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A Reconstruction-based Visual-Acoustic-Semantic
Embedding Method for Speech-Image Retrieval

Wenlong Cheng, Wei Tang, Yan Huang, Yiwen Luo, and Liang Wang, Fellow, IEEE

Abstract—Speech-image retrieval aims at learning the rele-
vance between image and speech1. Prior approaches are mainly
based on bi-modal contrastive learning, which can not alleviate
the cross-modal heterogeneous issue between visual and acoustic
modalities well. To address this issue, we propose a visual-
acoustic-semantic embedding (VASE) method. First, we propose
a tri-modal ranking loss by taking advantage of semantic infor-
mation corresponding to the acoustic data, which introduces the
auxiliary alignment to enhance the alignment between image and
speech. Second, we introduce a cycle-consistency loss based on
feature reconstruction. It can further alleviate the heterogeneous
issue between different data modalities (e.g., visual-acoustic,
visual-textual and acoustic-textual). Extensive experiments have
demonstrated the effectiveness of our proposed method. In
addition, our VASE model achieves state-of-the-art performance
on the speech-image retrieval task on the Flickr8K [4] and
Places [2] datasets.

Index Terms—Speech-image retrieval, tri-modal ranking loss,
cycle-consistency loss, visual-acoustic-semantic embedding.

I. INTRODUCTION

NOWADAYS, with the fast development of information
technology and hardware devices, multimedia data (e.g.,

image, audio, text and video) can be seen everywhere in
our daily lives. For understanding and dealing with massive
amount of multimedia data, multi-modal data processing tech-
nology appears and attracts a lot of attention. Cross-modal
retrieval [42]–[45], visual question answering [46]–[49] and
image captioning [50]–[53] are some of the representative
tasks. Speech-image retrieval is a bidirectional cross-modal
retrieval task, which is shown in Fig.1. It aims to retrieve
relevant images given speeches (speech-to-image retrieval,
S2I) or find relevant speeches given images (image-to-speech
retrieval, I2S). It is more convenient and faster if we use speech
instead of writing or typing in some scenarios [41], [59]. It
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1In this paper, the speech refers to the spoken caption.
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Fig. 1. The diagram of speech-image retrieval. It includes image-to-speech
retrieval (top) and speech-to-image retrieval (bottom).
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Fig. 2. The alignment between image and speech. The left figure describes the
alignment before adding text, while the right figure describes the alignment
after adding text. Before adding text, there is only direct alignment between
image and speech (“speech-image”). After adding text, the new auxiliary
alignment between image and speech is established through the path of
“image-text-speech”.

can be applied to outdoor scenes that are inconvenient for
writing or typing, or scenes that require real-time interactions,
such as speech-based image search on mobile phones, human-
computer interaction, etc. The challenge of speech-image
retrieval lies in how to accurately measure the cross-modal
similarities between images and speeches [1].

Recent studies are mainly based on bi-modal contrastive
learning. These methods [2]–[4], [7], [8] are typically com-
posed of two branches for generating visual and acoustic
embedding features in a common feature space [31]. Then,
a bi-modal similarity-based ranking loss (e.g., triplet loss) is
used to pull the matching image and speech pair closer and
push the non-matching image and speech pair further away
in a common feature space. Further, they can be divided into
two major categories: global coarse-grained matching meth-
ods [7], [8] and local fine-grained matching methods [2]–[4].
The global coarse-grained matching methods are proposed to
learn associations between the global natural images and free-
form speeches. The local fine-grained matching methods are
proposed to learn associations between the image fragments
and speech segments, and then an aggregation algorithm is
adopted to obtain the global similarities between images and
speeches. Because of the usage of local fine-grained matching
relationships, they can generally obtain better performance
than global coarse-grained matching methods. However, both
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these methods have two problems. First, they mainly focus on
the direct alignment between image and speech, but ignore the
auxiliary alignment between them. Second, the traditional bi-
modal contrastive learning methods are easy to cause similar
but non-matching samples to be far away from each other.
Both of them will cause the modality gap between visual and
acoustic modalities.

For the first problem, we introduce the auxiliary alignment
by using the intermediate semantic information (text) cor-
responding to acoustic data, and accordingly propose a tri-
modal ranking loss. Because the text is transcribed from the
corresponding speech, it can also describe the matching image.
The text is related to both image and speech, so it can be
used as a bridge to alleviate the modality gap between image
and speech. As shown in Fig 2, adding text will not change
the original “image-speech” direct alignment, instead, the text
is taken as a bridge to increase the new “image-text-speech”
auxiliary alignment. The new auxiliary alignment is beneficial
to the alignment between image and speech, thus alleviating
the modality gap.

For the second problem, we propose a cycle-consistency
loss based on feature reconstruction. Compared with previ-
ous feature reconstruction methods [31], [63], our proposed
method not only uses matching data samples, but also uses
non-matching data samples. This method can alleviate similar
but non-matching data samples to be far away from each other.
Besides, the non-matching data samples may contain some key
semantic information not included in matching data samples.
To balance the weights of matching data samples and non-
matching data samples in the feature reconstruction process,
we introduce dynamic weight factors to adjust the contribution
of each data sample.

To demonstrate the effectiveness of our VASE model, we
have conducted extensive experiments on the Flickr8K and
Places datasets. Moreover, to further verify the robustness
of our VASE model, we use two different sets of network
structures (vgg16/DAVEnet and resnet50/ResDAVEnet) as the
backbones of our proposed model.

The main contributions of this work can be summarized as
follows.
• We propose to use the text as auxiliary supervision to

bridge the modality gap between image and speech, and
accordingly develop a tri-modal framework to enhance the
alignment between image and speech.
• We propose a tri-modal reconstruction-based cycle-

consistency loss to further alleviate the modality gap, which
is quite new in the context of image-speech retrieval.
• Extensive experiments have demonstrated the effective-

ness of our proposed method. Our VASE model has achieved
state-of-the-art performance for the speech-image retrieval task
on the Flikcr8K [4] and Places [2] datasets.

The rest of this paper is organized as follows. Related work
is introduced in Section II. Our proposed VASE method is
described in detail in Section III. The experimental setups,
results, visulization and discussion are shown in Section IV.
Finally, conclusions are given in Section V.

II. RELATED WORK

A. Image-Text Retrieval

With the development of computer vision [10]–[15], image-
text retrieval has made great progress. Some of the early work
has been done to explore how to establish the global coarse-
grained alignments between image and text. For instance,
Kiros et al. [16] put forward the VSE method to associate
whole images with whole sentences. On the basis of VSE,
Faghri et al. [17] propose an improved VSE++ method to
boost the performance of the model by introducing the hard
negative samples, which can reduce the computing cost.

In addition to the global coarse-grained matching methods,
there are a lot of local fine-grained matching methods. For
instance, Frome et al. [9] propose a deep visual semantic
embedding model to associate image regions with words
by learning semantic relationships between labels. Karpathy
et al. [18] present a deep multi-modal embedding model
to establish the fine-grained matching relationships between
image fragments and sentence segments. Huang et al. [20]
propose a semantic-enhanced image and sentence matching
model to achieve significant performance improvements by
learning semantic concepts and organizing them in a correct
semantic order. Lee et al. [19] put forward a novel stacked
cross attention mechanism to softly align image fragments
and words in a sentence. Li et al. [21] propose a simple and
interpretable reasoning model VSRN to generate enhanced
visual representations. Chen et al. [54] put forward an it-
erative matching with recurrent attention memory (IMRAM)
method to capture the sophisticated correspondence between
images and sentences. Liu et al. [55] present a novel graph
structured matching network (GSMN) to learn the fine-grained
correspondence by node-level matching and structure-level
matching.

Other work tries to integrate additional information into the
image-text retrieval. For example, Wang et al. [56] propose a
consensus-aware visual-semantic embedding (CVSE) model to
incorporate consensus information into the image-text match-
ing. Castrejon et al. [23] put forward a method to regularize
cross-modal convolutional neural networks, so that they have
a shared representation that is agnostic of the modality. On
the basis of [23], Aytar et al. [24] further expand this work.

Although these image-text retrieval methods have obtained
impressive progress. However, these methods focus on discrete
text and cannot deal with continuous speech well. Compared
with text, speech is more difficult to be processed, but it is
more convenient in most application scenarios. In this work,
we use semantic information corresponding to speech to better
deal with speech.

B. Speech-Image Retrieval

In recent years, the studies on speech-image retrieval have
drawn much attention in the multimedia community. Some
of these studies establish the global coarse-grained matching
relationships between visual and acoustic modalities. For
instance, Li et al. [61] introduce a novel cross-modal factor
analysis (CFA) method for cross-modal associations. Harwath
et al. [7] propose a deep neural network architecture to learn



3

Speech CNN FC

Tri-modal ranking 
loss

Cycle-consistency 
loss

Two dogs play 
together in the 
snow.

A brown dog in the 
snow holding a 
pink hat .

A brown dog is 
running along a 

beach .

Image CNNImage preprocess

Text preprocess GRU

3x1024x128

Bi-GRU

FC

FC

3x4096x1

3x1024x1

3x1024x1

3x1024x1

3x1024x1

Feature 
reconstruction

Pair 
construction

Speech CNN FC

Image CNNImage preprocess

1024x128

Bi-GRU

FC

4096x1

1024x1

1024x1 Similarity score

Training stage

Testing stage

Speech

Image

Text

Speech

Image

MFCC

MFCC

Gather

FC : Fully connected layer

: Cosine similarity

3x40x2048

3x40x2048

Fig. 3. The whole framework of our VASE model. The top figure demonstrates the training stage, while the bottom figure shows the testing stage. Our training
stage is based on the batch data. In the top figure, the batch size of input data is assumed to be 3. “Gather” means merging three data streams into one data
stream. (Best viewed in color.)

the global-level associations between the whole natural images
and whole spoken captions. In a similar framework, Harwath
and Glass [8] improve the encoder of spoken captions to obtain
better acousitc feature. And Aytar et al. [22] present a deep
convolutional network for learning discriminative representa-
tions by leveraging massive amounts of synchronized data.
Guo et al. [58] propose a deep visual-audio network (DVAN)
method to establish the correspondence of remote sensing
images and spoken captions in a classification framework.
On the basis of DVAN, Guo et al. [59] further improve
the DVAN method by replacing the previous audio encoder
with AudioNet. Chen and Lu [57] propose a deep triplet-
based hashing (DTBH) method for remote sensing speech-
image retrieval. And Zheng et al. [63] put forward a novel
Adversarial-Metric Learning (AML) model for audio-visual
matching.

Some of these studies establish the local fine-grained match-
ing relationships between visual and acoustic modalities. For
example, Harwath and Glass [4] propose a deep multi-modal
embedding model to align image fragments with speech seg-
ments, and then map them into a common feature space.
But this method uses RCNN [5] and a particular speech
segmentation method [6] to obtain the features of image
fragments and speech segments respectively. To address these
problems, Harwath et al. [2] propose a local fine-grained
matching method to associate spoken caption segments with
relevant image regions by computing the 3-D density of spatio-
temporal similarity. Different from [4], this method uses pixel
features in the higher feature map instead of the image region
features obtained by object detection. Based on [2], Harwath
et al. [3] further improve the method by introducing the
semi-hard negative mining strategy and enhancing the audio
encoder.

However, these methods have two problems that are easy
to cause modality gap between image and speech. First, they
mainly focus on the direct alignment between image and

speech, but ignore the auxiliary alignment between them. Sec-
ond, they are easy to cause similar but non-matching samples
to be far away from each other. To alleviate the modality
gap, we leverage semantic information of acoustic data to
introduce the auxiliary alignment between image and speech,
which enhances the alignment between them. In addition, we
introduce a tri-modal reconstruction-based cycle-consistency
loss to prevent similar but non-matching samples from staying
away from each other in the common feature space.

III. METHODOLOGY

In this section, we introduce the reconstruction-based visual-
acoustic-semantic embedding (VASE) model, which leverages
semantic information corresponding to the acoustic data to
enhance the alignment between image and speech and uses
reconstruction-based cycle-consistency loss to alleviate the
modality gap between visual and acoustic modalities. Our
VASE model is shown in Fig. 3, and it consists of three
parts: feature embedding, tri-modal ranking loss and cycle-
consistency loss.

The pipeline of training procedure can be described as
follows. First, we use convolutional neural network (CNN),
speech CNN and recurrent neural network (RNN) to obtain
visual features, acoustic features and textual features, respec-
tively. To better model temporal characteristics of speeches, we
use the bidirectional GRU [26] to further process the acoustic
features. Then, we map them into a common feature space.
Next we construct the positive and negative sample pairs in
the same batch, and put them into the tri-modal ranking loss.
Besides, we use the features of other modalities in the common
feature space to reconstruct the features of current modality
by utilizing the correlation among associated data of different
modalities. After two feature reconstructions, we use original
features in common feature space to constrain the second-order
reconstructed features, and then obtain the cycle-consistency
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loss. Finally, we use the tri-modal ranking loss and cycle-
consistency loss to update our VASE model.

A. Feature Embedding

1) Visual Embedding: The feature of the last fully con-
nected layer of CNN is selected as the image feature. In
order to calculate the cosine similarities between different
data modalities, then we map the image feature into the
common feature space. The process of visual embedding can
be formulated as follows.

v =WIfI(I) + bI (1)

where I is the given image, fI(.) is the function of CNN,
therefore, fI(I) ∈ R4096×1 stands for the image feature
after CNN. Besides, WI ∈ R1024×4096 is the visual affinity
matrix, bI ∈ R1024×1 is the corresponding visual bias, and
v ∈ R1024×1 is the final visual embedding in the common
feature space. Here, we use two different CNN architectures:
vgg16 [25] and resnet50 [30].

2) Acoustic Embedding: First of all, we use short-time
fourier transform (STFT) to transform the speech into mel-
frequency cepstral coefficients (MFCC), which is convenient
for calculation. Because the generated spectrogram can be
treated as a 1-channel image, we can use the speech CNN
to deal with the generated spectrogram, and choose the
feature map of the last convolution layer in speech CNN
as the intermediate representation. To better model tempo-
ral characteristics of the speech, we regard the intermediate
representation as a sequence from left to right, then further
use the bidirectional GRU [26] to process the intermediate
representation, and finally obtain the output of the bidirectional
GRU as the acoustic feature. In order to calculate the cosine
similarities between different data modalities, we map the
acoustic feature into the common feature space. The process
of acoustic embedding can be formulated as follows.

AMFCC = fSTFT(A) (2)

A1 = fA(A
MFCC) (3)

A2 = fBiGRU(A
1) (4)

a =WAA
2 + bA (5)

where A is the given speech, fSTFT(.) represents STFT trans-
form, fA(.) stands for speech CNN, and fBiGRU(.) stands
for the bidirectional GRU. Therefore, AMFCC ∈ R40×2048

stands for the MFCC feature of the speech, A1 ∈ R1024×128

represents the intermediate acoustic feature obtained by speech
CNN, and A2 ∈ R1024×1 stands for the acoustic feature after
the bidirectional GRU transform. Besides, WA ∈ R1024×1024

is the acoustic affinity matrix, bA ∈ R1024×1 is the cor-
responding acoustic bias, and a ∈ R1024×1 is the final
acoustic embedding in the common feature space. We choose
two different speech CNN architectures: DAVEnet [2] and
ResDAVEnet [3].

3) Semantic Embedding: Considering that the textual sen-
tence can be regarded as a word sequence, so we use GRU
to deal with the given sentence, and choose the last output
of GRU as the semantic feature. In order to calculate the

: Positive pairs

: Negative pairs

Fig. 4. The overview of three different types of positive and negative sample
pairs. The diagrams from left to right are image-speech alignment, image-text
alignment and speech-text alignment, respectively.

similarities between different data modalities, we map the
semantic feature into the common feature space. The process
of semantic embedding can be formulated as follows.

y =WT fT (T ) + bT (6)

where T is the given textual sentence, fT (.) is the function
of GRU, therefore, fT (T ) ∈ R1024×1 stands for the semantic
feature after GRU. WT ∈ R1024×1024 is the semantic affinity
matrix, bT ∈ R1024×1 is the corresponding semantic bias, and
y ∈ R1024×1 is the final semantic embedding in the common
feature space. GRU has fewer parameters than LSTM [27],
but it can achieve comparable results. Therefore, we choose
the GRU to process the textual sentence.

B. Tri-modal Ranking Loss

Our proposed tri-modal ranking loss is based on batch data,
and it contains three different types of positive and negative
sample pairs, which represent three alignments, as shown in
Fig. 4. The image-speech alignment can be formulated as
follows.

Lv2a =
∑
v

∑
k

max{0, α1 − s(v, a) + s(v, ak)}+∑
a

∑
k

max{0, α1 − s(a, v) + s(a, vk)}
(7)

where α1 is the margin between visual and acoustic modalities,
s(.) is the function of cosine similarity, ak is a contrastive
speech feature for image feature v, and vice-versa, vk is a
constrastive image feature for speech feature a. Besides, a
is the corresponding speech feature for image feature v. The
bi-modal ranking loss Lv2a describes the alignment between
image and speech, and it is the direct alignment in the
speech-image retrieval task. The image-text alignment can be
formulated as follows.

Lv2y =
∑
v

∑
k

max{0, α2 − s(v, y) + s(v, yk)}+∑
y

∑
k

max{0, α2 − s(y, v) + s(y, vk)}
(8)

where α2 is the margin between visual and textual modalities,
yk is a contrastive text feature for image feature v, and vice-
versa, vk is a constrastive image feature for text feature y.
Besides, y is the corresponding text feature for image feature
v. The bi-modal ranking loss Lv2y describes the alignment
between image and text, and it is an auxiliary alignment in the
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speech-image retrieval task. The speech-text alignment can be
formulated as follows.

La2y =
∑
a

∑
k

max{0, α3 − s(a, y) + s(a, yk)}+∑
a

∑
k

max{0, α3 − s(y, a) + s(y, ak)}
(9)

where α3 is the margin between acoustic and textual modal-
ities, yk is a contrastive text feature for speech feature a,
and vice-versa, ak is a constrastive speech feature for text
feature y. Besides, y is the corresponding text feature for
speech feature a. The bi-modal ranking loss La2y describes the
alignment between speech and text, and it is also an auxiliary
alignment in the speech-image retrieval task.

Here, we combine the direct alignment with two auxiliary
alignments by using a simple summation method. The tri-
modal ranking loss can be formulated as follows.

Ltri = Lv2a + Lv2y + La2y (10)

where Ltri is our proposed tri-modal ranking loss, Lv2a is
the loss of direct alignment between image and speech, and
Lv2y +La2y is the loss of auxiliary alignment between them.
In order to save the adjustment time of hyperparameters, these
three margins are set to be the same in our experiments, i.e.,
α1 = α2 = α3 = α.

C. Cycle-consistency Loss

To further alleviate the modality gap between image and
speech, we propose a reconstruction-based cycle-consistency
loss. The key insight of the cycle-consistency loss lies in
the feature reconstruction between different data modalities.
The mutual feature reconstruction between different data
modalities can alleviate the modality gap between different
modal samples. Compared with previous reconstructed-based
methods, our proposed method not only uses matching data
samples, but also uses non-matching data samples. There are
two main reasons. First, the non-matching data samples can
provide some key information that is not contained in the
matching data samples. Second, there are some non-matching
but similar data samples, which are easy to stay away from
each other in the traditional bi-modal contrastive learning
process. This method can alleviate non-matching but similar
data samples from being far away from each other in the
common feature space.

The data sample of one specific modality can be regarded
as a combination of many related elements, such as image
objects for image, words for text, and spoken words for speech.
Although these elements have different data modalities, they
can convey the same key information. For instance, the word
“apple”, the spoken word “apple” and the image object “apple”
convey the same semantic information. The semantic infor-
mation of most key elements of the current data sample to
be reconstructed can be found in matching data samples of
other modalities2, so it is reasonable to use the matching data

2The other modalities are the ones that participate in the reconstruction
process.
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Fig. 5. An illustration of why non-matching data samples are also important in
the reconstruction process. The first row shows that the non-matching images
may include some key semantic information of the original textual caption.
The second row shows that the non-matching textual captions may also contain
some key semantic information of the original image. The words and phrases
below instances represent the key semantic information of the original instance
carried by the images and textual captions.

samples of other modalities to reconstruct the data sample of
the current modality3.

However, there is still a big modality gap when only using
the matching data samples of other modalities in the recon-
struction process. Because some key elements may be lost
when only using matching data samples of other modalities
to reconstruct the data sample of current modality. Taking
matching images and textual captions as an example. There
are too many details in the original image, but some of them
may not be described in matching textual captions. Vice-versa,
a textual caption expresses the general idea that may describe
multiple scenes, while matching images only present some of
them. But non-matching data samples may contain some key
elements, which are not included in matching data samples
of other modalities. For example, the non-matching textual
captions may provide some useful detailed information of
current image, and the non-matching images may include some
key semantic information of other scenes described by current
textual caption, as shown in Fig. 5.

In order to reduce the interference of irrelevant semantic
information of non-matching data samples, we introduce dy-
namic weight factors to adjust the contribution of each data
sample in the reconstruction process. The dynamic weight
factors are related to the similarities between original data
samples and data samples participating in the reconstruction
process. The greater the similarity, the greater the correspond-
ing dynamic weight factor. In general, the dynamic weight
factors of matching data samples are larger, while those of
non-matching data samples are smaller.

The feature reconstruction between different data modalities
plays a key role in cycle-consistency loss. After two feature
reconstructions, the original data features are used to constrain
the reconstructed data features, thus obtaining the cycle-
consistency loss. According to whether semantic information
is added or not, the cycle-consistency loss has two types:
cycle-consistency loss between two data modalitites and cycle-
consistency loss among three data modalities.

1) Cycle-consistency Loss Among Three Data Modalities:
The cycle-consistency loss among three data modalities is
shown in Fig. 6. The reconstruction process is based on batch-

3The current modality is the one that needs to be reconstructed.
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Fig. 6. Taking acoustic feature reconstruction as an example to describe the
process of feature reconstruction among three data modalities. (Best viewed
in color.)

based data samples. Taking the reconstruction of acoustic
features as an example, the reconstruction process can be
described as follows.

First of all, according to the modality of each data feature,
the batch-based original input data features are divided into
three queues, namely batch-based original visual features,
batch-based original acoustic features and batch-based original
textual features. Each queue is composed of data features of
the same modality, and the number of data features in each
queue is equal to the batch size. Besides, the data features
with the same numberical index in three different queues
are matching. In order to calculate the similarities between
original acoustic features and original data features of other
modalities, we need to concatenate the batch-based original
visual and textual features. Then we can obtain the first-
order reconstructed matrix of acoustic features by computing
the cosine similarities between batch-based original acoustic
features and batch-based concatenated original visual-textual
features.

S = Ab(fc(Ib, Tb))
T (11)

where Ib = [v1, v2, . . . , vn]
T ∈ Rn×d is the batch-

based original visual features, Ab = [a1, a2, . . . , an]
T ∈

Rn×d is the batch-based original acoustic features, Tb =
[y1, y2, . . . , yn]

T ∈ Rn×d is the batch-based original textual
features. fc(.) stands for the concatenation operation, and
S ∈ Rn×2n is the first-order reconstructed matrix of acoustic
features. n is the batch size, and d is the dimension of common
feature space.

After that, we carry out the row softmax transformation
on the first-order reconstructed matrix to obtain the dynamic
weight factors of first-order reconstructed acoustic features.
Then we use the dynamic weight factors to carry out the
weighted summation on the batch-based concatenated original
visual-textual features to obtain the first-order reconstructed
acoustic features.

A1rec
b = fs(β · S)fc(Ib, Tb) (12)

where fs(.) stands for row softmax transformation, and β is
a scaling approximator in the row softmax transformation.
A1rec

b = [a1rec
1 , a1rec

2 , . . . , a1rec
n ]T ∈ Rn×d is the batch-based

first-order reconstructed acoustic features.

Similarly, we can also obtain the first-order reconstructed
visual and textual features.

S1 = Ib(fc(Ab, Tb))
T (13)

I1rec
b = fs(β · S1)fc(Ab, Tb) (14)

S2 = Tb(fc(Ib, Ab))
T (15)

T 1rec
b = fs(β · S2)fc(Ib, Ab) (16)

where S1 ∈ Rn×2n is the first-order reconstructed
matrix of visual features, and S2 ∈ Rn×2n is the
first-order reconstructed matrix of textual features.
I1rec
b = [v1rec

1 , v1rec
2 , . . . , v1rec

n ]T ∈ Rn×d is the batch-
based first-order reconstructed visual features, and
T 1rec
b = [y1rec

1 , y1rec
2 , . . . , y1rec

n ]T ∈ Rn×d is the batch-based
first-order reconstructed textual features.

The second feature reconstruction is similar to the first
feature reconstruction. We concatenate batch-based first-order
reconstructed visual and textual features to obtain batch-based
concatenated first-order reconstructed visual-textual features.
Then we can obtain the second-order reconstructed matrix
of acoustic features by computing the cosine similarities
between batch-based first-order reconstructed acoustic features
and batch-based concatenated first-order reconstructed visual-
textual features.

S
′
= A1rec

b (fc(I
1rec
b , T 1rec

b ))T (17)

where S
′ ∈ Rn×2n is the second-order reconstructed matrix

of acoustic features.
After that, we carry out the row softmax transformation

on the second-order reconstructed matrix to obtain the dy-
namic weight factors of second-order reconstructed acoustic
features. Then we use the dynamic weight factors to carry
out the weighted summation on the batch-based concatenated
first-order reconstructed visual-textual features to obtain the
second-order reconstructed acoustic features.

A2rec
b = fs(β · S

′
)fc(I

1rec
b , T 1rec

b ) (18)

where A2rec
b = [a2rec

1 , a2rec
2 , . . . , a2rec

n ]T ∈ Rn×d is the batch-
based second-order reconstructed acoustic features.

Similarly, we can also obtain the second-order reconstructed
visual and textual features.

S
′

1 = I1rec
b (fc(A

1rec
b , T 1rec

b ))T (19)

I2rec
b = fs(β · S

′

1)fc(A
1rec
b , T 1rec

b ) (20)

S
′

2 = T 1rec
b (fc(I

1rec
b , A1rec

b ))T (21)

T 2rec
b = fs(β · S

′

2)fc(I
1rec
b , A1rec

b ) (22)

where S
′

1 ∈ Rn×2n is the second-order reconstructed
matrix of visual features, and S

′

2 ∈ Rn×2n is the
second-order reconstructed matrix of textual features.
I2rec
b = [v2rec

1 , v2rec
2 , . . . , v2rec

n ]T ∈ Rn×d is the batch-
based second-order reconstructed visual features, and
T 2rec
b = [y2rec

1 , y2rec
2 , . . . , y2rec

n ]T ∈ Rn×d is the batch-based
second-order reconstructed textual features.

After completing the second reconstruction, we use the
original features to constrain the second-order reconstructed
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Fig. 7. Taking acoustic and visual feature reconstruction as examples to
describe the process of feature reconstruction between two data modalities.
(Best viewed in color.)

features. The cycle-consistency loss among three data modal-
ities can be formulated as follows.

Lr =

n∑
i=1

{
∥∥v2reci − vi

∥∥2
2
+
∥∥a2reci − ai

∥∥2
2

+
∥∥y2reci − yi

∥∥2
2
}

(23)

where vi, ai, yi ∈ Rd×1 are the original visual, acoustic and
textual features, and v2reci , a2reci , y2reci ∈ Rd×1 are the second-
order reconstructed visual, acoustic and textual features. Lr is
the cycle-consistency loss of our VASE model.

2) Cycle-consistency Loss Between Two Data Modalities:
The cycle-consistency loss between two data modalities is
shown in Fig. 7. Compared with the feature reconstruction
among three data modalities, the feature reconstruction be-
tween two data modalities does not contain semantic informa-
tion. The feature reconstruction between two data modalities
is similar to the feature reconstruction among three data
modalities, so we will not describe its process in detail.
The first feature reconstruction process can be formulated as
follows.

S3 = AbI
T
b (24)

A1rec
b = fs(β · S3)Ib (25)

I1rec
b = fs(β · ST

3 )Ab (26)

where Ib = [v1, v2, . . . , vn]
T ∈ Rn×d is the batch-based

original visual features, and Ab = [a1, a2, . . . , an]
T ∈ Rn×d

is the batch-based original acoustic features. S3 ∈ Rn×n

is the first-order reconstructed matrix of acoustic and vi-
sual features. fs(.) stands for row softmax transformation,
β is a scaling approximator in the row softmax transforma-
tion. I1rec

b = [v1rec
1 , v1rec

2 , . . . , v1rec
n ]T ∈ Rn×d is the batch-

based first-order reconstructed visual features, and A1rec
b =

[a1rec
1 , a1rec

2 , . . . , a1rec
n ]T ∈ Rn×d is the batch-based first-order

reconstructed acoustic features. n is the batch size, and d is
the dimension of common feature space. The second recon-
struction can be formulated as follows.

S
′

3 = A1rec
b (I1rec

b )T (27)

A2rec
b = fs(β · S

′

3)I
1rec
b (28)

I2rec
b = fs(β · (S

′

3)
T )A1rec

b (29)

where S
′

3 ∈ Rn×n is the second-order reconstructed matrix of
acoustic and visual features, I2rec

b = [v2rec
1 , v2rec

2 , . . . , v2rec
n ]T ∈

Rn×d is the batch-based second-order reconstructed visual
features, and A2rec

b = [a2rec
1 , a2rec

2 , . . . , a2rec
n ]T ∈ Rn×d is the

batch-based second-order reconstructed acoustic features.
After completing the second reconstruction, we also use the

original features to constrain the second-order reconstructed
features. The cycle-consistency loss between two data modal-
ities can be formulated as follows.

Lr 2s =

n∑
i=1

{
∥∥v2reci − vi

∥∥2
2
+
∥∥a2reci − ai

∥∥2
2
} (30)

where vi, ai ∈ Rd×1 are the original visual and acoustic fea-
tures, v2reci , a2reci ∈ Rd×1 are the second-order reconstructed
visual and acoustic features, and Lr 2s is the cycle-consistency
loss of VASE (2-stream) model, which remove the semantic
information from VASE model.

D. Joint Learning

Combined with the tri-modal ranking loss, the total loss of
our VASE model can be expressed as follows.

Ltotal = Ltri + λ1 · Lr (31)

where Ltri is the tri-modal ranking loss, λ1 is a balance
weight factor, Lr is the cycle-consistency loss among three
data modalities, and Ltotal is the total loss of our VASE model.

When no semantic information is added, our proposed
VASE model degenerates into a 2-stream model, i.e., VASE
(2-stream). Combined with the bi-modal ranking loss, the total
loss of our VASE (2-stream) can be formulated as follows.

Ltotal 2s = Lv2a + λ2 · Lr 2s (32)

where Lv2a is the bi-modal ranking loss in speech-image
retrieval task, λ2 is also a balance weight factor, Lr 2s is
the cycle-consistency loss between two data modalities, and
Ltotal 2s is the total loss of our VASE (2-stream) model. These
two balance weight factors in our experiments are set to be
same, i.e., λ1 = λ2 = λ.

IV. EXPERIMENTS

In order to demonstrate the effectiveness of our VASE
model, we conduct the speech-image retrieval task on two
related datasets: Flickr8K dataset and Places dataset. Con-
ducted experiments include comparative experiments with the
state-of-the-art methods and ablation studies. The datasets,
evaluation metrics, parameter setups, quantitative results, vi-
sualization and related analysis are given in this section.

A. Datasets

1) Flickr8K Dataset: Built on the Flickr8K Audio Caption
Corpus [4] and Flickr8K Text Caption Corpus [28], [65], the
Flickr8K dataset consists of natural images, spoken captions
and textual captions. These natural images are collected from
the Flickr photo sharing website, and the collected images
are trying to depict the actions of people or animals [4].
Each natural image is annotated with five textual captions
and five spoken captions, and the five textual captions are
transcribed from the corresponding five spoken captions. The
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spoken and textual captions are collected on the Amazon’s
Mechanical Turk platform. The dataset is divided into train,
validation and test splits. The train split includes 6, 000 natural
images, 30, 000 spoken captions and 30, 000 textual captions.
The validation split includes 1, 000 natural images, 5, 000
spoken captions and 5, 000 textual captions. The test split
includes 1, 000 natural images, 5, 000 spoken captions and
5, 000 textual captions.

2) Places Dataset: Built on the Places Audio Caption Cor-
pus [2], [7], [8] and Places 205 dataset [29], the Places dataset
also consists of natural images, spoken captions and textual
captions. The natural images are collected from the Places 205
dataset [29], and the spoken captions are collected from 2, 683
unique speakers on the Amazon’s Mechanical Turk platform.
Each natural image is annotated with one spoken caption and
one textual caption. The textual caption is transcribed from the
corresponding spoken caption by the Google ASR engine. And
it includes 44, 342 words vocabulary. The dataset is divided
into train and validation splits. The train split contains 402, 385
natural images, 402, 385 spoken captions, and 402, 385 textual
captions. The validation split contains 1, 000 natural images,
1, 000 spoken captions, and 1, 000 textual captions.

B. Evaluation Metrics

Following the existing work [2]–[4], [7], [8], the evaluation
metrics used for image-to-speech (I2S) and speech-to-image
(S2I) retrieval tasks are “r@1”, “r@5” and “r@10”, i.e., the
recall rates [32]–[37] at top 1, 5, 10 results. To better measure
the model’s overall performance for both I2S and S2I retrieval
tasks, we also compute an additional evaluation metric “rsum”
by summing all the 6 recall rates.

C. Implementation Details

The network details are summarized as follows. In speech
encoder, the MFCC is obtained by transforming the speech,
and its size is 40× 2048. Then the MFCC is put into speech
CNN to obtain acoustic feature, which size is 1024 × 128.
Finally, the acoustic feature is put into a single-layer bidi-
rectional GRU (Bi-GRU) to obtain final acoustic embedding,
which size is 1024×1. Here, we use DAVEnet or ResDAVEnet
as our speech CNN. In image encoder, we use vgg16 or
resnet50 as our image CNN, and both of them are pretrained
on the imagenet dataset. The size of final visual embedding is
1024×1. In text encoder, we use single-layer GRU to process
the textual information. The dimension of the word embedding
is 300, and the size of final semantic embedding is 1024× 1.
In addition, the full connected layer (FC) is a single-layer
network. The margin α in tri-modal ranking loss is 0.2. The
balance weight factor λ is used to adjust the contributions
of tri-modal ranking loss and cycle-consistency loss, and it
is commonly set as 0.05. In feature reconstruction process,
the scaling approximator β is an important hyperparameter
to adjust contributions of matching and non-matching data
samples, and it is commonly set as 2.0 or 4.0. In addition,
the computation complexity of our VASE model is shown as
Table I.

TABLE I
THE COMPUTATION COMPLEXITY OF OUR VASE MODEL.

Model Backbones Params (M) FLOPs (G)

VASE vgg16/DAVEnet 164.92 23.09
resnet50/ResDAVEnet 80.78 12.33

The hardware platform and training details are summarized
as follows. All our experiments are conducted on ubuntu 16.04
system of dgx-1 server, and the GPU we use is Tesla P100 (16
G). Based on the Pytorch library, we implement the proposed
model. We use Adam [64] to train our proposed model with
an initial learning rate of 0.0002 (first stage) or 0.00002
(second stage). The learning rate needs to be divided by 10
in every 15 epochs in the training procedure. Because we use
both matching and non-matching data samples in the feature
reconstruction process, the batch size is also an important
hyperparameter to affect final performance, and it is commonly
set as 32. Besides, we use a two-stage training strategy to
update the proposed model. In the first stage, we fix the
weights of image CNN (pretrained on the imagenet dataset).
The weights of other modules are randomly initialized. The
first training procedure terminates after 100 epochs on the
Flickr8K dataset, and terminates after 30 epochs on the Places
dataset. In the second stage, the weights of our model are
initialized by the best model in the first stage. Besides, we
release the weights of image CNN (finetune the image CNN).
The second training procedure terminates after 100 epochs on
the Flickr8K dataset, and terminates after 40 epochs on the
Places dataset.

The testing details are summarized as follows. First, we use
the image encoder and speech encoder of the trained model
to obtain visual and acoustic embeddings in common feature
space, respectively. Then, we compute the cosine similarities
between visual and acoustic embeddings. The retrieved in-
stances are sorted according to the cosine similarities. The
testing procedure are shown on the bottom figure of Fig. 3.

D. Comparison with the State-of-the-art Methods

In this section, we conduct speech-image retrieval experi-
ments on the Flickr8K and Places datasets, and compare our
results with existing related methods. On the Flikcr8K dataset,
we use the vgg16 [25] and DAVEnet [2] as the backbones4 of
our VASE model, and compare our results with related state-
of-the-art models, as shown in Table II. On the Places dataset,
we not only use the vgg16 and DAVEnet as the backbones of
our VASE model, but also use resnet50 and ResDAVEnet, and
compare our results with related state-of-the-art methods. The
results are shown in Table III and Table IV, respectively.

1) Results on the Flickr8K Dataset: The speech-image
retrieval results on the Flickr8K dataset are shown in Table II.
All the results are obtained on the test split, and their corre-
sponding models are trained on the train split.

This table demonstrates the results of some local fine-
grained matching speech-image retrieval models, such as
Spectrogram CNN [4], SISA (P) [2], MISA (P) [2], SIMA

4On the Flickr8K dataset, the existing methods do not use resnet50 [30]
and ResDAVEnet [3] as the backbones, so our VASE model only uses vgg16
and DAVEnet as the backbones.
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TABLE II
COMPARISON RESULTS OF SPEECH-IMAGE RETRIEVAL ON THE FLICKR8K

DATASET. (VGG16/DAVENET)

Model S2I (%) I2S (%) rsum (%)r@1 r@5 r@10 r@1 r@5 r@10
Spectrogram CNN [4] – – 17.9 – – 24.3 –

SISA (P) [2] 6.2 19.3 29.1 7.4 24.9 37.6 124.5
MISA (P) [2] 6.6 20.1 29.7 6.9 22.7 33.5 119.5
SIMA (P) [2] 4.4 15.1 23.8 6.9 20.2 32.3 102.7

VASE (2-stream) 4.6 16.1 25.6 8.1 21.8 32.6 108.8
VASE 6.0 20.4 31.2 8.0 26.1 38.9 130.6

TABLE III
COMPARISON RESULTS OF SPEECH-IMAGE RETRIEVAL ON THE PLACES

DATASET. (VGG16/DAVENET)

Model S2I (%) I2S (%) rsum (%)r@1 r@5 r@10 r@1 r@5 r@10
SISA (P) [2] 16.5 43.1 55.9 12.0 36.3 50.6 214.4
MISA (P) [2] 20.0 46.9 60.4 12.7 37.5 52.8 230.3
SIMA (P) [2] 14.7 37.5 50.6 13.9 36.7 48.3 201.7

Harwath et al. [8] 16.1 40.4 56.4 13.0 37.8 54.2 217.9
Harwath et al. [7] 14.8 40.3 54.8 12.1 33.5 46.3 201.8
VASE (2-stream) 20.7 47.0 59.6 20.2 47.0 59.2 253.7

VASE 21.4 50.7 64.0 21.1 50.8 64.0 272.0

(P) [2]. And SISA (P), MISA (P) and SIMA(P) are our re-
implemented local fine-grained matching models. The best
performance of these three models is reported after hyper-
parameter finetunings. In this table, we use vgg16 and DAV-
Enet as the backbones of our VASE (2-stream), VASE, SISA
(P), MISA (P) and SIMA (P). Besides, we use the symbol “–”
to indicate some missing evaluation criteria.

From Table II, our VASE has achieved best overall per-
formance. SISA (P) is the second best method among all
compared methods. Compared with SISA (P), our VASE has
achieved 6.1% improvement on overall performance rsum.
Compared with VASE, the performance of VASE (2-stream)
has dropped a lot, which means that semantic information
corresponding to acoustic data is beneficial for the alignment
between image and speech. However, it still has surpassed
Spectrogram CNN5 and SIMA (P) in overall performance.

2) Results on the Places Dataset: The speech-image re-
trieval results on the Places dataset are shown in Table III
and Table IV, respectively. The results in these two tables
are obtained on the validation split, and their corresponding
models are trained on the train split [39].

In Table III, we use vgg16 [25] and DAVEnet [2] as
the backbones of our proposed models, and compare our
results with several related state-of-the-art methods, including
global coarse-grained matching methods and local fine-grained
matching methods. The global coarse-grained matching meth-
ods include Harwath et al. [8] and Harwath et al. [7], and their
results are directly copied from [2]. The local fine-grained
matching methods contain SISA (P) [2], MISA (P) [2] and
SIMA (P) [2].

From this table, our VASE and VASE (2-stream) have
achieved top-2 performance in overall performance. MISA
(P) is the third best method among all compared methods.
Compared with MISA (P) [2], VASE (2-stream) outperforms it
in five individual evaluation metrics except for r@10 (S2I), and

5To the best of our knowledge, this is likely the only method conducted
speech-image retrieval task on the Flickr8K dataset.

TABLE IV
COMPARISON RESULTS OF SPEECH-IMAGE RETRIEVAL ON THE PLACES

DATASET. (RESNET50/RESDAVENET)

Model S2I (%) I2S (%) rsum (%)r@1 r@5 r@10 r@1 r@5 r@10
Random [3] 14.7 37.5 51.2 9.9 32.8 45.2 191.3

Natural Sounds [3] 26.8 54.5 68.4 21.1 52.8 66.0 289.6
ImageNet/AudioSet [3] 27.6 58.4 71.6 21.8 55.1 69.0 303.5

VASE(2-stream) 30.6 61.4 73.4 30.5 60.8 72.5 329.2
VASE 35.3 66.5 78.3 33.5 68.7 78.5 360.8

TABLE V
THE ABLATION STUDY ON THE FLICKR8K DATASET. (VGG16/DAVENET)

Model S2I (%) I2S (%) rsum (%)r@1 r@5 r@10 r@1 r@5 r@10
base 4.4 16.2 25.3 7.1 21.4 31.1 105.5

base+cc 4.6 16.1 25.6 8.1 21.8 32.6 108.8
base+aux 5.6 19.3 28.7 7.4 24.2 35.4 120.6

base+cc+aux 6.0 20.4 31.2 8.0 26.1 38.9 130.6

exceeds it by 23.4% in the overall evaluation metric rsum. In
evaluation metric r@10 (S2I), it is only 0.8% lower than MISA
(P) [2]. Furthermore, VASE greatly outperforms MISA(P) [2]
in all six individual evaluation metrics, and exceeds it by
41.7% in the overall evaluation metric rsum.

In Table IV, we use resnet50 [30] and ResDAVEnet [3]
as the backbones of our proposed models, and compare our
results with some related state-of-the-art methods, such as
Random [3], Natural Sounds [3] and ImageNet/AudioSet [3].
These three methods use the same SISA-SHN [3] framework,
but their corresponding pre-trained ways are different. Ran-
dom means that both image and speech branches of SISA-
SHN are randomly initialized, Natual Sounds means that
only the speech branch is pretrained on the AudioSet, and
ImageNet/AudioSet means that the image branch is pretrained
on the ImageNet and the speech branch is pretrained on the
AudioSet.

From this table, we can observe that ImageNet/AudioSet
is the best one among these three methods. Compared with
ImageNet/AudioSet [3], VASE (2-stream) outperforms it in
all six individual evaluation metrics, and exceeds it by 25.7%
in the overall evaluation metric rsum. Furthermore, VASE
can achieve better performance than VASE (2-stream), and it
greatly outperforms ImageNet/AudioSet [3] in all six individ-
ual evaluation metrics, and exceeds it by 57.3% in the overall
evaluation metirc rsum.

Overall, both VASE and VASE (2-stream) have surpassed
the existing methods in most of six individual evaluation met-
rics and the overall evaluation metirc in both vgg16/DAVEnet
and resnet50/ResDAVEnet backbones. In general, the local
fine-grained matching methods are superior to the global
coarse-grained matching methods. Although VASE and VASE
(2-stream) are global coarse-grained matching methods, they
have reached or even exceeded the existing local fine-grained
matching methods.

Compared with VASE (2-stream), VASE obtains better
performance. Because semantic information corresponding to
acoustic data can further enhance the alignment between image
and speech. In addition, it can be observed that the perfor-
mance of speech-to-image (S2I) retrieval is overall higher
than the performance of image-to-speech (I2S) retrieval for
both existing global coarse-grained matching methods and
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TABLE VI
THE ABLATION STUDY ON THE PLACES DATASET.

Model
vgg16/DAVEnet resnet50/ResDAVEnet

S2I (%) I2S (%) rsum (%) S2I (%) I2S (%) rsum (%)r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10
base 18.1 44.1 56.8 18.8 44.2 57.3 239.3 27.7 59.9 72.7 29.5 61.0 71.7 322.5

base+cc 20.7 47.0 59.6 20.2 47.0 59.2 253.7 30.6 61.4 73.4 30.5 60.8 72.5 329.2
base+aux 22.5 49.9 61.8 22.5 49.1 62.0 267.8 33.9 65.3 75.5 32.1 64.8 76.1 347.7

base+cc+aux 21.4 50.7 64.0 21.1 50.8 64.0 272.0 35.3 66.5 78.3 33.5 68.7 78.5 360.8

TABLE VII
THE β HYPER-PARAMETER ANALYSIS OF OUR VASE (2-STREAM) MODEL ON THE PLACES DATASET.

β
vgg16/DAVEnet resnet50/ResDAVEnet

S2I (%) I2S (%) rsum (%) S2I (%) I2S (%) rsum (%)r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10
2.0 19.0 44.9 56.3 18.5 44.9 56.6 240.2 28.7 59.9 71.7 27.0 60.0 72.3 319.6
4.0 16.2 42.0 54.3 15.9 41.2 53.7 223.3 30.4 60.6 73.9 27.0 61.1 72.3 325.3
6.0 18.4 45.1 57.9 19.3 45.3 56.1 242.1 30.6 61.4 73.4 30.5 60.8 72.5 329.2
8.0 18.5 44.6 56.3 20.2 44.4 55.6 239.6 28.3 61.2 73.0 27.9 60.5 72.9 323.8

10.0 20.5 46.6 57.6 20.7 47.9 57.7 251.0 30.6 59.4 71.6 30.7 61.4 70.8 324.5
12.0 20.7 47.0 59.6 20.2 47.0 59.2 253.7 28.4 59.8 71.9 28.3 59.7 72.1 320.2

TABLE VIII
THE β HYPER-PARAMETER ANALYSIS OF OUR VASE MODEL ON THE PLACES DATASET.

β
vgg16/DAVEnet resnet50/ResDAVEnet

S2I (%) I2S (%) rsum (%) S2I (%) I2S (%) rsum (%)r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10 r@1 r@5 r@10
2.0 21.4 50.7 64.0 21.1 50.8 64.0 272.0 33.2 65.6 76.4 33.6 65.4 76.1 350.3
4.0 23.3 50.0 62.7 20.3 49.6 62.9 268.8 35.3 66.5 78.3 33.5 68.7 78.5 360.8
6.0 19.4 45.3 59.0 18.4 45.1 58.9 246.1 32.2 65.4 77.5 31.6 65.4 77.4 349.5
8.0 20.9 46.2 60.1 17.3 46.9 59.3 250.7 34.2 64.5 76.0 29.7 65.5 76.9 346.8

10.0 19.4 46.0 59.4 17.9 46.7 59.8 249.2 35.9 66.0 77.2 30.6 66.1 75.8 351.6
12.0 19.3 47.9 58.6 19.5 46.9 59.4 251.6 33.6 65.9 76.0 31.2 64.2 76.6 347.5

local fine-grained matching methods, which can lead to the
imbalance problem of retrieval performance. From Table III
and Table IV, our results are more balanced in speech-to-image
and image-to-speech retrieval directions. Therefore, our VASE
can solve the unbalanced performance problem to some extent.

E. Ablation Study

The auxiliary alignment loss and cycle-consistency loss are
two essential modules of our proposed model. The auxiliary
alignment loss is one part of tri-modal ranking loss. To
demonstrate their effectiveness, we have conducted related
ablation studies on the Flickr8K and Places datasets. We have
evaluated multiple variants of our VASE model.
• base: We remove both auxiliary alignment loss and cycle-

consistency loss from our full VASE model. This variant
consists of visual and acoustic branches, and its total loss only
includes direct alignment loss.
• base+cc: We only remove the auxiliary alignment loss

from our full VASE model. This variant consists of visual and
acoustic branches, and its total loss includes direct alignment
loss and cycle-consistency loss between two data modalities.
It is also called VASE (2-stream), and does not use semantic
information corresponding to acoustic data.
• base+aux: We only remove the cycle-consistency loss

from our full VASE model. This variant consists of visual,
acoustic and semantic branches, and its total loss includes tri-
modal ranking loss (direct alignment loss and auxiliary align-
ment loss). Here, we use semantic information corresponding
to acoustic data.
• base+cc+aux: Our full VASE model, as shown in Fig. 3.

This variant consists of visual, acoustic and semantic branches,

and its total loss includes tri-modal ranking loss and cycle-
consistency loss among three data modalities.

We have evaluated these variants of our VASE model on the
Flickr8K and Places datasets. In Table V, we choose vgg16
and DAVEnet as the backbones of these variants, and these
results are obtained on the test split of Flickr8K dataset. In
Table VI, we not only choose vgg16 and DAVEnet as the
backbones, but also choose resnet50 and ResDAVEnet. The
results of Table VI are obtained on the validation split of Places
dataset.

From these two tables, both “base+cc” and “base+aux” have
exceeded the “base”, which can demonstrate the effectiveness
of our auxiliary alignment loss and cycle-consistency loss. The
overall performance of “base+aux” is higher than “base+cc”,
which means the auxiliary alignment loss is more effective
than the cycle-consistency loss in our VASE model. Com-
pared with “base+cc” and “base+aux”, the “base+cc+aux” can
obtain further improvement. This means that our auxiliary
alignment loss and cycle-consistency loss can promote each
other, so it is more effective to combine them. In addition,
our auxiliary alignment loss and cycle-consistency loss are
not only applicable to vgg16/DAVEnet, but also applicable
to resnet50/ResDAVEnet, so they have good generalization
ability. Compared with the vgg16/DAVEnet backbones, the
resnet50/ResDAVEnet backbones can obtain better perfor-
mance.

F. Hyperparameter Analysis

We choose the scaling approximator β of row softmax
transformation in the feature reconstruction as the hyper-
parameter to be analyzed on the Places dataset. The results
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(a) Flickr8K (vgg16/DAVEnet) (b) Places (vgg16/DAVEnet) (c) Places (resnet50/ResDAVEnet)

Fig. 8. Similarity matrices of top 100 image-speech pairs from the Flickr8K test set and Places validation set. The matched images and speeches have the
same numerical indexes. Diagonal lines of three similarity matrices indicate that matched data samples have higher correlation than mismatched ones. (Best
viewed in color.)

Image query

1. Two people in green sit in an otherwise empty stadium.
2. A man removes a boy from a ball pit while two other children and 
another man watch. 
3. The woman in the blue dress is holding out her arm at oncoming 
traffic.
4. Three women out for the evening in a big city. 
5. A man is performing a handstand on the beach.

The dogs are in the snow 
in front of a fence .

Speech query

(a) Flickr8K (vgg16/DAVEnet) (b) Places (vgg16/DAVEnet)

1. A picture of pedro there is a wooden jesus hanging on the wall there's 
a big circular thing above him it is i think the inside of a building.
2. There is no one seeing this picture there was light coming through the 
windows.
3. This small white room has white painted walls and two sets of white 
shelves in the corner you can see what appears to be a staircase leading 
down.
4. Home has a fireplace there wooden chairs on the side. 
5. Possibly in the church there's a large white wall behind it with grand 
windows and what looks like to use on the left hand side everything is 
very run-down nothing has been used recently.

And you have 4 pictures 
and it's four different 
pictures of different 
pastries and it's all 
different kind of donuts 
and stuff.

Speech query

Image query

Fig. 9. Failure cases of our VASE model on Flickr8k and Places datasets. Here, we use transcribed texts to represent corresponding speeches. Given one
query, the top-5 retrieved candidates are shown. The red fonts and boxes indicate the unmatched retrieval instances. Although these are failed examples, the
retrieval results are reasonable and have great correlation with the query. (Best viewed in color.)

of VASE (2-stream) and VASE are shown in Table VII and
Table VIII, respectively. By observing these two tables, we can
find that the optimal β values of VASE (2-stream) are generally
larger than that of VASE. Because there are fewer matching
data samples of other modalities in the feature reconstruction
process of VASE (2-stream). Increasing the value of β properly
can increase the contributions of matching data samples and
reduce the contributions of non-matching ones.

G. Qualitative Analysis

In addition to the quantitative results, inspired by [31]
and [40], we further demonstrate the matching scores, which
are obtained by computing the similarities between the visual
and acoustic features. We select the top-100 speech-image
pairs from the test split of the Flickr8K dataset and the
validation split of the Places dataset, respectively, and calculate
the similarities between images and speeches. The higher
similarity between the image and speech pair, the brighter
the corresponding position. As shown in Fig. 8, the matching
speech-image pairs (with the same numerical index) have
higher similarities than the non-matching ones. As can be seen
from Fig. 8, there are some other bright positions except for the
diagonal positions. One possible reason is that there are some
similar speech-image pairs which are not marked as matching
pairs. To demonstrate this reason, we also show some failure
cases, which are shown in Fig. 9. From these failure cases, we
can find that there are some data samples that are semantically

similar to the given queries but not marked as the matching
pairs, which verifies our hypothesis.

In addition, to demonstrate our VASE model more intu-
itively, we compare it with MISA (P) [2], as shown in Fig. 10.
The top example shows the speech-to-image retrieval task.
From the top-6 retrieved images, both our VASE and MISA
(P) can capture the key semantic information, such as “people”
and “river”. The matching image ranks first in our VASE and
sixth in the MISA (P). The bottom example shows the image-
to-speech retrieval task. From the top-6 retrieved speeches,
both our VASE and MISA (P) can grasp the key visual
semantic information, such as “people”, “room” and “table”.
The matching speech ranks first in our VASE and fourth in the
MISA (P). Therefore, our VASE obtains better performance
than MISA (P) in both image-to-speech and speech-to-image
retrieval tasks.

H. Discussion

In this paper, we mainly focus on the cross-modal heteroge-
neous issue between image and speech for speech-image re-
trieval. Compared with global coarse-grained matching meth-
ods [7], [8] and local fine-grained matching methods [2]–[4],
we leverage semantic information corresponding to acoustic
data to introduce an auxiliary alignment, which bridges the
modality gap between image and speech. In addition, we
introduce a tri-modal reconstruction-based cycle-consistency
loss to further alleviate the modality gap between visual and
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Given image

A group of people near a 
river and a fenced in trail.

Given speech

People are meeting in a large 
room there are large tables with 
food covered by tin foil there are 
people sitting along long rows of 
tables.

Is an image of a group of people 
seated at tables inside of a 
restaurant there are lots of 
people there and they appear to 
be having a good time.

A man is at the head of a class or 
conference room he appears to 
be teaching he is pointing to a 
display being projected against 
the wall there are students in 
laptop sitting at the table.

Is a picture taking the inside of a 
restaurant you can see asian 
people sitting around at small 
tables i think they're reading 
books are playing board games i 
can't really tell it looks kind of fun.

Large number of people in a 
conference room there's a large 
screen with the presentation.

A large lobby with a mosaic of a 
greek god in a chariot with white 
horses there are people standing 
at the front of the counter in the 
lobby and there are people 
helping them behind the counter.

Pictures of event center setup for 
wedding with tables and 
tablecloths.

Is an image of a group of people 
seated at tables inside of a 
restaurant there are lots of 
people there and they appear to 
be having a good time.

In this photograph you can see 
many people sitting down at a 
table looks like a restaurant.

People are meeting in a large 
room there are large tables with 
food covered by tin foil there are 
people sitting along long rows of 
tables.

This is an image of a cafeteria 
there are many tables with girl 
sitting and enjoying their meal.

This is a group of people that sing 
at tables they are working on a 
project assembling stuff.

VASE

MISA (P)

VASE

MISA (P)

Query Top-6 retrieved instances

Fig. 10. Speech-image retrieval examples of our VASE model and MISA (P) [2] model on the Places dataset. Here, we use transcribed texts to represent
corresponding speeches. The matching instances are surrounded by green boxes while the non-matching instances are surrounded by red boxes. A query only
has one matched retrieval instance. (Best viewed in color.)

acoustic modalities, which is quite new in current vision and
language area. Compared with previous feature reconstruction
methods [31], [63], our proposed method not only uses match-
ing data samples, but also uses non-matching data samples.
It can alleviate similar but non-matching data samples being
far away from each other in the common feature space. To
balance the contributions of matching and non-matching data
samples in the feature reconstruction process, we introduce
dynamic weight factors, which are related to the similarities
between original data samples and data samples participating
in the reconstruction process. Extensive experiments have
demonstrated the effectiveness of our proposed model.

However, compared with local fine-grained matching meth-
ods, the direct alignment in our proposed model only includes
global coarse-grained matching relationship, which might not
model the direct alignment very well. To address this issue,
we will add local fine-grained matching relationship into the
direct alignment between image and speech in future work.
Besides, our proposed model needs semantic information in
the training stage, so it is somewhat limited for some speech-
image retrieval scenarios containing semantic information. To
address this problem, we will combine the ASR technology
into our model in future work.

V. CONCLUSION

In this paper, we have proposed a VASE model to deal with
the cross-modal heterogeneous issue in speech-image retrieval.
First, we propose a tri-modal ranking loss to bridge the
modality gap between image and speech by taking advantage
of semantic information corresponding to the acoustic data.
Second, we introduce a reconstruction-based cycle-consistency
loss to further alleviate the modality gap. Extensive experi-
ments on the Flickr8K and Places datasets have demonstrated
the effectiveness of our VASE model for the speech-image
retrieval task. In future work, we will explore how to integrate

the ASR technology and local fine-grained matching relation-
ship into our proposed model.
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