
Fully Automatic Dual-Guidewire Segmentation for
Coronary Bifurcation Lesion

Yan-Jie Zhou1,3, Xiao-Liang Xie1, Gui-Bin Bian1, Zeng-Guang Hou1,2,3

Yu-Dong Wu1,3, Shi-Qi Liu1, Xiao-Hu Zhou1,3 and Jia-Xing Wang1,3
1State Key Laboratory of Management and Control for Complex Systems,

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing 100190, China

3University of Chinese Academy of Sciences, Beijing 100049, China
Email: {zengguang.hou} @ia.ac.cn

Abstract—Interventional therapy for coronary bifurcation le-
sion has always been an intractable problem in percutaneous
coronary intervention (PCI). Dual-guidewire detection can great-
ly assist physicians in interventional therapy of bifurcated lesions.
Nevertheless, this task often comes with the challenges of X-ray
images with low signal noise ratio (SNR) as well as the thinner
structure of the guidewire compared to other interventional
tools. In this paper, a fully automatic detection method based
on an improved U-Net and the modified focal loss is proposed
for dual-guidewire segmentation in 2D X-ray fluoroscopy, which
accomplishes accurate and robust segmentation. The main con-
tributions of this paper are twofold: (1) the proposed method
not only addresses the extreme foreground-background class
imbalance generated by the slender guidewire structure, but
also solve the problem of misclassified examples caused by the
guidewire-like structures and contrast agents; (2) the running
speed is about 8 frames per second, which reaches near-real-time
processing speed. Furthermore, data augmentation algorithm and
transfer learning are used to further improve the performance.
The proposed method was verified on clinical 2D X-ray image
sequences of 30 patients, in which F1-score reached 0.932. The
experiment results indicated that our approach is promising for
assisting bifurcation lesion surgery.

I. INTRODUCTION

The incidence of coronary bifurcation lesion is increasing
year by year, accounting for about one-fifth of all PCI.
Interventional therapy for coronary bifurcation lesion is chal-
lenging because of its lower success rate, higher restenosis rate
and more complications [1]. In the interventional therapy of
bifurcated lesions, doctors need to judge the relative position
of the dual-guidewire and the lesion by 2D X-ray images, so
as to advance the guidewire to the lesion, as shown in Fig. 1.
Therefore, the shape and position of the dual-guidewire are of
great help for the therapy of bifurcation lesions. At the same
time, various information of the guidewire plays an important
role in robot assisted system [2, 3]. However, the detection
of guidewire is tough, and the main reasons are threefold: (1)
the guidewire is very dark and slender in 2D X-ray images,
and there are other structures similar to the guidewire, which
are likely to cause false detection [4, 5]; (2) the guidewire
has larger deformation and irregular movement due to heart
beat; (3) the X-ray images have low SNR and background
noise greatly interferes with the detection of guidewire. Thus,
accurate guidewire detection is imperative.

In the last years, a great deal of research has been done
on the detection of guidewire or catheter. Among them, some
approaches are based on the spline interpolation, and the first
frame of the fluoroscopy sequence needs to be initialized
manually. Meanwhile these methods require that the curva-
ture and length of the guidewire do not change significantly
between two consecutive frames, otherwise the accuracy of
the guidewire detection will be greatly affected [6]. In [7, 8],
semi-automatic methods were proposed, which could segment
the guidewire of the first frame automatically, but limitations
still exist, which are similar to the manual methods described
above. With the improvement of computing power brought
by the rapid development of computer hardware, the methods
based on the deep neural network (DNN) have achieved great
success in medical imaging. The performance of DNN-based
approach far exceeds that of traditional techniques, and it is
even comparable to human experts in metastatic breast cancer
diagnosis, brain tumor segmentation and other fields [9, 10].
Pixel-level image segmentation is of great importance in med-
ical imaging. At present, one of the most successful methods
is the U-Net neural network [11]. U-Net architecture uses skip
connection to combine the low-level feature mapping with the
high-level feature mapping, thus achieving accurate pixel-level
positioning. In this paper, we propose a fully automatic method
based on DNN for pixel-level dual-guidewire segmentation.

Recently, some guidewire segmentation methods based on
DNN have been proposed. A method based on region proposal
network (RPN) was proposed to detect guidewire [12]. The
detected guidewire appears in the bounding box. The biggest
limitation of this method is the lack of shape and position
information of the guidewire. Wu et al. [13] proposed a
method based on cascaded convolutional neural network for
segmenting the guidewire, using Faster R-CNN to detect the
bounding box of guidewire firstly, and then using Deep-Lab
network to achieve the segmentation in the detected bounding
box. This method does not share the backbone for detection
and segmentation, which cannot effectively utilize network
parameters. As a result, the network is huge in terms of
parameters and number of operations, while running slowly.
The method in [14] tried to segment the whole catheter
and guidewire. However, due to the disparate materials and
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Fig. 1. Dual-guidewire in PCI of coronary bifurcation lesion.

diameter variance between the catheter and the guidewire,
and training in the same network, the reported error by the
guidewire is significantly higher than that of the catheter.
Furthermore, the post-processing is required to splice the
separated catheter and guidewire together. Although the above
methods provide promising initial results, there are miscella-
neous shortcomings to be addressed.

To the best of our knowledge, the work on dual-guidewire
segmentation has not been published yet. We take the lead
in proposing an efficient and accurate approach to segment
dual-guidewire in 2D X-ray images based on the improved U-
Net model. Firstly, the extreme foreground-background class
imbalance is produced by the low proportion of guidewire
pixels to the pixels of the whole image. At the same time,
due to the influence of guidewire-like structures and contrast
agents, the edge pixels of the guidewire become misclassified
examples. Therefore, we modify the focal loss [15] as the loss
function. Secondly, due to the slender guidewire structure, its
pixel-level annotation is time-consuming and laborious. Thus,
we use data augmentation algorithm instead of annotating
more data to enhance performance. Last but not least, to ac-
celerate convergence and improve performance, the pre-trained
ResNet-type architecture is used for encoder. Transfer learning
[16] is an effective way to improve network performance
directly in most cases. The experiment results demonstrate
that the above improvements effectually enhance the network
performance.

The remainder of the paper is structured as follows: Section
II describes improved U-Net architecture and modified focal
loss in detail. Experiments are given in Section III. Conclu-
sions and discussions are presented in Section IV.

II. METHOD

In this work, we implement the segmentation of dual-
guidewire in 2D X-ray images. In section II-A, we describe
dataset annotation and data augmentation algorithm succes-
sively. The improved U-Net architecture and modified focal
loss are respectively elaborated in section II-B and II-C.
Section II-D explains implementation details.

A. Dataset

There are no public datasets for the guidewire currently.
Hence, we establish a new dataset based on 2D X-ray images,
which is provided by Shanghai Huadong Hospital. Since the
guidewire data relates to patient privacy, the hospital only
provides a limited dataset, from which we have selected
the sequences of the most representative 30 patients. The
equipment used for 30 patients is an Innova 3100-IQ digital
flat-panel angiography instrument (GE Healthcare). Among
them, 24 patient sequences are training sets and 6 patient
sequences are test sets. The patient data of the training set is
independent of the test set. In the process of data annotation,
we first determine the area where the guidewire is located and
enlarge the image of the area through the bounding box. Then
we mark some points on the guidewire and fit a spline by these
points. After annotation, each 2D X-ray images in sequences
are binary images with size of 512×512. In binary images, the
pixel value belonging to the guidewire is 1, or else 0. Adequate
data plays a key role in network generalization performance,
but pixel-level annotation is tedious and tough. Therefore,
data augmentation algorithm is applied for our network. We
randomly rotate the image with α ∈ (0◦, 360◦). In addition,
we apply random flipping along the x and y direction.

B. Improved U-Net Architecture

The classical U-Net architecture consists of a contracting
path and a symmetric expansive path. The contracting path
adopts alternating convolution and pooling operations to grad-
ually downsampling the feature maps. In order to accurately
locate the up-sampling features, the expansive path combines
them with the high-resolution feature of the contracting path
through skip connection [11]. The output of the network is
a pixel-level mask that displays the classes for each pixel.
This architecture is useful in situations where datasets are
limited. To further improve network performance, we improve
the regular U-Net, whose architecture is shown in Fig. 2. The
improved U-Net can also be split into 2 parts, encoder and
decoder.

The encoder starts with a convolution on 512 × 512 input
image with a kernel of size 7 × 7 and a stride of 2. The
spatial max-pooling is then performed in the area of 3 × 3
with a stride of 2. The latter part of the encoder consists
of a residual network. Currently, the segmentation networks
generally use ResNet-101 (45 million parameters) and VGG-
11 (133 million parameters), such as TernausNet [17] as their
encoder, which have large quantities of parameters. We use
ResNet-50 [18] pre-trained on ImageNet as its encoder, which
is lighter and outstanding in performance. ResNet-50 utilizes
the technology of bottleneck design, which tends to reduce
the number of computations and parameters by first reducing
dimensions through a 1 × 1 convolution and then recovering
via 1×1 convolution at last. In the challenge of dual-guidewire
segmentation, we found that the backbone architecture of pre-
trained ResNet-50 can accelerate our network convergence and
achieve better performance with almost no additional cost.
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Fig. 2. The architecture of the improved U-Net. The left part is the encoder, which uses ResNet-50 pre-trained on ImageNet. The right part is the decoder,
which is similar to LinkNet decoder. Each convolution layer is followed by a ReLU activation except the last convolution layer which use sigmoid activation.

Conv[(1×1), (m, m/4)]

Transposed Conv[(4×4), (m/4, m/4), 

stride=2]

Batch Normalization

Batch Normalization

Conv[(1×1), (m/4, n)]

Fig. 3. Convolution modules in decoder block. Batch normalization is applied
between each convolution layer.

The decoder we utilize is similar to LinkNet [19], which has
high computing efficiency. Each decoder block includes 1× 1
convolution operation that reduces the number of filters by the
factor of 4, followed by transposed convolution, which aims
to recover the resolution of the feature map from 16 × 16
to 512 × 512 through up-sampling. Batch normalization is
applied between each convolution layer, followed by ReLU
nonlinear activation function. The details of the decoder block
are shown in Fig. 3. In addition, the decoder of the network
consists of several decoder blocks that are connected with
the corresponding encoder block. Input from each encoder is
passed to the corresponding decoder. In this way, we expect
to recover the spatial information lost by the decoder and

its up-sampling operation. It is because the encoder shares
what it has learned at each layer that the decoder can use
fewer parameters. After decoder block, we obtain the final
segmentation mask by a transposed convolution with a kernel
size of 3× 3 and two convolutions with a kernel size of 3× 3
and 2× 2 respectively.

C. Modified Focal Loss

In the task of dual-guidewire segmentation, the slender
structure of the guidewire results in an extremely imbalanced
foreground-background ratio (1:1000). At the same time, due
to the influence of guidewire-like structures and contrast
agents, the edge pixels of the guidewire become misclassified
examples. The problem of class imbalance has disastrous
effect on model performance. Most of them are easy nega-
tives belonging to the background, which makes the training
process unable to learn the useful information. Furthermore,
numerous easy negatives make a major contribution to loss,
so it will dominate the update direction of gradient and cover
up important information. Class imbalance is addressed by
a two-stage cascade network and sampling heuristic in R-
CNN series detectors. In the region proposal stage, the number
of candidate object positions is rapidly reduced to a small
number to filter out most background samples. At the same
time, the proportion of positive and negative examples can
be adjusted according to the intersection over union (IoU).
In addition, online hard example mining (OHEM) is another
method emerging to filter out examples [20]. It sorts loss and
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selects the example with the largest loss for training, so as
to ensure that all training areas are hard examples. However,
it removes all the easy examples, making the easy positives
unable to further improve the model accuracy.

In this paper, we utilize the modified focal loss as a
more effective way to solve class imbalance and misclassified
examples. Focal loss was proposed by [15], which is the
dynamically scaled cross entropy loss. The scaling factor
can automatically reduce the weight of easy examples in the
training process and quickly focus the model on misclassified
examples. Our modified focal loss is as follows:

Loss =

{
−α(1− pi)

γ
log pi

−pγi log(1− pi)
yi = 1
yi = 0

(1)

where yi is the label of the ith pixel, 1 for guidewire, 0
for background and pi is the final mask probability of the
ith pixel. α is a weighting factor α ≥ 0 for guidewire
and the modulating factor γ is tunable within the range of
γ ≥ 0. When yi = 1, as pi → 1, (1 − pi) tends to 0
and the loss for easy examples is down-weighted, otherwise
the loss is up-weighted for misclassified examples. When
yi = 0, the results are contrary to the above. Therefore,
whether it is the foreground class or the background class,
the loss contribution from easy examples can be decreased
by modulating factor γ. However, the modulating factor γ
cannot fundamentally solve the extreme class imbalance, so
we use weighting factor α to increase the weight contribution
of the guidewire. This modified focal loss can correctly predict
the pixels of the guidewire. Moreover, weighing factor α and
modulating factor γ are hyperparameters, and we verify their
optimal combination in Section III.

D. Implementation Details

Each model was implemented on one GPU (NVIDIA TI-
TAN Xp 12G). To shorten the training cycle, transfer learning
was used as the backbone architecture instead of learning from
scratch. The backbone architecture was pre-trained on Ima-
geNet. In addition, we implemented our model on PyTorch.

In the training phase, two independent sequences in the
training set were split as validation set to prevent over-fitting
due to insufficient data. Stochastic gradient descent (SGD) was
used as optimizer with an initial learning rate of 0.001, weight
decay of 0.0005 and momentum of 0.9. To find the optimal
performance, we reduced the learning rate by the factor of 2
when the validation accuracy was saturated. The training loss
was the sum of our modified focal loss. Moreover, we set the
batch size of 32, and 300 epochs was used for each model
training.

III. EXPERIMENTS

In this section, we conduct large quantities of experiments
to analyze the impact of weighting factor α and modulating
factor γ combination on model performance, as detailed in III-
A. Improved U-Net performance is then verified and shown
in III-B.

TABLE I
VARYING α FOR BCE LOSS

Weighting Factor α 50 100 200 500 1000

F1-Score 0.788 0.807 0.762 0.734 0.701

TABLE II
VARYING α FOR MODIFIED FOCAL LOSS

(a) Modulating factor γ = 1.5

Weighting Factor α Precision Recall F1-Score

10 0.963 0.822 0.886
20 0.903 0.905 0.903
50 0.839 0.987 0.907
75 0.796 0.993 0.883

(b) Modulating factor γ = 2

Weighting Factor α Precision Recall F1-Score

20 0.958 0.809 0.877
50 0.909 0.925 0.916
75 0.875 0.958 0.914
100 0.813 0.998 0.896

(c) Modulating factor γ = 2.5

Weighting Factor α Precision Recall F1-Score

50 0.959 0.880 0.917
75 0.923 0.931 0.926
100 0.919 0.946 0.932
125 0.891 0.962 0.924

(d) Modulating factor γ = 3

Weighting Factor α Precision Recall F1-Score

100 0.938 0.861 0.898
125 0.928 0.899 0.913
150 0.925 0.932 0.928
200 0.899 0.953 0.925

A. Analysis of Modified Focal Loss

For binary image segmentation task, binary cross entropy
(BCE) is a relatively common loss function. when dealing with
the general class imbalance, the weighing factor α ≥ 0 for
class 1 is often introduced on the basis of BCE loss function.
The α-balanced BCE loss function is as follows:

BCELoss =

{
−α log pi

− log(1− pi)
yi = 1
yi = 0

(2)

where the definition of each parameter is the same as that
defined in (1). In addition, the above formula is a special case
of modulating factor γ = 0. This loss function is used as the
experimental baseline for our modified focal loss.

The experiment is implemented on the improved U-Net
model. Dataset partitioning is described in section II-A. We
first use α-balanced BCE as the loss function, and the result
is shown in Table I. When weighting factor α is 100, F1-score
reaches its peak. Subsequently, we use modified focal loss of
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Fig. 4. Dual-guidewire segmentation results of typical test samples. The mask output by the model is superimposed with the original image.

TABLE III
RESULTS OF OUR METHODS AND OTHER METHODS

Methods Ours MWPR1 U-Net ITT [8] DT [21] GE [22]

F1-Score 0.932 0.905 0.866 0.857 0.875 0.911

different factor combinations as the loss function, which has
two hyperparameters, weighing factor α and modulating factor
γ. The alternative value of weighing factor α is set around the
optimal value of the above experiment. [15] verified that the
optimal value of the modulating factor γ is 2, so we set the
alternative values of the modulating factor γ to 1.5, 2, 2.5 and
3.

In order to ensure the fairness of the experiment, we fix the
modulating factor γ and conduct the experiment with its four
alternative values, the results of which are shown in Table
II. The experimental results indicate that weighing factor α
and modulating factor γ are 100 and 2.5 respectively, and
the model has the optimal performance, wherein precision
is 0.919, recall is 0.946, F1-score reaches 0.932, which is
improved by 15.5% over α-balanced BCE loss. The improve-
ment mainly reflects that modified focal loss not only resolves
extreme class imbalance, but also resolves the problem of
misclassified example caused by guidewire-like structures and
contrast agents. In addition, we find that when the modulating
factor γ is fixed, as the weighting factor α becomes larger,
the precision is reduced, which means that a considerable
number of background samples are incorrectly classified into
the foreground samples. When the weighting factor α is fixed,

1The F1-Score of the improved U-Net without pre-trained ResNet-50.

as the modulating factor γ becomes larger, the precision is
increased, which means that the modulating factor γ can not
only address the problem of misclassified examples, but also
alleviate the class imbalance.

B. Analysis of Improved U-Net

To further validate the performance of our proposed mod-
el, we compare the performance of the regular U-Net, the
improved U-Net without pre-trained ResNet-50 and our pro-
posed model on the same dataset. The above models adopt
modified focal loss of the optimal factor combination as the
loss function. Meanwhile, we compare with the other three
methods, and the experimental results are shown in Table III.
The results show that our method achieves the state-of-the-
art performance. In addition, the average time to segment an
image is about 130 ms. The segmentation results of typical test
samples are shown in Fig. 4. The mask output by the model
is superimposed with the original image. As can be seen from
the segmentation results, this method is robust to all kinds of
guidewires, and the segmentation results are accurate without
any post-processing. Moreover, the pixels at the edge of the
guidewire are misclassified as background in the last sample
because the guidewire is almost overlapped with the contour
of the blood vessel.

IV. CONCLUSION

The method proposed in this paper implements a fully
automatic dual-guidewire segmentation for coronary bifurca-
tion lesion in 2D X-ray images. Numerous experiments based
on clinical sequences of 30 patients demonstrate that our
method based on improved U-Net model and modified focal
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loss completely address extreme class imbalance generated
by slender guidewire structure and misclassified examples
caused by guidewire-like structures and contrast agents. For
the fairness of the experiment, our method is compared with
the other three methods respectively, in which our F1-score is
0.932, achieving the state-of-the-art performance. In addition,
our running speed is about 8 frames per second (FPS) which
is near-real-time processing. The experiment results indicate
that our method has a great possibility for assisting bifurcation
lesion surgery.

Our method can implement pixel-level dual-guidewire seg-
mentation, whereas cannot distinguish the two guidewires
specifically. In clinical therapy, the two guidewires may be
very close to each other or even cross. In the future work,
we will concentrate on the instance segmentation of dual-
guidewire, which will further assist the interventional therapy
of coronary bifurcation lesion.
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