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Abstract— Real-time and precise morphological analysis of
intraoperative AAA is a significant pre-imperative for robot-
assisted minimally invasive surgery (RMIS). However, this task
is frequently accompanied by the difficulties of ambiguous
boundaries and obscured surfaces of aneurysms. To rem-
edy these problems, we propose a Light-Weight Dual-Stream
Boundary-Aware Network (DSB-Net) and a novel diagnosis
algorithm for real-time morphological analysis of AAA. In
the network, the features at the boundaries are preserved by
incorporating a boundary localization stream, while the interior
segmentation accuracy is guaranteed with a mask prediction
stream. Moreover, the diagnosis algorithm is developed to
measure the exact size of AAA. Quantitative and qualitative
assessments on two different types of datasets illustrate that
(1) The presented DSB-Net remarkably outperforms the other
previously proposed medical networks with the inference rate of
10.8 FPS, which meets the real-time clinical necessities. (2) The
developed algorithm provides accurate size measurements for
AAA, which indicates the proposed approach can be integrated
into the robotic navigation framework for RMIS.

I. INTRODUCTION

Abdominal aortic aneurysm (AAA) is a focal dilation of
the aorta, which is generally asymptomatic until it ruptures,
with a guaranteeing mortality 85% to 90% [1]. While the
diameter of the normal aorta is about 20mm, ordinarily, an
aneurysm is viewed as present if the supreme measurement
of the aorta expanded by 50% contrasted with the standard
ordinary diameter. [2].

Endovascular aneurysm repair (EVAR) is at present the
treatment of choice for most AAA patients [1]. It offers many
crucial advantages over traditional open surgery, including
minor trauma, better stability, lower perioperative mortality,
morbidity, and all the more critically, diminished dangers
for patients with comorbidities [3]. EVAR depends on the
endovascular rejection of the aneurysm from circulation with
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Fig. 1. The image and ground truth samples of aneurysms in DSA images.
Compared with objects in natural images, the ambiguous boundaries,
obscured surfaces, and irregular shapes make it hard to achieve satisfying
segmentation performance of aneurysms.

the placement of a stent graft. However, the difficulty with
this technique lies in how to select a stent graft of appropriate
shape and size. Recently, robot-assisted minimally invasive
surgery (RMIS) methods have been gradually integrated into
the clinical workflow to improve the safety and accuracy of
EVAR [4].

In routine clinical practice, computed tomography angiog-
raphy (CTA) is the pre-operative imaging modality for AAA
diagnosis. The exact AAA measurement is based on intra-
operative digital subtraction angiography (DSA). Precisely,
the size of AAAs is controlled by physically estimating the
greatest breadth of the aorta, which is tedious and inclined
to high between peruser changeability, which is up to 6% for
perusers with lesser experience [5]. Hence, real-time 1 and
accurate AAA morphological analysis including segmenta-
tion and measurement can provide the radiologist/robot with
essential feedback. However, this task is not straightforward.
As displayed in Fig. 1, the principle difficulties can be
summed up as follows: (1) Likeness between the intensity
information of the aneurysm and some adjoining tissues,
causing mis-segmentation because of equivocal boundaries
of the aneurysm. (2) The aneurysm surface is locally ob-
scured sometimes since it’s anything but a non-contrasted
tissue. (3) The geometric construction of the aneurysm is
unpredictable, which keeps the aneurysm from being approx-
imated by a basic geometric model.

1Different from the standard definition of natural video ”real-time” which
is more than 24 FPS, medical video requires only 6-7.5 FPS due to the low
capture frequency of machines such as X-ray system.
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A. Related Work

1) AAA Detection and Segmentation: A large portion
of the past works focused on the assignment of AAA
segmentation. Yet, very few researches explore the more
comprehensive morphological analysis of AAA, which has
more considerable clinical importance than simply perform-
ing segmentation alone. These segmentation approaches can
be separated into two primary classes: specific feature-based
and learning-based approaches. Traditionally, aneurysm seg-
mentation has been addressed by combining intensity infor-
mation with shape constraints [6]. However, these methods
require prior segmentation and/or centerline extraction. Their
performance depends on different parameter tuning, which
affects the robustness and clinical appropriateness.

As of late, convolutional neural networks (CNNs) have
achieved promising results in the natural and medical image
domain, outperforming the past state-of-the-art performance
in numerous issues [7]–[9]. CNN-based methods have ad-
ditionally shown state-of-the-art outcomes in AAA seg-
mentation from both pre-operative and post-operative CTA
scans [10]. Lopez-Linares et al. [11] developed a two-stage
framework for AAA segmentation, which starts from region
of interest detection and consequent thrombus segmentation.
More recently, Lareyre et al. [12] developed an automatic
pipeline to detect and characterize AAA. It can be seen
that the greater part of the work is centered around the
detection and segmentation of AAA. However, there is a
lack of morphological analysis, including segmentation and
measurement with greater clinical relevance.

2) Boundary for Segmentation: Boundary preserving has
gained attention in computer vision tasks. Recently, some
studies concentrated on localizing semantic boundaries [13],
[14]. Other studies [15], [16] also employed boundary in-
formation to further develop segmentation performance. For
instance, A global energy model is presented to consider the
pairwise pixel affinity based on boundary prediction [15].
Takikawa et al. [16] took advantage of the duality between
boundary prediction segmentation prediction and with a
regularizer and a two-branch mechanism. Although the above
approaches have achieved inspiring segmentation results in
the natural image, the problem of ambiguous boundaries in
the medical image is still plagued.

B. Approach

To overcome the above difficulties and consider both real-
time and segmentation performance, we propose a Dual-
Stream Boundary-Aware Network, namely DSB-Net, and
a novel diagnosis algorithm for real-time morphological
analysis of AAA in DSA images. The DSB-Net first employs
inverted residual blocks [17] in the encoder to extract the
different levels of visual features and afterward convey them
into two separate streams. The boundary localization stream
is a specific subnetwork intended to extricate features of the
AAA boundaries. The mask prediction stream ensures the
interior segmentation accuracy of AAA. In this stream, the
feature refinement module (FRM) is first presented to disam-
biguate noisy and uncorrelated responses in skip connections.

Secondly, the atrous spatial pyramid pooling (ASPP) [18]
is employed to fuse multi-scale dense features to overcome
the challenges of the irregular geometric structure of AAA.
Thirdly, we propose a novel hybrid loss that consolidates fo-
cal loss [19] and SIMilarity (SSIM) [20], which are expected
to learn the structural information and power the model
to concentrate on the pixels that are easily misclassified.
Moreover, we embed a feature fusion block to fortify the
association between the boundary localization stream and the
mask prediction stream. The diagnosis algorithm is designed
to measure the exact size of AAA to assist radiologists in
selecting the suitable stent.

The main contributions can be summed up as follows:
• As far as we know, this is the first fully automatic ap-

proach that accomplishes real-time morphological anal-
ysis of AAA in DSA images, which has the potential
to be applied to RMIS.

• A novel boundary-aware segmentation network: DSB-
Net, accomplishes the state-of-the-art segmentation per-
formance on various medical image datasets, namely
LeSaX and NLM Chest X-ray Database.

• The designed modules improve model precision and
sensitivity to AAA pixels without requiring sophisti-
cated heuristics. A novel hybrid loss viably resolves the
problems of fuzzy boundaries and obscured surfaces.

II. METHOD

A. Overview of Network Architecture

The overall architecture of the presented DSB-Net is dis-
played in Fig. 2. The presented network utilizes the 512×512
intraoperative DSA images as input and employs inverted
residual blocks [17] in the encoder to exploit the different
levels of visual features. The depth-wise separable convo-
lutions reduce the considerable computational burden. Then
the extracted features are delivered into two separate streams,
namely boundary localization stream and mask prediction
stream. The predictor is a class-specific 1 × 1 convolution
operation as the output layer for boundary localization and
mask prediction streams. The outputs of the two streams are
then combined to generate the final mask.

B. Boundary Localization Stream

Inspired by the work of [21], the boundary localization
stream is a simple subnetwork that assembles multi-layer
features and incorporates them by upsampling and concate-
nation. Then, the CRM refines the fusion weight of multi-
level features to acquire the final boundary predictions. More
specifically, the input of boundary localization stream is the
concatenation of features from θi, i ∈ {1, ..., 4}. Note that the
input θi is the output of θi−1,∀i = 2, ..., 4, and we discard
the network input for simplicity. For the feature map of each
θi, a convolution operation with size 1×1 and an up-sampling
operation are employed to transform the image to the same
size 64 × H × W . After the concatenation, the designed
CRM is added. Furthermore, boundary features FB include
plentiful localization and shape information. Consequently,
we design a straightforward feature fusion block to fuse the
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Fig. 2. The overall architecture of Dual-Stream Boundary-Aware Network (DSB-Net). In this network, the features at the boundaries are preserved by
incorporating a boundary localization stream, while the interior segmentation accuracy is guaranteed with a mask prediction stream.

final boundary features for the mask prediction stream, which
is expected to enrich mask features and guide accurate mask
prediction. Mask features FM can be expressed as f(FB),
where f denotes a 1× 1 convolution operation.

1) Channel Refinement Module: To refine the fusion
weights of multi-layer features, the CRM is incorporated
into this stream. As shown in Fig. 3. Given a feature map
F ∈ RC×H×W as input, CRM successively construes a
refinement map with 1D channel Mc ∈ RC×1×1. The refined
features can be formulated as: F ′ = Mc(F ) ⊗ F , where ⊗
indicates the element-wise multiplication. The channel re-
finement values are broadcasted along the spatial dimension
during the multiplication. To calculate the channel refinement
map effectively, the spatial dimension of the input feature
map is squeezed. We employ max-pooled and average-pooled
features while increasing the learnable modulation weight ωT

between the two pooling operations. We argue that extracting
both features further increases the representation ability. To
exploit the direct correspondence between the channel and
its weight, the local cross-channel interaction strategy is
employed without dimensionality reduction [22].

C. Mask Prediction Stream

The mask prediction stream is a more complex subnetwork
to obtain accurate segmentation masks, not the same as the
boundary localization stream. Its input is the output of the
last inverted residual block θ4, and the output is a single-
channel H × W predicted mask. In this stream, firstly,
the decoder block is exploited to recuperate the resolution
of the feature map. Secondly, the FRM is presented to
emphasize the salient features beneficial for AAA and disam-
biguate noisy and uncorrelated responses in skip connections.
Thirdly, the atrous spatial pyramid pooling (ASPP) [18] is
employed to resample refined features at various scales for
more precise representation. Moreover, the mask prediction

stream obtains boundary information by the fusion block.
1) Feature Refinement Module: To emphasize the salient

features beneficial for AAA and disambiguate noisy and
uncorrelated responses, our designed FRM is integrated into
the stream. As shown in Fig. 3, the FRM exploits high-level
features (HF) from the decoder block and low-level features
(LF) from the skip connection as inputs and generates the
refined features by the following two stages.

In the first stage, we concatenate the HF xhi at layer i
with the LF xli, followed by two convolutional layers. It is
important to note that each convolutional layer comprises of
convolution, group normalization (GN) [23], and parametric
rectified linear unit (PReLU) [24] in our implementation.
Then generate the refinement coefficient αi ∈ [0, 1], which
distinguishes image salient regions to preserve the activation
that is relevant to AAA. Additive attention [25] is used to
acquire the refinement coefficient αi that is represented as
follows:

αi = σ2(ψ
T (σ1(W

T
2 (σ1(W

T
1 f(x

h
i + xli)))) + bψ)) (1)

where σ1 and σ2 correspond to the PReLU and sigmoid
function respectively. ψ represents linear transformation op-
eration, where W1 and W2 stand for the weights, bψ to the
bias. f represents the concatenation operation. To reduce
the trainable parameters of FRM, we employ the linear
transformation that is 1×1×1 convolution operation without
spatial support.

In the second stage, the LF and refinement coefficient are
multiplied element-wise. Then, the weighted LF is incorpo-
rated with corresponding features of every HF by employing
two convolutional operations, which can generate the last
refined feature Fr for the given layer. The refined feature
map is formulated as:

Fr =WT
2 σ(W

T
1 f(αi ⊗ xli + xhi )) (2)
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Fig. 3. Schematic of channel refinement module (CRM) and feature refinement module (FRM). ⊗ denotes element-wise multiplication.

where σ and f represent the PReLU function and the con-
catenation operation, respectively. W1 and W2 correspond to
the weights. In general, the HF can guide LF to gradually
disambiguate irrelevant and noisy responses while capturing
more details in semantic saliency regions.

D. Learning and Optimization

1) Boundary Loss: Following the routine in boundary
detection [14], [26], the boundary prediction is considered
as a pixel-level classification task. The boundary features
are incorporated for mask prediction. As for the boundary
ground truth, the Laplacian operator is exploited to acquire
the boundary from the ground truth of the binary mask.
The generated boundary is converted into the binary map
as the final ground truth. Dice loss [27] is employed as the
boundary loss function, which is given as follows:

ℓB(pb, yb) = 1− 2piby
i
b + ε(

pib
)2

+
(
yib
)2

+ ε
(3)

where pb ∈ RH×W and yb ∈ RH×W denotes the pre-
dicted boundary and ground truth boundary, respectively. i
represents the ith pixel and ε stands for a smooth term to
keep away from zero division, which is set to 10−4 in our
implementation.

2) Mask Loss: In the mask prediction stream, the
aneurysm surface is sometimes locally obscured, making
it difficult to classify these pixels correctly. Moreover, the
AAA of small size also results in the problem of class im-
balance. To obtain high-quality interior AAA segmentation,
we present a novel hybrid loss function, which is expected
to learn the structural information and force the model to
concentrate on the pixels that are easily misclassified. The
hybrid loss is formulated as follows:

ℓM (pm, ym) = ℓF (pm, ym) + ℓSSIM (pm, ym) (4)

where ℓF and ℓSSIM denote focal loss [19] and SSIM loss
[20], respectively. The modulating factor γ in focal loss [19]
can decrease the contribution of easy samples and rapidly
center the model on misclassified samples. Moreover, the
role of weighting factor α is fortified to improve the weight
contribution for AAA, hence addressing the problem of class
imbalance effectively.

SSIM can capture the structural information in the
image [20]. Let p =

{
pj : j = 1, ...,M2

}
and y ={

yj : j = 1, ...,M2
}

be the pixel values of two correspond-
ing patches with the size of M × M cropped from the
prediction and the ground truth, respectively. The SSIM is
formulated as follows:

ℓSSIM = 1− (2µpµy + ε1)(2σpy + ε2)

(µ2
p + µ2

y + ε1)(σ2
p + σ2

y + ε2)
(5)

where µp, µy and σp, σy stand for the mean and standard
deviations of p and y, respectively. σpy denotes their covari-
ance, ε1 = 0.012 and ε2 = 0.032 are smooth terms to avoid
zero division.

3) Multi-Task Learning: Multi-task learning has been
demonstrated viable in numerous works [16], [28], [29]. The
fusion block is employed to connect the boundary stream
and the mask stream. In this way, joint training can improve
the feature representation. We characterize a multi-task loss
function as follows:

L =
∑

(ℓB(pb, yb) + ℓM (pm, ym)) (6)

where ℓB(pb, yb) and ℓM (pm, ym) have been presented ex-
haustively in Equation (3) and (4), respectively.

Algorithm 1 Diagnosis Algorithm
1: Initialize: Ct = ∅, Rt = ∅, Bt = ∅, Ht = ∅, Wt = ∅
2: Input: Mt = {m0,m1, ...,mN}, P2D = 2.838
3: for each mi ∈Mt do
4: Ct ← findContours(mi)
5: for each ci ∈ Ct do
6: Rt ← minAreaRect(ci)
7: Bt ← boxPoints(Rt)
8: end for
9: (tl, tr, bl, br)← Bt

10: xt ← midpoint(tl, tr), xb ← midpoint(bl, br)
11: xl ← midpoint(tl, bl), xr ← midpoint(tr, br)
12: dhp ← dist(xt, xb), dwp ← dist(xl, xr)
13: hi ← dhp/P2D, wi ← dwp/P2D
14: Hi ← hi, Wi ← wi
15: end for
16: return Ht, Wt
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E. Diagnosis Algorithm

To obtain the accurate size of AAA, we design a novel
diagnosis algorithm. Firstly, we extract the boundary points
Ct of the mask mi predicted by DSB-Net. Secondly, we
obtain the minimum area enclosing the rectangle through the
boundary points and get the four vertices of the rectangle.
Thirdly, we obtain the midpoint coordinates of each side and
calculate the Euclidean distance of the corresponding side.
Finally, the exact size of AAA is obtained by converting
the pixel distance to the millimeter distance. Note that
the conversion coefficient P2D is based on preliminary
information. More details can be seen in Algorithm 1.

III. EXPERIMENTS AND RESULTS

A. Dataset

1) LeSaX: As far as we know, there is no open dataset
related to the AAA in DSA images, hence a new dataset
named LeSaX is established. It consists of 3776 fluoroscopy
images from independent sequences of 100 patients. Each
image has a resolution of 512 × 512 pixels. The dataset is
compartmentalized into a training set (2653 images from 70
patients), a validation set (358 images from 10 patients), and
a testing set (765 images from 20 patients). Each image is
manually annotated by technical experts with more than five
years’ experience in medical imaging. The dataset will be
released as soon as possible.

2) NLM Chest X-ray Database: The chest X-ray images
in the dataset are the standard digital images for tuberculosis
[30] and are acquired through the Philips DR Digital Diag-
nose systems from out-patient clinics. The dataset contains
1365 images (30 sequences) in the training set, 206 images
(6 sequences) in the validation set, and 385 images (10
sequences) in the testing set. The size of each image is
1024× 1024 pixels.

B. Implementation Details and Evaluation Metrics

The proposed framework was implemented on the PyTorch
library (version 0.4.1) with one NVIDIA TITAN Xp (12 GB).
Stochastic gradient descent (SGD) was used as an optimizer.
To find the optimal performance, the poly learning rate policy
is employed. The learning rate is multiplied by 0.9 when the
validation accuracy is saturated. Moreover, we set the batch
size of 8, and 150 epochs were used for each model training.
To ensure the validity of the experimental evaluation, the
patient data of the training set, validation set, and testing
set are independent of each other. The conversion coefficient
P2D is obtained by calculating the ratio of the pixel distance
to the millimeter distance of the 2653 images in the training
set and taking the average value.

We adopt mean F1-Score to evaluate the segmentation
performance. Mean delta is employed to evaluate the per-
formance of the diagnosis algorithm. Delta is the difference
between the predicted diameter Dp and the ground truth
diameter Dg , which is formulated as: Delta = Dp −
Dg . The inference rate is calculated to verify the real-
time performance. We load the sequence into the proposed
framework and compute each frame parallelly offline. The

TABLE I
ABLATION STUDY: EXPERIMENT RESULTS ON LESAX OF ADDING

COMPONENTS TO BASENET, WHICH IS THE REGULAR U-NET WITH

INVERTED RES-BLOCKS IN THE ENCODER.

Boundary CRM FRM Fusion F1-Score Inference
- - - - 0.879 ± 0.014 15.9 FPS
✓ 0.891 ± 0.019 13.0 FPS
✓ ✓ 0.920 ± 0.015 12.1 FPS
✓ ✓ 0.918 ± 0.021 11.6 FPS
✓ ✓ ✓ 0.939 ± 0.017 11.0 FPS
✓ ✓ ✓ ✓ 0.951 ± 0.016 10.8 FPS

TABLE II
ABLATION STUDY: EXPERIMENT RESULTS ON LESAX FOR DIFFERENT

BACKBONES AND LOSS FUNCTIONS. D, F AND H REPRESENT DICE LOSS,
REGULAR FOCAL LOSS, AND DESIGNED HYBRID LOSS, RESPECTIVELY.

DF DENOTES THE HYBRID LOSS OF DICE LOSS AND FOCAL LOSS.

Backbone Loss F1-Score Inference
MobileNetV2 D+H 0.951 ± 0.016 10.8 FPS

VGG-11 D+H 0.930 ± 0.014 6.4 FPS
VGG-16 D+H 0.942 ± 0.009 5.8 FPS

ResNet-50 D+H 0.954 ± 0.017 6.3 FPS
ResNet-101 D+H 0.956 ± 0.016 5.2 FPS

MobileNetV2 D+D 0.897 ± 0.011 -
MobileNetV2 D+F 0.910 ± 0.015 -
MobileNetV2 D+DF 0.929 ± 0.012 -

total processing time T can be computed after getting results
of all the frames (N), namely, the inference rate N/T FPS.

C. Ablation Study

1) Boundary Localization Stream: To validate the effect
of the boundary localization stream, we remove this stream
and evaluate the performance without boundary supervision
and loss. Table I indicates that adding the boundary stream
improves mask results by 1.36% over baseline.

2) CRM, FRM and Fusion Block: To verify the contri-
bution of CRM and FRM, we add them to the baseline
in different combinations. As shown in Table I, adding
CRM and FRM alone yield 0.029 and 0.027 improvement in
mean F1-Score, respectively. When both CRM and FRM are
integrated into the baseline, the mean F1-Score reaches 0.939
and improves 6.82% over baseline. The fusion block enrich
mask features and guide precise mask prediction. Table I
demonstrates it improves DSB-Net by 0.012 in mean F1-
Score, which is the gain of multi-task learning. We further
investigate the influence of adding more fusion blocks, but
it brings negligible improvements.

3) Backbone and Loss: To demonstrate the impact of the
backbone, we first replace the backbone of DSB-Net with
wildly-used backbones ResNet and VGGNet. As shown in
Table II, it indicates that MobileNetV2 has a slightly lower
segmentation accuracy than ResNet-101, but MobileNetV2
has a remarkably higher time efficiency than regular ResNet-
101. To assess the effectiveness of loss function, we im-
plement DSB-Net on three different loss functions. Every
baseline loss function is set with the best hyperparameters.
The hyperparameter settings of our proposed hybrid loss
function are as follows: α = 100 and γ = 2.5. Table II
shows that our proposed hybrid loss has a better performance
compared with the other three baseline loss functions.
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TABLE III
COMPARISON WITH SEGMENTATION PERFORMANCE OF STATE-OF-THE-ART METHODS ON LESAX (LEFT) AND NLM CHEST (RIGHT).

Method Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Avg. F1 Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Avg. F1

U-Net [31] 0.868 0.885 0.878 0.875 0.872 0.875 0.893 0.890 0.886 0.896 0.902 0.893
RefineNet [32] 0.891 0.904 0.898 0.897 0.895 0.895 0.909 0.902 0.897 0.909 0.911 0.907

TernausNet [33] 0.885 0.902 0.895 0.891 0.893 0.891 0.906 0.901 0.894 0.905 0.909 0.901
Attention U-Net [34] 0.896 0.912 0.909 0.904 0.901 0.902 0.918 0.915 0.907 0.921 0.928 0.916

CS-Net [35] 0.908 0.927 0.921 0.916 0.915 0.915 0.932 0.931 0.923 0.936 0.942 0.929
U-Net++ [36] 0.923 0.935 0.930 0.928 0.927 0.927 0.948 0.944 0.939 0.949 0.958 0.942
U-Net 3+ [37] 0.931 0.942 0.940 0.939 0.935 0.936 0.957 0.952 0.948 0.957 0.961 0.951

Ours 0.943 0.959 0.956 0.953 0.950 0.951 0.965 0.964 0.962 0.973 0.975 0.962

Fig. 4. Qualitative comparison with state-of-the-art methods on LeSaX. GT
denotes the ground truth. The red boxes represent regions that are prone to
misclassification. Our proposed DSB-Net can better capture these regions.

D. Comparison with State-of-the-arts

1) Quantitative evaluation: To evaluate the segmentation
quality of AAAs, we compare seven well-known medical
segmentation networks on testing sequences of LeSaX. As
shown in Table III, it demonstrates that our proposed DSB-
Net outperforms the state-of-the-art in terms of average
F1-Score on 20 patient sequences. It is worth noting that
our proposed DSB-Net also achieves the state-of-the-art
segmentation performance in the other 15 sequences, only
5 of which are shown here. To further explore the effects of
DSB-Net on other types of medical images, we also conduct
experiments on NLM Chest X-ray Database. As shown in
Table III, it demonstrates that our DSB-Net is superior to the
state-of-the-art in terms of F1-Score on the testing sequences.

2) Qualitative evaluation: To further illustrate the supe-
rior performance of our approach, Fig. 4 shows the qualita-
tive comparison of the results with the other two approaches.
It can be seen that our approach is able to accurately segment
AAAs under various challenging scenarios, including fuzzy
boundary and locally obscured surface.

3) Morphological analysis: To evaluate the performance
of the designed diagnosis algorithm, we compare it with two
previously-proposed approaches on AAA detection, which
are SABAM [38] and JTL [39]. Besides, we employ U-
Net [31], CS-Net [35], U-Net++ [36], and U-Net 3+ [37] as
the segmentation network and then uses our proposed algo-
rithm. Quantitative results in Table IV indicate our proposed
approach outperforms the state-of-the-art in terms of F1-
Score, Delta, and inference rate. Particularly, the inference

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON LESAX.

Method F1-Score Delta Inference
U-Net [31] + Ours 0.875 ± 0.017 -5.1 ± 7.8 9.6 FPS

CS-Net [35] + Ours 0.915 ± 0.014 -2.6 ± 5.1 7.9 FPS
U-Net++ [36] + Ours 0.927 ± 0.022 -2.2 ± 4.5 7.6 FPS
U-Net 3+ [37] + Ours 0.936 ± 0.015 -1.6 ± 3.8 10.0 FPS
Ours + SABAM [38] - 6.0 ± 9.5 -

Ours + JTL [39] - -2.8 ± 6.7 -
Ours 0.951 ± 0.016 -1.1 ± 3.5 10.8 FPS

Fig. 5. Visualization results of morphological analysis for AAA.

rate of our proposed network is about 10.8 FPS, which
meets the real-time requirements of the X-ray system [40].
Visualization results are shown in Fig. 5. It demonstrates that
our developed algorithm can obtain the precise size of AAA
with arbitrary shapes.

IV. CONCLUSION

In this paper, we propose a Light-Weight Dual-Stream
Boundary-Aware Network (DSB-Net) and a novel diagnosis
algorithm to address the challenging task of real-time AAA
morphological analysis. Quantitative and qualitative evalu-
ations demonstrate that our approach achieves remarkable
and stable improvements on two different types of datasets,
achieving state-of-the-art performance. Remarkably, the in-
ference rate of our approach is approximately 10.8 FPS,
which meets the real-time requirements of the X-ray system.
The experimental results indicate that our proposed approach
has the potential to be applied to the robotic navigation
framework to achieve RMIS.
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