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Abstract. In endovascular interventional therapy, the fusion of preop-
erative data with intraoperative X-ray fluoroscopy has demonstrated the
potential to reduce radiation dose, contrast agent and processing time.
Real-time intraoperative stent segmentation is an important pre-requisite
for accurate fusion. Nevertheless, this task often comes with the challenge
of the thin stent wires with low contrast in noisy X-ray fluoroscopy. In
this paper, a novel and efficient network, termed Lightweight Double
Attention-fused Network (LDA-Net), is proposed for end-to-end stent
segmentation in intraoperative X-ray fluoroscopy. The proposed LDA-
Net consists of three major components, namely feature attention mod-
ule, relevance attention module and pre-trained MobileNetV2 encoder.
Besides, a hybrid loss function of both reinforced focal loss and dice loss is
designed to better address the issues of class imbalance and misclassified
examples. Quantitative and qualitative evaluations on 175 intraoperative
X-ray sequences demonstrate that the proposed LDA-Net significantly
outperforms simpler baselines as well as the best previously-published
result for this task, achieving the state-of-the-art performance.

Keywords: Stent segmentation · Intraoperative X-ray fluoroscopy ·
Convolution neural networks

1 Introduction

Abdominal aortic aneurysm (AAA) has been the most common aneurysm, which
is usually asymptomatic until it ruptures, with an ensuring mortality 85% to 90%
[1]. Clinical evidence-based research shows a lower perioperative morbidity and
mortality, and similar long-term survival, for endovascular aortic repair (EVAR)
compared with open repair of suitable AAAs. Meanwhile, recent technological
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advances in EVAR make it the treatment of choice for most AAA patients [2].
However, due to the complexity of the EVAR, long-term radiation and large doses
of contrast agents are usually required during the intervention, which will lead
to common complications for patients, such as renal insufficiency. It is therefore
of special concern to reduce the procedure time of EVAR.

Fusion of preoperative data with intraoperative X-ray fluoroscopy to guide
the intervention has been proved to reduce contrast agent and radiation dose [3].
The preoperative data is obtained by 3D computed tomography (CT). However,
the fusion may become inaccurate due to patient motion and deformation of
the vessels caused by interventional instruments. To avoid repeated use of con-
trast agent, comparing the stent segmentation with preoperative information can
assess and monitor the quality of the current fusion throughout the intervention
[4]. Hence, real-time and accurate intraoperative stent segmentation is imper-
ative. Nevertheless, fully automatic stent segmentation is not straightforward
for the following reasons: (1) The morphological variation of stents in different
interventions affects visual features such as shape and size. (2) The low ratio of
stent wire pixels to background pixels results in class imbalance. (3) The con-
trast agent, artifacts from the spine and wire-like structures such as guidewire
interfere with the classification accuracy of edge pixels of stents.

Although the guidewire segmentation [5] and catheter segmentation [6] in X-
ray fluoroscopy have received widespread interest, less attention has been spent
on stent segmentation. Previously, Demirci et al. [7] proposed a model-based
method that relies on Hessian-based filtering for preprocessing. Although this
method can directly recover the shape of the stent in 3D, it needs to define the
model of the stent in advance and is limited to a certain stent shape. Recently,
deep learning has achieved promising results in medical image segmentation [8,9]
and provide a data-driven approach to address stent segmentation. Breininger et
al. [4] presented a fully convolutional network with a contraction and expansion
path to segment aortic stents. However, due to the utilization of residual units
as its backbone, the real-time requirements were not met.

To address above-mentioned concerns, the Lightweight Double Attention-
fused Networks (LDA-Net) is proposed for real-time stent segmentation in intra-
operative X-ray fluoroscopy. Firstly, aggregation for multi-scale features is con-
ducive to capturing the shape and size features of stents at different scales.
Hence, the feature attention module is employed to fuse different scale dense
features. Secondly, the relevance attention module is designed in gating to dis-
ambiguate irrelevant and noisy responses in skip connections. Thirdly, the pre-
trained MobileNetV2 encoder can reduce network parameters and improve model
processing speed while ensuring performance. Additionally, the designed hybrid
loss function with dice loss to address extreme class imbalance and reinforced
focal loss to force model to focus on the pixels easily misclassified.

Our main contributions can be summarized as follows: (1) To the best of
our knowledge, this is the first real-time approach that achieves fully automatic
stent segmentation at the inference rate of 12.6 FPS in intraoperative X-ray
fluoroscopy. (2) The designed double attention modules and hybrid loss improve
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model sensitivity to stent wire pixels without requiring complicated heuristics.
(3) The proposed LDA-Net achieves the state-of-the-art segmentation perfor-
mance on three different datasets, namely SeTaX, PUGSeg and NLM Chest.

Fig. 1. An overview of the Lightweight Double Attention-fused Networks (LDA-Net).
It contains double attention modules, namely feature attention module (FAM) and
relevance attention module (RAM).

2 Method

In this section, we first present a general architecture of our proposed network
and then introduce the designed double attention modules, namely feature atten-
tion module (FAM) and relevance attention module (RAM). Finally, we describe
the hybrid loss function of both reinforced focal loss and dice loss.

2.1 Lightweight Double Attention-Fused Networks

The architecture of the proposed LDA-Net is shown in Fig. 1. The proposed
network takes the original intraoperative X-ray images as input and outputs the
predicted mask for stent without any post-processing. The network is a novel
encoder-decoder structure, where the pre-trained MobileNetV2 [10] is employed
as the backbone in the encoder stage. The depth-wise separable convolutions
in the MobileNetV2 replace the standard convolutional layers, thereby reducing
considerable computational burden. The FAM is utilized to gather dense pixel-
level feature from the output of MobileNetV2.

Each decoder block in decoder consists of transposed convolution and batch
normalization, aims to recover the resolution of the feature map from 16 × 16
to 512 × 512. In order to highlight salient features useful for the stent wire and
disambiguate irrelevant and noisy responses in skip connections, the RAMs are
designed and employed in the decoder stage.
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Feature Attention Module. To gather precise dense pixel-level features, the
FAM is integrated into the network, as shown in Fig. 2(a). The FAM combines
features from three different scales by U-shape architecture. In order to better
extract the context from different level scales, the 3 × 3, 5 × 5 and 7 × 7 con-
volutions are utilized in the structure of FAM, respectively. Because of the low
resolution of the high-level feature maps, using large kernel size does not increase
computational complexity by much [11]. This structure gradually integrates the
information of different scales through up and down sampling, which can inte-
grate the adjacent scales of context features more accurately. Then, after passing
through a 1 × 1 convolution of the original features from the encoder part, mul-
tiply the pixel-wisely by the different level attention feature. Specifically, the
adaptive average pooling is used to improve model performance further.

Fig. 2. (a) Schematic of the Feature Attention Module (FAM). (b) Schematic of the
Relevance Attention Module (RAM).

Relevance Attention Module. In order to capture a sufficiently large recep-
tive domain to obtain semantic context information, our designed RAMs are
integrated into the LDA-Net. Compared with two-stage networks, RAM gradu-
ally suppresses the feature responses of irrelevant background regions without the
necessity of region of interest (ROI). As shown in Fig. 2(b), the input of RAMs
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can be divided into two parts. The first part is to obtain the key feature map
(K.F.) by a series of convolution 3×3, BN and ReLU. Another part is to directly
adjust the feature map (D.F.) to the universal. Then making the summation of
two parts to enhance the nonlinearity. The output of RAMs is the element-wise
multiplication of input feature maps and attention coefficients: x̂l

i,c = xl
i,c · αl

i.
The attention coefficient αi ∈ [0, 1] identifies image salient regions to preserve
the activation relevant to the stent wire. In the default setting, a single scalar
attention value is calculated for each pixel vector xl

i,c, where Fl corresponds to
the number of feature maps in layer l. The gating vector gi is used for each
pixel i to determine the focus regions. The gating vector consists of contextual
information and removes lower-level feature responses as recommended in [12].
Additive attention is employed to obtain the gating coefficient [13]. The RAM
is represented as follows:

αl
i = σ2(ψT (σ1(WT

x xl
i + WT

g gi + bg)) + bψ) (1)

where σ1 and σ2 represent the ReLU activation and sigmoid activation respec-
tively. The Wx and Wg correspond to the weights of linear transformation, and bg

and bψ are the bias. In order to reduce trainable parameters and computational
complexity of RAMs, linear transformation (1 × 1 × 1 convolution) is performed
without any spatial support, and the input feature map is down-sampled to the
resolution of the gating signal. Grid re-sampling of the attention coefficients is
employed by trilinear interpolation. The designed RAMs are merged into our
network to highlight salient features useful for the stent wire. The information
extracted from coarse scale is utilized in gating to disambiguate irrelevant and
noisy responses in skip connections, thereby improving the accuracy and sensi-
tivity of the model for edge misclassified pixels prediction.

2.2 Hybrid Loss

In the task of stent segmentation, the thin stent wire results in class imbalance.
Meanwhile, due to the contrast agent, artifacts from the spine and wire-like
structures, the edge pixels of the stent turn into the misclassified samples. The
huge number of easy and background samples tend to overwhelm the training.
Dice loss performs relatively better than cross entropy loss when the training
samples are highly imbalanced [9]. However, dice loss fails to capture the pixels
on the border which are difficult to classify. The modulating factor in focal loss
can automatically reduce the weight of easy examples in the training process and
quickly focus the model on misclassified examples [14]. To this end, we design a
hybrid loss function of both reinforced focal loss and dice loss to better address
the issues of class imbalance and misclassified examples. The hybrid loss function
is formulated as follows:

L = LR−Focal + λLDice (2)

LR−Focal =
{−α(1 − pi)

γ log pi

−pγ
i log(1 − pi)

yi = 1 yi = 0 (3)
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where LDice is the dice loss function. yi is the label of the ith pixel, 1 for stent
wire, 0 for background and pi is the prediction probability of the ith pixel. The
weighting factor α and the modulating factor γ are tunable within the range of
α, γ ≥ 0. And we have strengthened the role of weighting factor α to increase the
weight contribution of the stent wire, thus solving the extreme class imbalance
more efficiently. Besides, λ is also a hyper-parameter coordinating the balance
between reinforced focal loss and dice loss, which is set to 0.75 in this work.

3 Experiments

In this section, quantitative and qualitative evaluations for the proposed LDA-
Net are carried out on three different datasets, namely SeTaX, PUGSeg and
NLM Chest X-ray Database.

3.1 Datasets

SeTaX is a intraoperative stent dataset based on 2D X-ray fluoroscopy, which
is provided by Peking Union Medical College Hospital. This dataset consists of
1269 images (20 patients) in training set, 381 images (6 patients) in testing set
and 254 images (4 patients) in validation set. Each image has 512 × 512 pixels.
PUGSeg is an interventional tool dataset containing various stiff guidewires,
which are provided by Shanghai Huadong Hospital and Peking Union Medical
College Hospital. It consists of 1585 images for training, 476 images for testing
and 317 images for validation. Each image has a resolution of 512 × 512 pixels.
NLM Chest X-ray Database is the standard digital image database for tuber-
culosis [15]. The chest X-rays are from out-patient clinics, and were captured as
part of the daily routine using Philips DR Digital Diagnose systems. This dataset
contains 336 cases with tuberculosis and 326 normal cases.

3.2 Implementation Details

The proposed framework was implemented on PyTorch library (version 0.4.1)
with one NVIDIA TITAN Xp (12 GB). To ensure the validity of the experimen-
tal evaluation, the patient data of the training set, validation set and testing
set are independent of each other. Stochastic gradient descent (SGD) was used
as optimizer with an initial learning rate of 0.001, weight decay of 0.0005 and
momentum of 0.9. To find the optimal performance, the poly learning rate pol-
icy is employed, the learning rate is multiplied by the factor of 0.9 when the
validation accuracy was saturated. Moreover, we set the batch size of 8, and 180
epochs was used for each model training.

We report mean precision, sensitivity and F1-Score to evaluate the segmenta-
tion performance. The mean processing time is calculated to verify the real-time
performance. To obtain the processing time, we load the sequence into the pro-
posed framework and compute each frame parallelly offline. The total processing
time T can be computed after getting the results of all the frames (N). Therefore,
we obtain the inference rate N/T frames per second (FPS) and processing time
1000 × T/N ms.
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Table 1. Ablation study on SeTaX. BaseNet is the regular U-Net. BCE represents
Binary Cross Entropy Loss. DL and FL represent Dice Loss and Focal Loss respectively.
DRF represents the proposed hybrid loss with both reinforced Focal Loss and Dice Loss.

Method Backbone Loss F1-Score Time (ms)

BaseNet MobileNetV2 DRF 0.898 ± 0.009 62.6 ± 1.5

BaseNet+FAM MobileNetV2 DRF 0.946 ± 0.023 73.5 ± 1.9

BaseNet+RAM MobileNetV2 DRF 0.925 ± 0.011 68.5 ± 0.9

LDA-Net MobileNetV2 DRF 0.969 ± 0.015 79.6 ± 1.3

LDA-Net ResNet-50 DRF 0.970 ± 0.018 143.6 ± 1.7

LDA-Net ResNet-101 DRF 0.973 ± 0.016 174.2 ± 2.3

LDA-Net VGG-11 DRF 0.955 ± 0.008 142.4 ± 2.5

LDA-Net VGG-16 DRF 0.964 ± 0.014 158.9 ± 1.9

LDA-Net MobileNetV2 BCE 0.835 ± 0.009 –

LDA-Net MobileNetV2 DL 0.916 ± 0.018 –

LDA-Net MobileNetV2 FL 0.932 ± 0.012 –

3.3 Results on SeTaX

Ablation Study. To evaluate the contribution of different modules on our
approach, we conduct experiments with different settings. As shown in Table 1,
the double attention modules improve the model performance significantly. In
details, we first conduct BaseNet with FAM, which improves the performance
from 0.898 to 0.946. Then, we implement BaseNet with RAM, which yields 0.227
improvement in mean F1-Score. When both of FAM and RAM are integrated
into BaseNet, the mean F1-Score reaches 0.969 and improves by 7.91 % over
baseline. Specifically, it can be seen from the processing time that double atten-
tion modules do not bring much computational burden.

To verify the performance of backbone and loss function, we first replace
the backbone of the original network with wildly-used backbones ResNet and
VGGNet. As shown in Table 1, it clearly demonstrates the promotion in process-
ing speed brought by the pre-trained MobileNetV2, reducing mean processing
time from 174.2 ms for ResNet-101 to 79.6 ms. Then, we employ our model on
three different loss function, which are Binary Cross Entropy Loss, Dice Loss and
Focal Loss respectively. Every baseline loss function is set with the best hyper-
parameters. The hyper-parameter settings of our proposed hybrid loss function
are as follows: λ = 0.75, α = 100 and γ = 2.5. As shown in Table 1, our proposed
hybrid loss outperforms the other three baseline loss functions remarkably.

Comparing with the State-of-the-art. To demonstrate the advantage of
our proposed approach, we compare it with three widely-used networks (U-Net,
LinkNet and TernausNet), two attention-based networks (Attention U-Net and
CS-Net) and a previously-proposed approach on SeTaX. It is worth noting that



10 Y.-J. Zhou et al.

Table 2. Quantitative comparison with state-of-the-art approaches on SeTaX.

Method Precision Sensitivity F1-Score Time (ms)

U-Net [8] 0.890 0.903 0.896 104.5

LinkNet [16] 0.914 0.932 0.924 179.3

TernausNet [17] 0.939 0.923 0.932 142.8

Attention U-Net [18] 0.951 0.940 0.945 125.4

CS-Net [19] 0.942 0.955 0.948 125.8

KBS [4] 0.960 0.934 0.945 750

LDA-Net 0.962 0.978 0.969 79.6

we implement other approaches with best parameters. As shown in Table 2,
it clearly demonstrates that our approach achieves better accuracy than other
existing approaches in terms of mean F1-Score and processing time. As can be
seen in Fig. 3, the proposed approach is robust to all kinds of intraoperative stents
in different interventions, and the segmentation results are accurate without
any post-processing. Besides, mean processing time per image of our proposed
network is about 79.6 ms (12.6 FPS), which meets real-time requirements [20].

Fig. 3. Visualization results on SeTaX. DA represents double attention modules.

Table 3. Quantitative comparison on PUGSeg and NLM Chest X-ray Database.

Method PUGSeg NLM Chest X-ray Database

Seq. 1 Seq. 2 Seq. 3 Mean F1 Seq. 1 Seq. 2 Seq. 3 Mean F1

U-Net [8] 0.884 0.909 0.911 0.901 0.899 0.907 0.864 0.890

LinkNet [16] 0.889 0.918 0.917 0.908 0.902 0.915 0.872 0.896

TernausNet [17] 0.916 0.933 0.923 0.924 0.910 0.922 0.898 0.910

Att. U-Net [18] 0.928 0.941 0.945 0.938 0.931 0.945 0.916 0.931

CS-Net [19] 0.928 0.946 0.946 0.940 0.943 0.951 0.929 0.941

LDA-Net 0.938 0.955 0.961 0.951 0.956 0.968 0.934 0.953
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3.4 Results on PUGSeg and NLM Chest X-Ray Database

To further verify the effectiveness of our proposed LDA-Net, we conduct exper-
iments on PUGSeg and NLM Chest X-ray Database. As shown in Table 3, it
clearly demonstrates that our proposed LDA-Net is superior to other wildly-
used networks and attention-based networks in terms of F1-Score. Visualization
results of different approaches are shown in Fig. 4. Compared with U-Net and
Attention U-Net, our proposed LDA-Net can capture better contours which are
usually considered as hard samples, obtaining more accurate and smooth seg-
mentation masks. The qualitative comparison on PUGSeg and NLM Chest X-ray
Database also indicates the success of our proposed approach.

Fig. 4. Visualization results on PUGSeg and NLM Chest X-ray Database.

4 Conclusion

In this paper, we have proposed Lightweight Double Attention-fused Networks
(LDA-Net) to address the challenging task of real-time stent segmentation in
intraoperative X-ray fluoroscopy. Quantitative and qualitative evaluations on
SeTaX, PUGSeg and NLM Chest X-ray database demonstrate that our approach
achieves significant improvement in terms of both accuracy and robustness. The
ablation experiments prove the effectiveness of double attention modules (FAM
and RAM) and hybrid loss. By integrating these components into the network,
our proposed LDA-Net effectually addresses the issues of class imbalance and
misclassified examples, achieving the state-of-the-art performance. Specifically,
the inference rate of our approach is approximately 12.6 FPS, which enables for
real-time computer-assisted interventions.
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