separate network every time. Note that the whole
UCF-101 dataset is used when we evaluate the representations taken from the
discriminator.

To enlarge our training dataset, we divide each video into multiple video
segments containing 16 consecutive frames. For example, frames 1 to 16 make
up the first video segment, the second video segment consists of frames 2 to 17
and the third video segment consists of frames 3 to 18, and so on. So a single
class of video can get about 20,000 video segments and the included frames are
all resized to the size of 64 × 64.

For the semantic texts associated with videos, we make the attempt to give
different human-written text descriptions for different videos. For example, “a
cute little boy who wears a red headband and a black shirt is playing Violin” or
“a curly young man who wears a black T-shirt is playing Guitar”. Videos with
similar content and background are put into the same class and named with the
same text description because those videos in the UCF-101 are divided from the
same long video.

a long hair man who wears a black vest is playing Guitar

a long hair woman in black is playing Flute

a young man who wears glasses and black T-shirt is playing Cello

a cute li le boy who wears a red headband and a black shirt is playing Violin

Fig. 3. Results of conditional video generation.

From: a young man who wears a striped T-shirt is playing Guitar
To: a young man in orange is playing Guitar

From: a straight hair young girl who wears a black T-shirt is playing Guitar
To:a straight hair young girl who wears glasses and blue T-shirt is playing Guitar

Fig. 4. Results of conditional video generation with “unfamiliar” sentence.
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4.2 Video Generation from Sentence

Generating a specific video from human-written texts is equivalent to imagining
a scene by our brain when we look at a novel. To adapt our model to the task
of text-driven video generation, we exploit text information for both generator
and discriminator as shown in Fig. 1. We use skip-thoughts [8] to encode a given
text into a 4800-dimensional vector, and then map the vector from 4800 to 28
dimensions. After that, we concatenate the 28-dimensional text vector with an
100-dimensional vector that is sampled from Gaussian distribution, then the new
128-dimensional vector is used as the input of the generator. We also feed the
same concatenated vector to the discriminator, which was extended to 3D data
before combining with the penultimate layer of the 3D-CNN.

To simply annotate video data, we just gather similar videos into the same
class and give them the same text descriptions. Firstly, we generate videos from
already known texts as shown in Fig. 3. From this figure we can see that our
model is able to generate semantic-related videos. For example, when given the
text: “a long hair man who wears a black vest is playing Guitar”, our model can
accordingly generate video with attributes: “long hair”, “man” and “black vest”.
Then we try to change some attributes in sentence and send these “unfamiliar”
sentences to our model. Figure 4 shows our model can generate new samples
with the corect attributes. The result is not clear because the amount of data is
not enough. In other words there is the problem of lack of continuous mapping
between the semantic space and the image space.

Table 1. Accuracy of unsupervised methods on the UCF-101 dataset.

Method Accuracy

Chance 0.9%

STIP Features [17] 43.9%

Temporal Coherence [5] 45.4%

Shuffle and Learn [10] 50.2%

VGAN + Logistic Reg [22] 49.3%

VGAN + Fine Tune [22] 52.1%

TGAN + Linear SVM [16] 38.7%

Ours + Convolution Softmax 53.3%

Ours + Linear Softmax 55.7%

ImageNet Supervision [23] 91.4%

4.3 Video Classification

Considering that the features in our discriminator are learned without super-
vision, we want to quantitatively analyze the capacity of discrimination on the
task of video classification. Since the discriminator was originally used for binary
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Fig. 5. Ratio of labeled training videos vs Accuracy.

classification, we have to replace its last layer with the softmax classifier for
multi-class classification. All the videos in the UCF-101 dataset are used in this
experiment. By segmenting all the videos into 16-frame segments, we can obtain
totally 6 million video segments. The class for each video segment is in consistent
with the class of its original video.

We first use the same softmax and dropout as [22] in the last two layers,
which uses convolution to make the last feature maps transform into an 101-
dimensional vector. We follow them and use 1/8 labeled videos to train the
softmax classifier. Table 1 shows that our model improves the accuracy by 1.2%.
Considering that linear operation can also convert the last feature maps into
an 101-dimensional vector for classification, we use liner operation to replace
the previously used convolution. To our surprise, this liner operation further
improves our performance by 2.4%. Note that both convolution and linear oper-
ations have the same number of parameters. Obviously, models that leverage
external supervision are still much better than unsupervised methods. In Fig. 5,
the performances of convolution softmax and linear softmax are also compared
by using different numbers of labeled videos, and we can observe that the more
number of training data, the higher the accuracy. On the whole, linear softmax
produces more discirminative results than convolution softmax.

5 Conclusions and Future Work

We have proposed a recurrent deconvolutional generative adversarial network
that generates videos based on semantic texts. Its generator is a deconvolutional
version of recurrent neural network, which is able to well exploit the text infor-
mation and efficiently models the long-range temporal dependency during video
generation. We have performed various experiments in terms of conventional



RD-GAN with Application to Video Generation 27

video generation, video generation driven by text, video prediction and video
classification. The experimental results have demonstrated the effectiveness of
our model.

Note that this is just an initial work on video generation, and it might have
the following drawbacks. The proposed model based on GAN becomes unstable
if trained with too many frames and currently cannot well generate clear videos
of a larger size and a longer length. The processing of given text only involves
simple steps of feature extraction. This might not be optimal to associate it
with diverse video contents. In the future, we will consider to train the RDN
with more frames and extend our model to generate videos with a larger size
and a longer length in a cascade manner. Furthermore, we plan to expand the
annotated videos in details for better text-driven video generation.
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