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ABSTRACT 

In this paper, we investigate the problem of predicting the histopathological findings of gastric cancer (GC) from 
preoperative CT image. Unlike most existing classification systems assess the global imaging phenotype of tissues 
directly, we formulate the problem as a generalized multi-instance learning (GMIL) task and design a deep GMIL 
framework to address it. Specifically, the proposed framework aims at training a powerful convolutional neural network 
(CNN) which is able to discriminate the informative patches from the neighbor confusing patches and yield accurate 
patient-level classification. To achieve this, we firstly train a CNN for coarse patch-level classification in a GMIL 
manner to develop several groups which contain the informative patches for each histopathological category, the 
intra-tumor ambiguous patches, and the extra-tumor irrelative patches respectively. Then we modify the fully-connected 
layer to introduce the latter two classes of patches and retrain the CNN model. In the inference stage, patient-level 
classification is implemented based on the group of candidate informative patches automatically recognized by the model. 
To evaluate the performance and generalizability of our approach, we successively apply it to predict two kinds of 
histopathological findings (differentiation degree [two categories] and Lauren classification [three categories]) on a 
dataset including 433 GC patients with venous phase contrast-enhanced CT scans. Experimental results reveal that our 
deep GMIL model has a powerful predictive ability with accuracies of 0.815 and 0.731 in the two applications 
respectively, and it significantly outperforms the standard CNN model and the traditional texture-based model (more 
than 14% and 17% accuracy increase). 
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1. INTRODUCTION 

Gastric cancer (GC) is the fourth most common human malignant disease and the second leading cause of cancer-related 
death worldwide.1 The histopathological findings of GC, including differentiation degree and Lauren classification, is 
closely related to the patients’ prognosis. Accurate preoperative histopathological assessment can facilitate selection of 
the optimal treatment strategy.2-3 Non-invasive contrast-enhanced CT scan is recommended by the National 
Comprehensive Cancer Network (NCCN) guidelines as a routine preoperative imaging examination for GC in clinical 
practice. Several previous studies have been performed on the CT-based inter-tumor characteristics measurement and 
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their correlation to GC histopathological findings.4-5 However, due to the relative poor soft-tissue contrast of CT images 
and the complex context around the GC, CT-based prediction of the histopathological findings is a challenge problem, 
and there is still lack of an efficient classification approach. 

Deep learning methods, especially convolutional neural network (CNN) models, have shown significant ability of 
learning predictive feature representations from medical images.6 But in the applications where the training set size is 
limited and the image textural phenotype is poor, such as the diagnosis of GC and colorectal cancer, this kind of 
data-driven methods haven’t achieved satisfied performances.7 The imaging phenotype in a fixed patch depends on not 
only the lesion’s own local attribute but its posture, location and the neighbor context in the patch. We hypothesis that the 
extracted patches hold various amount of information about the classification object, and predicting based on the most 
informative patches would be helpful. While only patient-level annotations are provided, a weakly supervised learning 
method should be developed.  

In this paper, we propose a deep generalized multi-instance learning (deep GMIL) framework to select the 
informative patches and leverage them to achieve better classification performance. The experimental results reveal that 
our approach can estimate the probability of each extracted patch being informative, ambiguous or irrelative 
(patch-level), and yield an accurate prediction of histopathological findings (patient-level). 

2. METHODS 

2.1 Deep Generalized Multi-instance Learning 

 

Figure 1. Illustration of the training stages in deep GMIL framework for three-category classification 

In this study, GMIL is intended to identify the label of each patch (i.e. the instance) extracted from the CT scan (i.e. the 
bag) and achieve an accurate final classification based on the informative patches. Please note that the standard 
multi-instance learning considers there is only one discriminative instance in a positive bag8-9, which is not suitable for 
our issue. Since there is large intra-class variation and inter-class ambiguity in the CT imaging phenotype of GC, a group 
of informative patches should be taken into account to improve the performance. The proposed deep GMIL framework 
consists of two stages of model training (as shown in Figure 1) and one inference stage. 
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For the training stages, we extract 32×32 patches from each CT slice as much as possible with 16-pixel step size and 
ensure that central points of these patches are in the lesion, which are manually segmented by an experienced radiologist. 

In the training stage 1, we define the loss function of CNN model as a combined cross-entropy, which counts only 
the instances with the highest or lowest probability to be correctly classified within each bag. It’s formulated as: 

ଵܮ  = −ሺ1 ⁄ܤ ሻ × ∑ ∑ ݃௖௕൫logൣmax௜∈ூ್൛݌௖௕,௜ൟ൧ + logൣmin௜∈ூ್൛1 − 1 ⁄ଵܥ + ,௖௕,௜݌ 1ൟ൧൯஼భ௖ୀଵ஻௕ୀଵ  (1) 

where ܤ  is the number of the bags in a training batch, ܫ௕  is the instances in ܾth bag, ܥଵ  is the number of 
classification categories, ݃௖௕ ∈ ሾ0,1ሿ and ݌௖௕,௜ ∈ ሺ0,1ሻ are respectively the ground truth and the predicted result. We use 
this design to eliminate the imbalance influence from the various lesion size and to enhance the feature representation of 
the informative patches. Then we develop several groups containing the informative patches for each category (i.e. with 
probability > to be correctly classified, α is set to 1 ߙ ⁄ଵܥ  in this study) and the intra-tumor ambiguous patches (the 
rest patches). We also develop a group containing the extra-tumor irrelative patches by extracting several patches 
adjacent to the lesion to guide the model to recognize other tissues.  

In the training stage 2, we use the patch groups developed above to retrain the CNN model. As there are two 
additional groups in this stage, the number of classification categories ܥଶ  is two larger than ܥଵ . The standard 
cross-entropy is used as the loss function: 

ଶܮ  = −ሺ1 ܰ⁄ ሻ × ∑ ∑ ݃௖௡logሺ݌௖௡ሻ஼మ௖ୀଵே௡ୀଵ  (2) 

where ܰ is the number of the patches in a training batch.  

For the inference stage, considering the accessibility and robustness needed in the clinical practice, we ask the 
radiologist to mark patches’ central points with 16-pixel interval at least in the lesion, and ensure the extracted patches 
completely cover the lesion. The predicted category of the instance ݅ in the ܾth bag is ௕ܲ,௜ = argmax௖∈ሼଵ,ଶ,⋯,஼మሽ  .௖௕,௜݌
An informative patch group ܫ௕∗ is then developed using the patches with ܲ௕,௜∗ ∈ ሼ1,2,⋯ ,  ଵሽ. We combine the classܥ
probabilities of the informative patches to derive the final bag-level (i.e. patient-level) category: ௕ܲ = argmax௖∈ሼଵ,ଶ,⋯,஼భሽ ∑ ್∗௖௕,௜௜∈ூ݌ . 

2.2 Dataset 

To investigate the performance of our deep GMIL framework for predicting the histopathological findings of GC, we 
evaluate it on two kinds of clinical classification systems: 1) differentiation degree (two categories); 2) Lauren 
classification (three categories). A dataset consisting of 433 GC patients was collected from Lanzhou University Second 
Hospital. The venous phase contrast-enhanced CT volumes were acquired on one of the two multi-detector row CT 
scanners (Discovery CT 750 HD, GE Healthcare or Sensation 64, Siemens). In our experiments, the CT slices are 
resampled to 0.5 mm/pixel in the two axes. 

In our experiment, 60% and 10% of the patients are randomly selected and set aside as the training set and 
validation set respectively. The remaining 30% are used as the test set. The numbers of patients with different 
histopathological findings in each set are listed in Table 1. For the training set, we select three slices with the largest 
lesion regions from each CT volume and augment them 2 times with random translations and rotations. We treat each 
single slice as a sample and extract the patches using the method for the training stage. Around 36,000 training patches 
are extracted. For the validation set and test set, one slice with largest lesion region is selected from each CT volume and 
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we extract patches from these slices using the method for the inference stage.  

Table 1. Numbers of patients in each set 

Characteristics Training set Validation set Test set 
Differentiation degree 

(application 1) 
Poorly 127 21 64 
Well/Moderately 133 22 66 

Lauren type 
(application 2) 

Intestinal 103 16 46 
Diffuse 86 15 43 
Mixed 71 12 41 

2.3 Implementation Details 

In our experiment, the CNN inserted into the proposed deep GMIL framework contains three convolutional layer groups, 
of which input patches have size 32×32, 16×16 and 8×8 respectively, and two fully-connected layers, the former of 
which has 32 nodes. Each convolutional layer group is composed of two convolutional layers and a 2×2 max pooling 
layer. Each convolutional layer has 16 3×3 filters with a stride of 2 pixels. Batch normalization is used after convolution. 
The rectified linear units is used as nonlinearity activation function. We initialize all parameters with random Gaussian 
distributions and train the network with mini-batch size of 32 bags using Adam Optimizer with a learning rate of 0.001. 
We stop training when the network performance do not significantly improve on the validation set for 10 epochs. 

We compare the proposed method with a standard CNN model and a texture-based model. The standard CNN 
model has the same structure with our deep GMIL model except that its final fully-connected layer has two less nodes. 
We train it using the method for the training stage 2 descried above. Then it inferences the test set based on the patches 
with the highest predicted probability.  

To build the texture-based model, we extract 90 hand-crafted texture features defined in our previous study.10-11 
Support vector machine with radial basis function kernel is adopted, and its hyper-parameters are set via grid search 
while the input features are selected using the forward stepwise selection strategy. 

3. RESULTS 

Example of the extracted patches used in the training step 2 are shown in Figure 2, we could find that the informative 
patches usually contain more textural tumor tissues while there are more edges in the ambiguous patches. The adjacent 
organs, blood vessels, lymph nodes, fat tissue and gastric contents etc. are extracted as the extra-tumor irrelative patches. 
Table 2 lists the results of our approach and the compared models in the experiments. The proposed deep GMIL model 
achieves promising performance on both applications, all outperforming the standard CNN model and the traditional 
texture-based model. The predictive accuracy of our approach outperforms that of the standard CNN model by 15.11% 
and 14.58% on the two applications respectively. The superiority suggests that the deep GMIL framework is able to 
extract the discriminative information, while reducing irrelevant noise and redundant information. 

When compared with the traditional texture-based model, 17.78% and 31.95% accuracy increase reveals the power 
of significant feature representation of our deep GMIL model. Specifically, as the CT imaging phenotype of Lauren 
classification is relatively obscure, there is only indirect association between this kind of clinical categories and the 
common hand-crafted features making it a difficult task to build a useful traditional model. Meanwhile, leveraging the 
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