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Abstract—The pointing problem of visual question answering
(VQA) is that given an image and a question which asks for
the location of the interested object, find a region that answers
the question. It is an important research problem in VQA tasks
and has many potential applications in our daily life. Most of
the existing work on this task can only solve it in the form of
multiple choices, i.e., given candidate answers in advance, and
then selecting a correct one. In this paper, we propose a retrieval
model, which can not only deal with the multiple-choices task,
but also provide a feasible solution for the no-candidate-answer
task. The principle of our method is to pull the question and
correct answer close, and push the question and incorrect answer
away in a common feature space. To our best knowledge, we are
the first to use retrieval method to solve the unconstrained (no-
candidate-answer) pointing problem of VQA. Furthermore, our
proposed method outperforms the state-of-the-art methods on the
Visual7W [1] dataset in terms of the pointing problem of VQA.

I. INTRODUCTION

With the development of computer vision (CV) and nat-
ural language processing (NLP), as well as the increment
of computing ability and the availability of relevant large-
scale datasets, there emerge some new tasks, combining the
knowledge of CV and NLP, such as image captioning [2]–[5]
and VQA [6]–[8]. Compared with image captioning, VQA is
a more complex problem, because it needs deeper reasoning
between visual representations and textual semantics. What is
VQA? In short, VQA is that given an image and a question,
output a natural language answer according to the given
question-answer pair [6]. The types of VQA can be divided
into four categories, namely joint learning approaches, atten-
tion mechanisms, compositional models, and using external
knowledge bases models, from a perspective of used methods.
Besides, they can be classified into two categories from a
perspective of how to generate answers, one is classification,
and the other is generation [7].

Compared with image captioning, VQA needs more detailed
correlation between the words of the given question and
regions of the corresponding image. Compared with textual
question answering (QA), VQA also needs additional visual
information of the corresponding image besides the textual
question information. Dealing with visual information brings
great difficulties, because the image contains low-level visual
information, which contains relatively less high-level seman-
tics than textual information. What’s more, the image lacks the

structural and grammatical rules of language, so VQA itself
is already a more complex problem than QA [7].

Zhu et al. [1] propose the pointing problem of VQA,
and they publish a Viusal7W dataset, which consists of 7W
questions, i.e., what, where, when, who, why, how and which.
The Visual7W dataset is a subset of Visual Genome [9],
the largest VQA dataset, and it adds the visual questions,
compared with most of the exsiting VQA datasets. In this
paper, we will mainly focus on the pointing (which) problem
of VQA. Research on the pointing problem of VQA can help
us save a lot of time to focus on the relevant regions in images
and aid us in understanding the natural language answer. For
this problem, Zhu et al. [1] propose a LSTM + attention
mechanism model, which adds a spatial attention mechanism
to the LSTM architecture, to improve the precision of question
encoding. But there is a notable gap between human per-
formance and the LSTM + attention mechanism model. In
addition, the LSTM + attention mechanism model [1] only
deals with the multiple-choices pointing problem. Therefore,
the scope of its application is limited.

To address the above problems, we propose a retrieval
model, which has the ability to solve the pointing problem
of VQA without candidate answers. First, it can obtain better
performance than the LSTM + attention mechanism model.
Second, it can not only deal with the multiple-choices pointing
problem of VQA, but also deal with the no-candidate-answer
pointing problem. Considering that object detection has gradu-
ally become a mature technique, and accurate object detection
is the key factor to generate qualified candidate regions [10],
we use the object proposals methods, such as Edge Boxes [11],
to generate candidate regions in the given image, and then
obtain a relatively good result by using the generated candidate
answers.

Our main contributions can be summarized as follows. First,
we propose a retrieval model to solve the multiple-choices
pointing problem of VQA. Second, our proposed model can
obtain a better performance than the LSTM + attention mecha-
nism [1] model on the pointing task of multiple choices. Third,
we attempt to solve a new problem, the unconstrained pointing
problem of VQA. To our best knowledge, it is the first attempt
to use the retrieval method to solve the unconstrained pointing
task.
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Fig. 1. The training process of our proposed retrieval model. The model is trained in a batch. Suppose the batch size is n, and n = 3 in this example. It
contains three modules, namely the module of image embedding, the module of question embedding and the module of constructing pairs. Suppose the given
questions are Q1, Q2 and Q3, and the corresponding correct answers (image regions) are Q1 an, Q2 an and Q3 an, respectively. Here, ‘Feat’ denotes the
feature of images, and ‘S Feat’ denotes the feature of questions. WI and WT are the image mapping matrix and textual mapping matirx, respectively. In
the phase of constructing pairs, the positive pairs are (S Feat1, Feat1), (S Feat2, Feat2), (S Feat3, Feat3), while the negative pairs we choose are (S Feat1,
Feat2), (S Feat1, Feat3), (S Feat2, Feat1), (S Feat2, Feat3), (S Feat3, Feat1), (S Feat3, Feat2). Then we use pairwise ranking loss to update the weights of
our model. (Best viewed in color.)

II. RELATED WORK

A. Image-Sentence Embedding

The representation of image and sentence is the crucial
step in solving multi-modal tasks, such as image-sentence
matching, image captioning and VQA. Socher et al. [12] pro-
pose an approach to learn a joint image-sentence embedding.
Karpathy et al. [13] propose a fine-grained model, which can
embed fragments of image and fragments of sentence into a
common feature space. Besides, Gong et al. [14] propose an
improved approach, by using the weakly annotated images
to improve the joint image-sentence embedding. Kapathy and
Li [4] propose a visual-semantic alignment model to further
improve the precision of image and sentence embeddings, and
build a finer level relationship between the given image and
correspnding sentence. Huang et al. [15] propose a semantic-
enhanced model to improve the precision of image embedding.
Different from the above methods, our model use the pairwise
ranking loss to learn a mapping so that the features of
questions and correct answers are near, while the features of
questions and incorret answers are far, in the embedding space.

B. Image Captioning

Image captioning is a very hot topic, and it has achieved
great progress in recent years. Kiros et al. [16] propose an
encoder-decoder pipeline for the image captioning task. Oriol
et al. [17] propose an end-to-end model to solve the problem
of image captioning. Xu et al. [5] propose a two-attention-
based image caption generator, namely a “soft” deterministic
attention and a “hard” stochastic attention mechanism to guide
“where” and “what” the attention should focuse on. Yang et
al. [18] propose an object detection and location model to
solve the image captioning problem. Dai and Lin [19] propose

a contrastive learning method to solve the problem of image
captioning. Recently, inspired by the successful application of
machine translation and conditional image generation, Aneja
et al. [20] propose a convolutional image captioning technique.
The VQA task bears some resemblance to the image caption-
ing task. Our proposed method is inspired by work of Kiros
et al. [16].

C. Visual Question Answering

With the development of deep learning, visual question
answering has received more and more attention. Malinowski
et al. [21] propose a “Neural-Image-QA” model, which uses
the Long Short-Term Memory cells (LSTM) to encode the
sentence with the holistic image feature, and the decode
process is also implemented by LSTM. Ren et al. [22] propose
two models, the first is “VIS+LSTM”, which adds the visual
information at the start, and the second is “2-VIS+BLSTM”,
which adds the visual information at the start and the end.
Zhu et al. [1] summarize 7W questions and propose a new
task “which” in VQA, as well as propose a LSTM + attention
mechanism model. Yang et al. [23] propose stacked attention
networks, which use semantic representation of a question
to search the relevant regions of a given question. Shih et
al. [8] propose a method, which generates proposals by the
object proposals method and learns to answer visual questions
by selecting the proposals relevant to the given question.
Anderson et al. [24] propose a combined bottom-up and top-
down visual attention mechanism for both image captioning
and visual question answering. In addition, Trott et al. [25]
propose an iterpretable approach for solving the problem of
counting in VQA. Compared with the above methods, our
method uses the retrieval method to train the model without

3304



the features of the whole image and attempts to deal with a
new task, the unconstrained pointing problem of VQA.

III. OUR MODEL

We propose a retrieval model to solve the pointing problem
of VQA. The training process of our proposed model is shown
in Fig. 1. Given a question-answer pair, we use convolutional
neural network (CNN) to extract visual features of candidate
answers with shared weights, and use GRU to extract the
textual features of the question. Then we map the visual
features and textual features into a common feature space
with the weight matrices WI and WT , respectively. We use
the visual image features and textual question features in the
common feature space to construct positive pairs and negative
pairs. In addition, we use the constructed pairs to update the
model with a pairwise ranking loss. In the following sections,
we will introduce how to train our retrieval model and how to
test our model’s performance.

A. Sentence Representation

Compared with the LSTM [26], the GRU [27] model has
fewer parameters, but can obtain a comparable result. Besides,
the GRU can solve the problem of vanishing gradient and
exploding gradient, so the GRU can learn good textual features
to express the sentence. For efficiency and simplicity, we
choose GRU to encode the question in the given question-
answer pair. The GRU unit includes update gate and reset gate.
Suppose the length of the sentence is N , then the hidden state
of GRU at time step N is the representation of the whole
sentence.

B. Image Region Representation

We use a CNN to encode image region information. In
our experiments, we use VGG16 [28] with shared weights to
extract visual information of candidate answers based on the
given image. Image region features are extracted from ‘fc7’
in the VGG16 neural network, and the dimensionality of the
image feature is 4096. Then, we map the image region features
into the common feature space.

C. Pairwise Ranking Loss

In our experiments, we use pairwise ranking loss to update
our model. Let the dimensionality of image features be DI , the
dimensionality of sentence features be DT , the dimensionality
of the common feature space be D, the vocabulary size
be V . In addition, let WI ∈ RD×DI and WT ∈ RD×DT

be the image mapping matrix and textual mapping matrix,
respectively. Given the question Q = {w1, w2, . . . , wN},
where w1, w2, . . . , wN are the words in the question sen-
tence. Suppose their corresponding word embeddings are
w1,w2, . . . ,wN , and wi ∈ RD, i = 1, 2, . . . , N . The question
sentence embedding v can be represented by the hidden state
of GRU at time step N . Let XI denote the image feature
extracted by VGG16, which is mapped into the common
feature space, where x = WIXI , XI ∈ RDI , x ∈ RD.

Similar to the principle of contrastive loss and triplet loss,
the pairwise ranking loss [4], [13], [16] is an effective method

TABLE I
COMPARISIONS ON EXISTING MODELS OF MULTIPLE-CHOICES POINTING

QA TASK. (IN ACCURACY)

Method Pointing Task
Human (Question+Image) [1] 0.973

Logistic Regression (Question+Image) [1] 0.307
LSTM (Question+Image) [1] 0.521

LSTM-Att (Question+Image) [1] 0.561
LSTM-Retrieval-PRL (Question+Image) 0.630

to maintain the similarity of the paired samples. Define the
similarity function s(x, v) = xT v, where x and v have been
normalized. Let θ be all the learned parameters, the pairwise
ranking loss can be formulated as following.

min
θ

{
∑
x

∑
k

max{0, α− s(x, v) + s(x, vk)}+∑
v

∑
k

max{0, α− s(v, x) + s(v, xk)}}
(1)

where vk is a contrastive question for visual candidate answer
x, vice versa, xk is a contrastive candidate answer for question
v. The contrastive terms are sampled from the same batch of
training samples, and Fig. 1 shows how to construct pairs in
the given mini-batch question-answer pairs.

The principle of the pairwise ranking loss is that pulling
the question and its corresponding answer close, as well as
push the question and incorrect answers away in the common
feature space. Considering both efficiency and complexity,
we do not use the incorrect candidate answers in the same
question-answer pair to construct the negative pairs here.
Because the candidate answers from different question-answer
pairs can give the training process harder samples, the model
can have the better discrimination ability.

D. Training

We use pairwise ranking loss to train our model by the strat-
egy of mini-batch samples. The whole architecture of training
process can be seen in Fig. 1. We use the Adam optimizer
to optimize our model. In our experiments, the question is
encoded by the GRU. The details of our experiments will be
discussed in the following experiments.

E. Testing

We use the trained model to obtain the features of the ques-
tions and the features of their corresponding candidate answers
(image regions) in the common feature space, respectively. We
use the feature of one question to retrieve the features of its
corresponding candidate answers. Then we choose the most
similar one as the predicted answer.

IV. EXPERIMENTS

We conduct our experiments on the Visual7W1 [1] dataset.
In our experiments, we conduct two tasks to verify the pro-

1To our best knowledge, the Visual7W dataset is currently the only one
dataset for the pointing problem of VQA, so we can only conduct our
experiments on this dataset.
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Fig. 2. The sensitivity analysis of some hyperparameters.

posed model. One is the pointing problem of multiple-choices
VQA, and the other is the pointing problem of no-candidate-
answer VQA. The experiment settings are as follows. The
batch size is 128. The dimensionality of word embedding is
300. The dimensionality of the common feature space is 1024.
The learning rate is 0.001. The margin is 0.20.

A. Visual7W Dataset

The Visual7W [1] dataset contains 7W question types,
including what, where, when, who, why, how and which. It
contains a part of Visual Genome [9] dataset, which contains
1.7 million QA pairs of the 7W question types. Compared with
the Visual Genome dataset, the Visual7W dataset provides
more annotations, such as object groundings, multiple choices
and human experiments. The Visual7W dataset contains the
train dataset and test dataset. In our experiments, we randomly
choose 5000 question-answer pairs from the train dataset as
the validation dataset, and choose the remained train dataset
as the train dataset. The test dataset remains unchanged.

B. Multiple-choices VQA

The task of multiple-choices VQA can be defined to choose
one possible answer from four candidate answers, which in-
clude one correct answer. We compare our retrieval model with
a current state-of-the-art method [1]. The results are shown in
TABLE I. In the table, the last row shows our proposed method
LSTM-Retrieval-PRL, where ‘PRL’ indicates that our model
uses pairwise ranking loss to update the learned parameters.
Compared with Zhu et al. [1] in the pointing problem of
multiple-choices VQA, we can see that our proposed method
achieves significant improvement. We also test the sensitivity
of hyperparameters, such as the dimensionality of the common
feature space and the learning rate. The experiments of the
sensitivity of some hyperparameters are shown in Fig. 2.
From the figure, we can see that with the increment of the
dimensionality of the common feature space, the accuracy
slowly increases, and then decreases if the dimensionality of
the common feature space is too high. We choose 1024 as
the dimensionality of the common feature space. We can also
see that with the increment of the learning rate, the accuracy
slowly increases, and then decreases dramatically. The learning
rate is finally equal to 0.001. From the figure we can draw a
conclusion that compared with the dimensionality of common

feature space, the learning rate has more significant effect on
the model.
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Fig. 3. The flowchart of how to generate candidate answers. If IOU >=
IOUth, then the label of the generated region is 1, otherwise, the label is 0.
Here, 1 denotes the correct candidate answer, while 0 indicates the incorrect
candidate answer.

C. No-candidate-answer VQA

The task of no-candidate-answer VQA can be defined to
find one possible answer from the corresponding image based
on the given question. Because there is no candidate answer,
we should generate a lot of candidate answers. Here we
use Edge Boxes [11] to generate region proposals (candidate
answers). Fig. 3 is the flowchart of how to label the generated
proposals, and how to judge the quality of generated proposals.
IOUth is an IOU threshold to discriminate the generated
correct proposals from the generated proposals. The process
of how to label the generated candidate answers is described
as followings. First, we use Edge Boxes to generate region
proposals, then we compute the intersection-over-union (IOU)
between the region of the correct answer and generated region
proposals. If IOU is greater than or equal to IOUth, we think
the generated region proposal is correct, and the label of the
region proposal is 1. Otherwise, we think the generated region
proposal is incorrect, and the label of the region proposal is
0.

TABLE II shows our results on no-candidate-answer VQA.
The Fig. 4 is the corresponding figure. In the experiment, we
change the number of generated proposals from 150 to 1200
with an interval of 150, and change the IOUth from 0.3 to
0.5 with an interval of 0.1. From TABLE II and Fig. 4, we
can observe that the recall and accuracy both improve with the
decrement of IOUth. Because the standard of correct answers
decreases, the total number of correct candidate answers
increases while the total number of candidate answers remains
unchanged in a given question-answer pair. We can also see
that the recall substantially increases with the increment of the
number of generated proposals. But the accuracy increases
slowly at first, and then slowly decreases with the further
increment of the number of generated proposals. This is
because the increased choices not only bring the increment
of recall, but also bring the difficulty to choose the correct
answer from generated candidate proposals. How to balance
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Fig. 4. The recall and accuracy curves of the pointing problem of VQA
without candidate answers.

the recall and the number of generated proposals is a very
important problem. In other words, how to generate qualified
proposals is crucial to solve this task.

Compared with the multiple-choices task, the no-candidate-
answer task obtains a much lower performance. There are two
reasons for the poor performance. One is that the generated
answers may not include the correct answer. The other is that
the number of generated candidate answers is much larger
than the number of multiple choices. We introduce the ratio
between the total correct answers and total candidate answers
to eveluate the difficulty of selecting the correct answer. If the
ratio is higher, the difficulty of selection is smaller. There are
always 4 candidate answers in the given question-answer pair
in multiple-choices task. So its ratio is 0.25. The ratios of the
no-candidate-answer task are shown in Fig. 5. The ratios in
no-candidate-answer task are much lower than the multiple-
choices task, which can explain why the no-candidate-answer
task obtains a much lower performance than the multiple-
choices task.
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Fig. 5. The ratios of different numbers of generated proposals and different
IOUth values. (Best viewed in color.)

TABLE II
THE PERFORMANCE OF OUR PROPOSED MODEL IN

NO-CANDIDATE-ANSWER VQA TASK. (IN ACCURACY)

proposals number IOUth recall accuracy
150 0.5 0.356 0.076
150 0.4 0.452 0.117
150 0.3 0.567 0.176
300 0.5 0.466 0.087
300 0.4 0.569 0.137
300 0.3 0.687 0.203
450 0.5 0.534 0.084
450 0.4 0.640 0.135
450 0.3 0.753 0.202
600 0.5 0.584 0.090
600 0.4 0.689 0.137
600 0.3 0.795 0.206
750 0.5 0.621 0.090
750 0.4 0.724 0.145
750 0.3 0.826 0.216
900 0.5 0.651 0.090
900 0.4 0.753 0.146
900 0.3 0.849 0.219

1050 0.5 0.676 0.090
1050 0.4 0.776 0.146
1050 0.3 0.867 0.218
1200 0.5 0.698 0.088
1200 0.4 0.795 0.145
1200 0.3 0.883 0.219

IOUth = 0.3 IOUth = 0.4 IOUth=0.5

Fig. 6. The visualization of generated correct answers. From left to right,
the values of IOUth are 0.3, 0.4, 0.5, respectively. In the images, the green
bounding boxes are the groundtruth correct answers, while the blue bounding
boxes are the generated correct answers according to different IOUth values.
(Best viewed in color.)

There are several key problems in no-candidate-answer
VQA task. First, how to choose the IOUth is an impor-
tant problem, because the IOUth determines the quality of
generated proposals. If we set the IOUth low, the generated
correct answer may contain many irrelevant objects or large
surroudings. If we set the IOUth high, the generated region
proposals can not include the correct answer. Fig. 6 shows
the visualization of generated correct answers with different
IOUth. From the figure, we can see that when the IOUth

equals to 0.3, many generated correct proposals cover some
irrelevant objects except for the correct object, and the range
of the bounding box is too large or small. If we increase the
IOUth to 0.4, the range of bounding box becomes more ac-
curate. Furthermore, when IOUth equals to 0.5, the generated
proposals have great overlap with the correct answer, so we
can think the generated proposals are the correct answers.
Second, if we use this way to generate candidate answers,
more than one correct answer or no correct answer will be
generated. Third, we need to get region proposals firstly, so
the computational efficiency is also a problem. In the following
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work, we will attempt to solve the above problems.

V. CONCLUSION

In this paper, we have proposed a retrieval model to solve
the pointing problem of VQA. To our best knowledge, we
are the first to use the retrieval method to solve the uncon-
strained pointing problem of VQA. In addition, our model
outperforms the existing work on the pointing problem of
VQA on the Visual7W dataset. Furthermore, our model can
not only deal with the pointing problem of multiple-choices
VQA, but also provide a feasible solution to the no-candidate-
answer problem. In the future work, we will add the attention
mechanism and the whole image visual features to improve
the precision of the question encoding. For the no-candidate-
answer task, we will try other region proposals methods and
deep reinforcement learning to improve the quality of the
generated proposals.
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