2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM) | 978-1-6654-3909-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICARM52023.2021.9536204

2021 6th IEEE International Conference on
Advanced Robotics and Mechatronics
July 3-5, 2021, Chongqing, China

Learning Smooth and Omnidirectional Locomotion for Quadruped
Robots

Jiaxi Wu!, Chen’an Wang?, Dianmin Zhang!, Shanlin Zhong', Boxing Wang', and Hong Qiao?

Abstract—1t often takes a lot of trial and error to get a
quadruped robot to learn a proper and natural gait directly
through reinforcement learning. Moreover, it requires plenty
of attempts and clever reward settings to learn appropriate
locomotion. However, the success rate of network convergence is
still relatively low. In this paper, the referred trajectory, inverse
kinematics, and transformation loss are integrated into the
training process of reinforcement learning as prior knowledge.
Therefore reinforcement learning only needs to search for the
optimal solution around the referred trajectory, making it easier
to find the appropriate locomotion and guarantee convergence.
When testing, a PD controller is fused into the trained model
to reduce the velocity following error. Based on the above
ideas, we propose two control framework - single closed-
loop and double closed-loop. And their effectiveness is proved
through experiments. It can efficiently help quadruped robots
learn appropriate gait and realize smooth and omnidirectional
locomotion, which all learned in one model.

I. INTRODUCTION

The quadruped robots have attracted extensive attention
due to their flexible behavior, strong ability to surmount
obstacles, and free from terrain constraints. At present, there
are many excellent quadruped robots, such as Spot Mini
and Laikago. Additionally, there are many excellent open-
source quadruped robot projects, such as Mini Cheetah and
Minitaur. These open-source quadruped robot projects have
greatly promoted the development of the quadruped robot
field.

In the above project, brushless motors are used as the
actuated joints, which has large output torques and high
control accuracy. However, it increases the cost and hardware
base of quadruped robots. Therefore, many open source
projects use low-cost and easy-to-operate steer motors, such
as Spot Micro and Pupper. Sbot we designed uses steer
motors as actuated joints.

The steer motors can only be position controlled, which
brings some trouble to their control accuracy [1]. However, it
is more convenient to do reinforcement learning algorithms

1J.Wu, D.Zhang, S.Zhong, and B.Wang are with the State Key Laboratory
for Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China, and also with School
of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing 100049, China wujiaxi2019@ia.ac.cn

2C.Wang is with School of Mechanical Engineering, University of
Science and Technology Beijing, Beijing 100083, China

3H.Qiao is with the State Key Laboratory for Management and Control of
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China, and also with School of Artificial Intelligence, Uni-
versity of Chinese Academy of Sciences, Beijing 100049, China, and also
with Center for Excellence in Brain Science and Intelligence Technology,
Institute of Neuroscience, Chinese Academy of Sciences, 200031, China
hong.giao@ia.ac.cn

978-1-6654-3909-1/21/$31.00 ©2021 IEEE

(a) real model

(b) simulatd model

Fig. 1. The quadruped robot designed by ourselves - Sbot. (zo, 20)
is the hip (abduction/adduction) coordinate system, (x1,z1) is the hip
(forward/backward) coordinate system, (x2,z2) is the knee coordinate
system. And the red arrows are the positive directions of rotary joints.

for quadruped robots actuated by steer motors. The network
outputs joint angles directly to control the quadruped robots
to achieve various gaits, without considering complex force
control.

However, if directly outputting the joint angles, reinforce-
ment learning requires large-scale attempts to enable the
agent to learn appropriate gaits. However, experiments have
found that it is often hard to achieve, which requires delicate
reward functions. Even so, it is still challenging to converge
to an acceptable result. Usually, the agent can only learn
simple motion, but its locomotion is slow and inefficient, far
from the gaits of real quadrupeds.

In this paper, the referred trajectory and inverse kinematics
are integrated into the training process of reinforcement
learning as the prior knowledge to reduce network conver-
gence difficulty. The agent only needs to output the parame-
ters of the referred trajectory and the joint angles correction.
Then the preplanned trajectory can automatically generate a
series of foot positions to guide the joint movement.

By combining the referred trajectory with reinforcement
learning, the network only needs to search around the re-
ferred trajectory to find a better solution to achieve smooth
locomotion. Therefore, the convergence difficulty of rein-
forcement learning can be reduced, and it is easier for
quadruped robots to learn smooth locomotion.

Additionally, the transformation loss, including symmetry
loss and translation loss, is proposed to constrain the agent to
behave similarly on four legs, which reduces the search space
and helps the quadruped robots learn gaits more similar to
real quadrupeds.

However, if the model trained by reinforcement learning
is used directly, its control accuracy is low and cannot
follow the desired velocity. When realizing omnidirectional
locomotion in the plane, including axial velocity, lateral
velocity, and rotational velocity, it is difficult to ensure that
the quadruped robots follow the desired velocity due to the

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 14,2022 at 08:46:56 UTC from IEEE Xplore. Restrictions apply.

large search space. Therefore, a PD controller is added into
the model after training to help the agent eliminate the speed
following error.

The main contributions of this paper are:

o With the help of the referred trajectory, the quadruped
robots learn smooth and omnidirectional locomotion by
reinforcement learning, which is learned in one model
rather than multiple studies and model fusion.

o The transformation loss, including symmetry loss and
translation loss, is proposed to improve the locomotion
performance and make the learned locomotion more
similar to real quadrupeds.

o Without affecting the learned gait, the PD controller is
integrated into the trained model to reduce the velocity
following error and improve the control accuracy.

II. RELATED WORK

With the breakthrough in games [2] and go [3], deep
reinforcement learning has gradually attracted the interest
of many researchers [4] [5]. And they are no longer satisfied
with virtual applications in games, but hope to apply it to
other tasks such as robotic arm grasping and quadruped robot
gaits.

J. Hwangbo et al. used reinforcement learning to make
ANYmal learn to recover from a fall [6], walk on uneven
terrain [7]. If using traditional control and optimization
methods, those tasks would be very complicated. But rein-
forcement learning helped the robot learn how to accomplish
these tasks better and improved the success rate.

However, learning the smooth gait of quadruped robots
is a challenging problem. A. Iscen et al. used the trajectory
generator to help Minitaur learn to walk and bound [8]. S.
Kolathaya et al. applied smooth trajectories on the feet by
Bézier curves [9]. Z. Xie et al. used the referred motion to
help Cassie walk forward [10].

Imitation learning is another way to solve this problem. X.
B. Peng et al. used imitation learning to enable Laikago to
learn various gaits, including pace and trot, from real dogs
[11]. With the help of imitation learning, Z. Xie et al. made
Cassie learn to move forward and backward [12]. However,
they all used different networks to realize their various
locomotion. Although [12] realized a variety of locomotion
modes, the final model was combined by multiple models,
rather than just one model.

Dynamic methods are integrated into the training frame-
work to help reinforcement learning to learn a better solution.
Y. Yang et al. used model predictive control, in conjunction
with model-based reinforcement learning, to make Minitaur
learn to walk fast [13]. G. A. Castillo et al. used hybrid zero
dynamics to let Cassie learn to move forward and sideways
at desired velocity [14].

III. OMNI-DIRECTIONAL LOCOMOTION
CONTROLLER
A. Referred Trajectory

1) Locomotion Strategy: For quadruped robots driven
by steer motors, the general control method is trajectory

planning with inverse kinematics. Firstly, a closed trajectory,
which can be divided into the swing and stance phases, is
applied to the quadruped robot’s feet. Then the joint angles
are solved by inverse kinematics according to the current
target foot position. Finally, the joint angle is converted to
PWM and applied to steer motors.

As shown in Fig. 2, the closed trajectory can be defined by
forward length S, lateral length S,,, lift height H, gait period
T, swing ratio ¢ (swing phase time / total time), current time
t, and so it can be expressed as traj(Sy, Sy, H,T, $,t).

H | total time: T
N swing ratio: ¢
~N

Fig. 2. Closed trajectory defined by (Sz, Sy, H, T, ¢, t). Blue line: swing
phase; green line: stance phase.

The feet phase of trot is demonstrated in Fig. 3(a). For
forward locomotion, the four legs’ trajectories can be set
as traj(L,,0,H,T,0.5,t); for lateral locomotion, the four
legs’ trajectories can be set as traj(0, Ly, H,T,0.5,t); for
rotation locomotion, the four legs’ trajectories can be set as
traj(Rcos(v);), Rsin(v;), H,T,0.5,t), where v; is defined
in Fig. 3(b). Therefore when lift height [and gait period T’
are set as constant, the locomotion of quadruped robots can
easily be controlled by (Lz, Ly, R, t).

2) Single Closed-loop: The locomotion of quadrupeds is
a periodic process, which needs to form a closed-loop tra-
jectory at the end of the feet. It is hard to learn directly from
reinforcement learning. Similar to [8], a closed trajectory
defined above is used to help the convergence of reinforce-
ment learning. As shown in Fig. 4, the policy network inputs
desired velocity vg = (Vzd; Vyd, Vyawd), quadruped robot’s
sensor state s, referred trajectory’s parameters ¢, outputs
locomotion parameters [and the correction of 12 joint angles
a.. The refer joint angles a, are obtained by the referred
trajectory and inverse kinematics. They are added to a.
to obtain the desired joint angles a, assigned to the steer
motors.

With the help of referred trajectory, the network only needs
to search for optimal solutions near the referred trajectory.

\6{

1’4
| }o\% ”
L | BL _“FL
| N e y
| —_— —_— L.
| | | | | e X
| Z S UFR
BL | I I S gw,
| | | | | E
sr] ! :3{

(a) leg phase of trot (b) phase offset v; in rotation
Fig. 3. Gait description. The blue bar is the swing phase and the blank is
the stance phase, i.e. the swing ratio ¢ is 0.5. FL: front left leg; FR: front
right leg; BL: back left leg; BR: back right leg.

634

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 14,2022 at 08:46:56 UTC from IEEE Xplore. Restrictions apply.

initial feet pos

Sinit

traj
params

<+ desired joint angle Quadruped
< aq Robot

sensor state

s

Fig. 4. Single closed-loop control framework. | = (Lg, Ly, R), ¢ =
(Lz, Ly, R,H,T, ¢,1).

Outer Loop: T'ms Tnner Loop: 10ms
initial feet pos

Sini

curr vel
—— —] PD I+
ve | —

— = | Control |

Referred
Trajectory

refer feet pos

S0
Inverse
Kinematics|

a, |refer joint angle

|
des vel Traj Plan |loco params Joint Plan | corr joint angle > + desired joint angle Quadruped
Va Layer 1 Layer a. 5 ay Robot

traj
params

sensor state

s

sensor state

5

Fig. 5. Double closed-loop control framework. ¢’ = (H, T, ¢,t).

It is equivalent to narrowing the search space, so it is easier
to get better results and accomplish smooth locomotion.

3) Double Closed-loop: Meanwhile, a double closed-
loop framework is proposed. As shown in Fig. 5, trajectory
planning (outer loop) and joint angles correction (inner loop)
are divided into two parts and trained, respectively.

The trajectory planning layer is responsible for generating
locomotion parameters ! under the guidance of desired
velocity vy and robot state s’. It makes decisions at the
beginning of each gait cycle. The joint angles correction
layer is responsible for generation joint angles corrections
under the trajectory parameters ¢ = (I,¢’), robot state s. It
executes once each simulation step.

Specially, the networks of inner and outer rings are trained
together. Therefore it only needs to be trained once to get a
controller that achieves omnidirectional locomotion.

B. Transformation Loss

The network’s convergence can be guaranteed with the
help of referred trajectory, but the learned gait is not symme-
try and consistent, which is different from real quadrupeds.
Inspired by [15], we propose transformation loss to increase
the similarity of the movements of four legs.

The transformation loss consists of two parts: symmetry
loss and translation loss. As [15], the symmetry loss is
defined as

Ly(8) = llmo(ss) = Yalmo(Lo(s))IF (3)
=0

where U, (-) and ¥, (+) do the mirror operations for the action
and state. Similar to symmetry loss, the translation loss is

defined as
Li(0) =) [Ima(si) — Pa(mo(Po(s:)))|[? (4)
i=0

where ®,(-) and ®,(-) do the translation operations for the
action and state.

When the symmetry loss is zero, the left and right legs will
do the mirror action under the mirror state. Moreover, when
the translation loss is zero, the front and back legs will do
the consistent action under the consistent state. By combining
symmetry loss and translation loss, the locomotion of four
legs becomes more similar, just like real quadrupeds.

Considering the difficulty of optimization, the symmetry
loss Ly and translation loss L; are added to the total
loss function as soft constraints. Then the loss function of
reinforcement learning algorithm can be expressed as

L(0) = Law(6) + aLy(8) + BL:(6) (5)

where Ly (0) is the loss function of reinforcement learning,
« and [are the weights for symmetry loss L and translation
loss L; respectively.

C. PD Controller

The model obtained from reinforcement learning can
achieve complex tasks, but its control accuracy is low. The
PD controller is fused into the control framework to reduce
the velocity following error, as demonstrated in the dashed
parts in Fig. 4 and Fig. 5. The formula of the PD controller
is

lpa += kp * (va — ve) + ka * (0 — vc) (6)

where vy and v, are the desired velocity and current velocity,
U, is the acceleration of quadruped robot’s body. Then [,4
is added with the network’s outputs [to obtain the final
locomotion parameters to the referred trajectory.

The PD controller mainly plays the role of correction,
and the main control work is achieved by the model learned
by reinforcement learning. When there is a small deviation
between the desired velocity and current velocity, the PD
controller is responsible for generating a small increment to
eliminate the deviation.

It is important to note that the PD controller is added to
the control framework only during the evaluation, and there
is no PD controller during the training process.

D. Reinforcement Learning Settings

The reinforcement learning used in this paper is PPO [16].
However, the control framework proposed in this paper is
applicable not only to PPO, but also to other RL algorithms.

1) State Space: In the single closed-loop framework, there
are three main parts of the state: the first part is the sensor
data of the robot, including body height, posture (represented
by Euler), linear velocity, angular velocity, joint angles, and
angular velocities. The second is the desired velocity v4 and
velocity deviation Aw. The third is the referred trajectory
parameters (.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 14,2022 at 08:46:56 UTC from IEEE Xplore. Restrictions apply.

The double closed-loop framework’s state space is similar
to single closed-loop, but there are two agents trained to-
gether. The inner loop’s state space is the same as the single
closed-loop framework. In contrast, the outer loop’s state
space removes joint angles, angular velocities, and referred
trajectory parameters.

2) Action Space: The single closed-loop framework’s
action space is shown in Fig. 4, including the locomotion
parameters ! and joint angles correction a.. In the double
closed-loop framework, the inner loop’s action space is the
joint angles correction a., while the outer loop’s action space
is the locomotion parameters !.

3) Reward Function: The quadruped robot is expected to
locomote at the desired velocity vy while keeping its balance
and making its locomotion smooth. Therefore the reward
function of the single closed-loop framework is as follows:

Ti = W1Tyl + Walva + WsThh + WaTrp (7)
where 7,; is the linear velocity deviation (set the desired
z-axis velocity as 0), r,, is the angular velocity deviation
(set the desired roll and pitch velocity as 0), rpy, is the body
height deviation, r;., is the square root of roll and pitch.

In the double closed-loop framework, the inner loop
reward and outer loop reward are

(®)
€))

Tin = W1Tyz + WaTyrp + w3rpn + WaTrp

Tout = W1Tyl + WaTyq

where r,. is the z-axis velocity deviation, 7., is the roll
and pitch velocity deviation. It should be noted that in the
outer loop, the current body velocity is the average velocity
of the entire gait cycle, rather than the single step’s velocity.

E. Performance Score

Some performance scores are proposed to evaluate the
trained model. Since the quadruped robot is expected to
locomote at the desired velocity, the deviation and standard
deviation between the desired velocity vy and the current
velocity v, are used to measure the following performance.

| M
T = a7 T '7 — Uge '7 1
ov MN;;HU a(,8) — vge(7, 9)|| (10)
| MN
v, = m;;Hvyd(i,s) — vy (i, 8)]| (11)
| M
6’Uyaw = m Z Z ||vyawd(ia S) - 'Uyawc(ia 3)” (12)

-
—
W
Il
—

where ¢ is the current episode, s is the current step, M is the
number of test episodes, and N is the number of steps per
episode. Similarly, the standard deviation between v4 and v,

636

is defined as

1 1 —
70 =N ; N ;(A%(i,s) —Aug(i)2 (13)
M N
1 1 . -—.
oy = 37 Z N Z(Avy(z, s) — Avy (7)) (14)
i=1 s=1
M N
1 1 . _—
OVyaw = M £ N ;(Avyaw(zv 5) - Avyaw(l))Q

15)

where Av (i, s) = v4(i,) —v.(i, s), and Av(i) is the average
deviation velocity in one episode. The smaller the parameters
defined above, the better the performance of the quadruped
robot following the desired velocity vg.

In addition, the standard deviation of z-axis velocity ov,,
roll velocity ov,.,;, and pitch velocity owv,;; is proposed to
measure the balance of the quadruped robot. Their formulas
are similar to ov,, ovy, and 0vy4,, so they are not re-
peated here. The smaller ov,, ov,.o and ovy; are, the less
quadruped robot’s body wobbles during locomotion, which
means it locomotes more smoothly.

1V. EXPERIMENTAL RESULTS
A. Omini-directional Locomotion

The simulation physics engine used in this paper is
PyBullet [17]. Two control frameworks are used to learn
smooth and omnidirectional locomotion, respectively. They
are trained for 3000 episodes, each episode lasts for 40s or
the quadruped robot falls down, and the simulation step is
10ms. The lift height I and gait cycle 1" are set as 0.05m
and 0.4s, respectively. And the reward function curves are
demonstrated in Fig. 6.

- | —outer
—inner

500 1000 1500 2000 2500 3000
epi

500 1000 1500 2000 2500 3000
epi

(a) single closed-loop
Fig. 6.

(b) double closed-loop

Reward curve of 3000 episodes.

After training, the agent can control the quadruped robot
to locomotion in all directions, including forward, back-
ward, sideways, and rotation. It is worth noting that these
locomotion modes are all accomplished in the same model,
and those different locomotion modes can be combined
to achieve complex locomotion. The video is available in
https://youtu.be/37G5_ShUCJA.

B. Performance Comparison

To evaluate the performance of the trained models, we test
100 times, each test lasts for 40s, and the desired velocity was

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 14,2022 at 08:46:56 UTC from IEEE Xplore. Restrictions apply.

EXPERIMENT RESULTS. SCL: SINGLE CLOSED-LOOP, DCL: DOUBLE CLOSED-LOOP, TL: TRANSFORMATION LOSS, PD: PD CONTROLLER. THE LINE

TABLE I

IN BOLD IS THE BEST ONE.

Oz vy OVyaw oV Oy OVyaw Uy OUrol OUpit
SCL 0.007 0.005 0.049 0.030 0.025 0.176 0.020 0.297 0.233
SCL+TL 0.008 0.005 0.045 0.026 0.021 0.176 0.026 0.165 0.146
SCL+TL+PD | 0.000 0.001 0.000 0.022 0.021 0.162 0.028 0.265 0.209
DCL 0.007 0.007 0.044 0.054 0.049 0.331 0.033 0.364 0.307
DCL+TL 0.012 0.005 0.031 0.040 0.053 0.303 0.029 0.208 0.208
DCL+TL+PD | 0.000 0.001 0.002 0.045 0.055 0.312 0.032 0.263 0.262
TABLE II

REFERRED TRAJECTORY COMPARISON.

TRAINED BY SCL + TL, EVALUATED BY SCL + TL + PD. THE LINE IN BOLD IS BASELINE.

OV vy OVyaw oV vy OVyaw oV, OUrol OUpit

Sinusoid | 0.000 0.001 0.000 | 0.022 0.021 0.162 0.028 0.265 0.209

Cycloid | 0.000 0.002 0.001 0.028 0.035 0.165 0.014 0.266 0.238

Ellipse 0.001 0.002 0.002 | 0.024 0.024 0.175 0.055 0.298 0.241

Triangle | 0.000 0.002 0.001 0.022 0.023 0.153 0.016 0.299 0.250
TABLE III

VARIOUS LIFT HEIGHTS AND GAIT CYCLES. TRAINED BY SCL + TL, EVALUATED BY SCL + TL + PD. THE LINE IN BOLD IS BASELINE.

H T Oz 0vy OVyaw Uy vy OVyaw ovy OUrol OUpit
0.05 0.4 0.000 0.001 0.000 0.022 0.021 0.162 0.028 0.265 0.209
0.04 040 | 0.003 0.003 0.003 0.027 0.029 0.156 0.024 0.317 0.246
0.06 040 | 0.001 0.001 0.001 0.022 0.025 0.188 0.030 0.297 0.255
0.05 032 | 0.000 0.001 0.001 0.019 0.020 0.170 0.034 0.253 0.222
0.05 048 | 0.006 0.008 0.010 0.038 0.035 0.181 0.023 0.315 0.256

randomly selected for every 10s. The experimental results are
shown in Table. 1.

1) Two Frameworks: By comparing SCL and DCL in
Table. I, it can be found that the model trained by SCL makes
the standard deviation of velocity following and maintaining
body balance smaller (the last six columns in Table. I).
Therefore it makes the locomotion of quadruped robots more
smooth.

This is because DCL has two networks, and the outer-
loop only considers the velocity following, not the body
balance. Sometimes a change in the locomotion parameters
is detrimental to the body balance, but DCL cannot consider
this relationship. While SCL has only one network, it can
consider both velocity following and body balance, so it has
a better balance under the same performance of the velocity
following.

In Table. I, the referred trajectory we use is sinusoid, as
demonstrated in Fig. 7(a). Meanwhile, cycloid, ellipse, and
triangle, shown in Fig. 7 are used as referred trajectories.
Their results trained by the single closed-loop framework
with transformation loss are shown in Table II.

The sinusoid trajectory performance is the best, but the
other three trajectories can also help the quadruped robot

(b) cycloid

(a) sinuoid (c) ellipse (d) triangle
Fig. 7. Trajectory comparison. All the trajectories are defined by

(Sz, Sy, H,T,¢,t), and S is the square root of (Sz, Sy).

637

learn smooth and omnidirectional locomotion. Is means that
the referred trajectory is only used to provide a closed
curve to assist reinforcement learning to learn the proper
locomotion without relying too much on it.

2) Transformation Loss: After adding transformation loss
to the loss function, body balance has been further improved.
That is because the transformation loss restricts four legs’
actions, making them behave more like real animals, rather
than some incongruent actions.

When not using transformation loss, it is sometimes ob-
served that a leg is deliberately shifted inward or outward,
which means that it is trapped in a locally optimal solution.
These kinds of actions are different from real quadrupeds.
After adding the transformation loss, it can be seen that this
situation is greatly modified, and it rarely occurs again.

3) PD Controller: Although the single closed-loop frame-
work with transformation loss can achieve the locomotion as
we desire, the velocity following error cannot be negligible.
Since it is not zero, when the desired velocity v, is set to
(0,0,0), the quadruped robot will still drift overtime and
deviate from initial position and posture. After adding a
PD controller to the original control framework, the velocity
following error is eliminated. It overcomes the low control
accuracy of the agent acquired by reinforcement learning, as
shown in the first three columns of Table. I.

Simultaneously, due to the trained model’s robustness,
although its locomotion parameters [have been changed,
it can still ensure smooth locomotion. Though there is
an increment in ov,, and owvp; statistically, there is no
difference to the naked eyes.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 14,2022 at 08:46:56 UTC from IEEE Xplore. Restrictions apply.

C. Generalization

Meanwhile, the model trained by SCL + TL (evaluated by
SCL + TL + PD) can achieve smooth and omnidirectional
locomotion when the trajectory parameters change.

The lift height H and gait cycle T are changed and
evaluated directly using the model trained when H = 0.05m
and 7' = 0.4s (the first row in the Table. III).

As seen in Table. III, when the lift height H and gait cycle
T increase/decrease by 20%, the quadruped robot can still
accomplish smooth and omnidirectional locomotion under
the control of the trained model.

However, when T' = 0.48s, the balance of the quadruped
robot’s body can still be guaranteed, but there is a certain
error in velocity following. This is because as the gait cycle
T slows, its maximum velocity decreases, making it difficult
to reach the large desired velocity.

V. CONCLUSIONS

In this paper, we propose two control frameworks - sin-
gle closed-loop and double closed-loop, to help quadruped
robots learn smooth and omnidirectional locomotion with
the help of referred trajectory. Through only once learning,
various locomotion modes are realized according to the
desired velocity, including forward, backward, sideways, and
rotation. To improve the performance, the transformation loss
is used as a restriction on the actions between four legs
to help them produce symmetrical and consistent actions.
Additionally, a PD controller is fused into the control frame-
work to eliminate the velocity following error in case the
quadruped robot drifts over time.

However, our control framework is only verified in sim-
ulation. Next, we will carry out experiments on Sbot in
reality. To overcome the reality gap, domain randomization
will be used to realize sim-to-real [18] [19]. In addition, we
only implement trot in this paper, and the other gaits will
be implemented based on our framework, including pace,
bound, gallop, and so on.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (2017YFB1300200,
2017YFB1300203), the National Natural Science Founda-
tion of China under Grant 61627808, the National Natural
Science Foundation of China under Grant 91648205, the
Strategic Priority Research Program of Chinese Academy of
Science under Grant XDB32000000.

REFERENCES

[1] J. Zhong and R. Ma, “Dynamic characteristics of a jumping robot with
coordinated quadruped legs,” Assembly Automation, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489,
2016.

[2]

[3]

638

[4]
[5

=

[6

—

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

Y. Li, K. P. Tee, R. Yan, and S. S. Ge, “Reinforcement learning for
human-robot shared control,” Assembly Automation, 2019.

H. Qiao, J. Chen, and X. Huang, “A survey of brain-inspired intelligent
robots: Integration of vision, decision, motion control, and muscu-
loskeletal systems,” IEEE Transactions on Cybernetics, 2021.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699-3706, 2020.

A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies modulating trajectory generators,” in
Proceedings of the Conference on Robot Learning (CoRL). PMLR,
2018, pp. 916-926.

S. Kolathaya, A. Joglekar, S. Shetty, D. Dholakiya, A. Sagi, S. Bhat-
tacharya, A. Singla, S. Bhatnagar, A. Ghosal, B. Amrutur et al.,
“Trajectory based deep policy search for quadrupedal walking,” in
2019 28th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), 2019, pp. 1-6.

Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback
control for cassie with deep reinforcement learning,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 1241-1246.

X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne,
“Iterative reinforcement learning based design of dynamic locomotion
skills for cassie,” arXiv preprint arXiv:1903.09537, 2019.

Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani,
“Data efficient reinforcement learning for legged robots,” in Proceed-
ings of the Conference on Robot Learning (CoRL). PMLR, 2020, pp.
1-10.

G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Hybrid zero
dynamics inspired feedback control policy design for 3d bipedal
locomotion using reinforcement learning,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 8746—
8752.

W. Yu, G. Turk, and C. K. Liu, “Learning symmetric and low-energy
locomotion,” ACM Transactions on Graphics, vol. 37, no. 4, pp. 1-12,
2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimoyv,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2017, pp. 23-30.
X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 1-8.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 14,2022 at 08:46:56 UTC from IEEE Xplore. Restrictions apply.

