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Abstract

Learning effective interactions between multi-
modal features is at the heart of visual question
answering (VQA). A common defect of the ex-
isting VQA approaches is that they only consider
a very limited amount of interactions, which may
be not enough to model latent complex image-
question relations that are necessary for accurately
answering questions. Therefore, in this paper, we
propose a novel DCAF (Densely Connected At-
tention Flow) framework for modeling dense in-
teractions. It densely connects all pairwise lay-
ers of the network via Attention Connectors, cap-
turing fine-grained interplay between image and
question across all hierarchical levels. The pro-
posed Attention Connector efficiently connects the
multi-modal features at any two layers with sym-
metric co-attention, and produces interaction-aware
attention features. Experimental results on three
publicly available datasets show that the proposed
method achieves state-of-the-art performance.

1 Introduction
Recently, the Visual Question Answering (VQA) task has
gained increasing attention in both computer vision and natu-
ral language processing communities. It aims at answering a
natural language question about a given image. The progress
of VQA has been mainly brought about by two lines of works,
the development of better attention mechanisms and the im-
provement in multi-modality fusion approaches.

Attention mechanisms have been widely used in VQA, and
a number of methods have been developed so far. These
methods are categorized into two classes. One is the class
of methods that use the question as guidance to generate at-
tention on image regions (i.e. question-guided attention). For
instance, Yang et al. [Yang et al., 2016] proposed stacked at-
tention network that produces multiple attention maps on the
image sequentially. Kim et al. [Kim et al., 2016] extended
this idea by introducing residual learning to produce better
attention. The other is the class of methods that additionally
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consider image-guided attention on question words (i.e. co-
attention) [Lu et al., 2016; Nguyen and Okatani, 2018]. Co-
attention mechanisms can model bidrectional inter-modality
information flow, thus perform better than question-guided
attention mechanisms. In particular, Nguyen et al. [Nguyen
and Okatani, 2018] proposed a novel co-attention mechanism
that can model interactions between any image region and
any question word, achieving state-of-the-art performance on
VQA 1.0 and VQA 2.0 datasets.

Meanwhile, multimodal fusion approaches have been ex-
plored extensively. In early studies, simple fusion methods
such as the element-wise add, product, and concatenation of
the visual and language features are employed. To capture
high-level interactions between the two modalities, some bi-
linear pooling methods, including MCB [Fukui et al., 2016],
MLB [Kim et al., 2017], MUTAN [Ben-Younes et al., 2017]
and MFB [Yu et al., 2017], were proposed. In [Nguyen
and Okatani, 2018], the authors proposed Dense Co-attention
Network (DCN), which fuses multi-modal features by multi-
ple applications of the symmetric co-attention.

We point out that the existing VQA approaches only per-
form a limited amount of interactions between language
and vision domains. Some methods [Fukui et al., 2016;
Kim et al., 2017; Yu et al., 2017; Anderson et al., 2018]
perform only one interaction (i.e. multimodal fusion) in the
latter model stage, and the fused features are then fed into
the classifier to obtain the scores of candidate answers. The
other methods [Yang et al., 2016; Nguyen and Okatani, 2018;
Gao et al., 2018] perform multi-step interactions by stacking
several interaction modules. However, such a design of stack-
ing multiple modules may impair gradient flow and feature
propagation, making networks harder to optimize. Conse-
quently, at most four stacked modules are employed in these
methods, which perform at most four interactions between
the two modalities. We argue that this can be a significant
limitation of the existing approaches. Limited interactions
possibly fail to model complex image-question relations that
are necessary for answering questions correctly.

Motivated by this, we propose a novel Densely Connected
Attention Flow (DCAF) framework for modeling dense inter-
actions between the visual and language modalities (see Fig.
1). Our DCAF framework possesses several additional image
and question encoding layers in the early model stage. These
layers produce image and question features of different hier-
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archies, and are densely connected, connecting every layer of
question encoding branch with every layer of image encoding
branch via Attention Connector (AC). In the AC module, the
symmetric co-attention [Nguyen and Okatani, 2018] is per-
formed to enable every interaction between any image region
and any question word. The attention outputs of all AC mod-
ules are collectively propagated to the end of the encoding
layers, and concatenated with the summation of all hierarchi-
cal features. Dense connections would incur a massive in-
crease in the number of the attention outputs, thus increase in
the representation size in subsequent layers (due to the concat
operation). To this end, we compress the attention outputs so
that they can be small enough to propagate. Our design of
DCAF not only greatly increases the number of interaction
interfaces between question and image but also facilitates in-
formation flow and gradient flow.

Our contributions are summarized as follows: (1) We pro-
pose a novel Densely Connected Attention Flow (DCAF)
framework for visual question answering. It can perform
dense multi-modal interactions, and capture fine-grained
multi-modal information. The dense interactions structure
is shown to be superior to other interactions structures (e.g.
sequential interactions structure). (2) We propose efficient
Attention Connector (AC) to connect two modalities, mod-
eling fine-grained interplay between image and question via
co-attention. AC also serves as skip-connector, which ef-
fectively connects shallow layers to deeper layers. (3) Ex-
tensive experiments conducted on the VQA 1.0, VQA 2.0
and TDIUC datasets show the effectiveness of the proposed
DCAF. Our approach outperforms the state-of-the-art meth-
ods on the three datasets.

2 Related Work
2.1 Attention Mechanisms
Attention mechanisms allow the models to focus on the most
relevant image regions and question words. Initially, [Chen et
al., 2015] proposed one-step attention to locate relevant im-
age regions. Furthermore, [Yang et al., 2016; Xu and Saenko,
2016] proposed multi-step attention to update relevant im-
age regions and infer the answer progressively. Addition-
ally, [Lu et al., 2016; Nguyen and Okatani, 2018] proposed
co-attention, which locates not only the relevant image re-
gions but also question words. Recently, [Fukui et al., 2016;
Kim et al., 2017] used bilinear fusion in attention mecha-
nisms to generate more accurate attention weights. Different
from these works, we embed the co-attention mechanism into
Attention Connectors and apply them across all hierarchical
levels. Besides, we also employ the co-attention mechanism
similar to [Yu et al., 2017] in the latter model stage.

2.2 Multimodal Fusion
In early VQA methods, simple concatenation or element-wise
product between visual and language features are used for
multi-modal feature fusion. Recently, bilinear pooling meth-
ods are introduced for VQA to capture high-level interactions
between visual and language features. Multimodal Compact
Bilinear Pooling (MCB) [Fukui et al., 2016] projects the vi-
sual and language features into a higher dimensional space
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Figure 1: Overview of the proposed Densely Connected Attention
Flow (DCAF) framework. AC denotes Attention Connector, which
connects the multi-modality features with attention and outputs at-
tention features. DCAF models dense interactions between vision
and language by multiple AC modules. Note that the figure shows
2-layer DCAF.

and convolves them in the Fast Fourier Transform space. In
Multimodal Low-rank Bilinear (MLB) [Kim et al., 2017], the
multi-modal features are obtained as the Hadamard product
of the linear-projected visual and language features. Point-
ing out that MLB suffers from slow convergence rate, Yu et
al. [Kim et al., 2017] proposed Multimodal Factorized Bi-
linear (MFB) pooling, which computes fused features with
a matrix factorization trick to reduce the number of parame-
ters and improve convergence rate. Ben-younes et al. [Ben-
Younes et al., 2017] proposed the Multimodal Tucker Fu-
sion (MUTAN), which unifies MCB and MLB into the same
framework. The weights are decomposed according to the
Tucker decomposition. MUTAN achieves better performance
than MLB and MCB with fewer parameters. In [Nguyen
and Okatani, 2018], the authors proposed a novel co-attention
mechanism for improved fusion of visual and language fea-
tures. It considers every interaction between any image re-
gion and any question word, and can be stacked to enable
muti-step interactions between the image-question pair. Un-
like the above methods that only perform a limited amount of
interactions sequentially, our method models cross-modal in-
teractions between any two hierarchical levels, forming dense
interactions.

3 Proposed Approach
Our DCAF framework for VQA is depicted in Fig. 1. Given
the input question and image, the feature extraction module
produces the initial question and image features. The DCAF
module further abstracts the features through several encod-
ing layers, and performs the interaction between question and
image features at arbitrary layers. Following the DCAF mod-
ule, a self-attention mechanism is used to learn the attention
weights of every word in the question, and obtain the attended
question representation (using a weighted sum of the word
vectors). Then, a visual attention mechanism is performed to
produce the attended image representation. The two repre-
sentations are merged via element-wise product, then fed into
the classifier to determine the final answer prediction.

3.1 Feature Extraction
Similar to [Anderson et al., 2018], we extract the initial image
features using Faster RCNN [Ren et al., 2015]. We select a
total of top 36 object proposals whose 2048 dimensional fea-
ture vectors are obtained from the ROI pooling layer in the
Region Proposal Network. The obtained visual region fea-
tures (with `2 normalization) are denoted as v0 ∈ R2048×36.
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Figure 2: Illustration of the proposed Attention Connector (AC).
AC takes as inputs question and image features from any two lay-
ers, then performs co-attention mechanism, and finally produces the
compressed attention features that can be propagated to deeper lay-
ers of the network.

To extract the question features, we first pad or truncate all
questions to the same length 15. Then, each word is embed-
ded into a 300-dimensional GloVe vector [Pennington et al.,
2014]. The word embeddings of the question are inputted
into a two-layer GRU with residual connections and batch
normalization on the output of each layer, producing the ini-
tial question representation q0 ∈ R300×15.

3.2 Densely Connected Attention Flow
The DCAF module is the core part of our proposed frame-
work. It has some encoding layers. We adopt a GRU with 300
hidden units as the question encoding layer and the non-linear
layer used in [Anderson et al., 2018] as the image encoding
layer. The i-th non-linear layer is defined as follows:

vi
′ = tanh(Wivi−1), g = sigmoid(Wi

′vi−1) (1)

vi = vi
′ � g (2)

where Wi,Wi
′ ∈ R2048×2048 are learned weights, � rep-

resents element-wise product, and vi−1, vi ∈ R2048×36 are
the input and output of the i-th non-linear layer respectively.
The matrix g acts as a gate on the intermediate activation vi′,
which is inspired by similar gating operations within GRUs
and LSTMs. For clearness, we do not explicitly represent the
bias term in our paper.

Starting from the initial image and question features, the
encoding layers in two branches generate a series of hierar-
chical features, v0, v1, ..., vk and q0, q1, ..., qk, respectively. k
denotes the number of the layers. We apply our Attention
Connectors to densely connect all hierarchical features of im-
age and question:

q̂ij , v̂ij = AC(qi, vj) ∀ i, j = 0, 1, · · · , k (3)

where AC represents the Attention Connector module (see
Fig.2; explained later). q̂ij ∈ R1×15 and v̂ij ∈ R1×36 rep-
resent the generated attention features for each ij connec-
tion. In total, we obtain (k + 1)2 attention features for each
word and each region. Intuitively, these features capture fine-
grained relationships between the image and question at dif-
ferent stages of the network flow. For each branch, we sum up
all hierarchical features, then concatenate them with all atten-
tion features as the final output. These skip connections share
the similar motivation with DenseNet [Huang et al., 2017].
The process is denoted as

qsum = q0 + α1q1 + · · ·+ αkqk (4)
vsum = v0 + β1v1 + · · ·+ βkvk (5)
qout = [qsum ; q̂00 ; q̂01 ; · · · ; q̂kk] (6)
vout = [vsum ; v̂00 ; v̂01 ; · · · ; v̂kk] (7)

where α1, α2 · · ·αk, β1, β2 · · ·βk are learned scale param-
eters initialized as 0, and [· ; ·] represents the concatena-
tion manipulation. qout ∈ R[300+(k+1)2]×15 and vout ∈
R[2048+(k+1)2]×36 are the outputs of the DCAF module.

Attention Connector
The proposed Attention Connector (AC) is illustrated in Fig.
2. It connects any two encoding layers of image and question
in the DCAF module, and captures fine-grained interplay be-
tween image and question. The initial step in this module
is a symmetric co-attention mechanism. Given qi and vj , an
affinity matrix is first constructed via:

Aij = vj
>Wijqi (8)

where Wij ∈ R2048×300 is a learnable weight matrix. Next,
we derive attention maps on question words and attention
maps on image regions:

Aqi = softmax(A>ij), Avj
= softmax(Aij) (9)

Note that each column of Aqi and Avj
contains a single at-

tention map. The attended representations are computed as
follows:

q̃ij = qi ⊗Aqi , ṽij = vj ⊗Avj
(10)

where⊗ represents matrix multiplication. q̃ij ∈ R300×36 and
ṽij ∈ R2048×15 are the attended question feature and image
feature respectively. In practice, we use multi-glimpse atten-
tion mechanism. Specifically, we construct multiple affinity
matrixes, leading to multiple attended features. We average
the multiple attended features to obtain the final attended fea-
tures. In Sec. 4.2, we experiment with different number of
glimpses to obtain the optimal setting.

The attended features are fused with the original features
of the other modality by concatenation and then compressed
to low-dimensional space by a single linear layer (FC):

q̂ij = FC([qi ; ṽij ]), v̂ij = FC([vj ; q̃ij ]) (11)

where q̂ij , v̂ij are the outputs of AC. We compress the fea-
tures so that the representation size in subsequent layers
would not increase massively, as mentioned in Sec. 1. The
output dimension of each word and each region is set to 1, as
it performs best in our experiments (see Table 1).

3.3 Attention Mechanisms & Answer Prediction
In this section, we introduce the attention mechanisms (in-
cluding the textual self-attention and visual spatial attention)
and the answer prediction.

Given the outputs qout and vout of the DCAF module, we
first perform self-attention mechanism on qout to obtain ag-
gregated representation of the whole question:

sQ =WQ
2 ReLU(WQ

1 qout) (12)

αQ = softmax(sQ) (13)

q̃ =
∑15

i=1α
Q
i qouti (14)
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where qout = {qout1 , qout2 , ..., qout15} ∈ R[300+(k+1)2]×15,
WQ

1 ,W
Q
2 are learnable weights, sQ is the scores of words,

αQ is attention weights, and q̃ ∈ R300+(k+1)2 is vector rep-
resentation of the question.

We then perform visual attention mechanism on vout to ob-
tain aggregated representation of the image:

sIi =W Ifa([vouti ; q̃]) (15)

αI = softmax(sI) (16)

ṽ =
∑36

i=1α
I
i vouti (17)

where vout = {vout1 , vout2 , ..., vout36} ∈ R[2048+(k+1)2]×36.
fa(·) denotes the gated tanh function [Anderson et al., 2018]
with parameters a. It is used to project the concatenated vec-
tor to 512-dimensional space. W I ∈ R1×512 is learnable
weights, sI is the scores of image regions, αI is attention
weights, and ṽ ∈ R2048+(k+1)2 is vector representation of
the image.

After obtaining q̃ and ṽ, we project them to the same di-
mensional space (512 dimensions) using two gated tanh func-
tions with different parameters, respectively. The features
are then fused via element-wise product. Similar to [Ben-
Younes et al., 2017], we treat VQA as a classification prob-
lem. The fused multi-modal features are fed into the classifier
composed of 2-layer MLP with ReLU non-linearity function
between the layers and a final softmax function, outputing a
class probability vector. Cross-entropy loss is adopted as the
objective function for training the VQA system.

4 Experiments
4.1 Setup
Datasets. We use the VQA 1.0 [Antol et al., 2015], VQA
2.0 [Goyal et al., 2017] and TDIUC [Kafle and Kanan, 2017]
datasets for our experiments. VQA 1.0 is built from 204,721
MSCOCO images with human annotated questions and an-
swers. The dataset is divided into three splits: train (248,349
questions), val (121,512 questions) and test (244,302 ques-
tions). VQA 2.0 is an updated version of VQA 1.0. It con-
tains more samples (443,757 train, 214,354 val, and 447,793
test questions) and is more balanced in term of language bias.
TDIUC is a larger dataset that contains 1,654,167 samples
and 12 question types. For VQA 1.0 and 2.0, we use the eval-
uation protocol of [Antol et al., 2015] to evaluate the model.
For TDIUC, we calculate the simple accuracy for each ques-
tion type and Arithmetic/Harmonic mean-per-type (MPT).
Implementation details. As in [Yu et al., 2017], we choose
the most frequent 3,000 answers in the train and val sets to
form the set of candidate answers. The model is trained using
the AMSGrad [Reddi et al., 2018] optimizer with an initial
learning rate of 6× 10−4. The batch size is set to 128.

4.2 Ablation Studies
We conduct ablation studies on the VQA 2.0 to investigate
factors that influence the performance of our proposed DCAF
network. The models are trained on the train set and evaluated
on the validation set. The results are shown in Table 1.

We first investigate the influence of k (i.e. the number
of stacked encoding layers). As shown in the first block of

Component Setting Accuracy

None (baseline) 63.8
# of stacked 1 65.3
layers 2 65.7

3 65.6
2 65.4

# of glimpses 4 65.7
8 65.5

Dimension
1 65.7
2 65.6
4 65.5

Dense Full model 65.7
interactions w/o dense interactions 64.5

Table 1: Ablation studies of our proposed DCAF on the VQA 2.0
val set.

Model MLB(2) MUTAN(1) DCN(3) DCAF(1)
#Par. 33.8M 36.2M 31.9M 32.3M
Acc. 63.3 63.6 64.9 65.3

Model MLB(4) MUTAN(4) DCN(6) DCAF(2)
#Par. 51.4M 53.8M 51.3M 53.5M
Acc. 63.3 63.7 64.7 65.7

Table 2: Comparison of different interaction structures on the VQA
2.0 val set. The number in brackets indicates the number of stacked
layers.

SCAF-1 SCAF-2 SCAF-3 DCAF
Sceen Recognition 94.8 93.6 93.9 95.0
Sport Recognition 96.6 95.5 95.7 96.7
Color Attributes 75.7 70.0 71.4 74.9
Other Attributes 61.4 55.3 57.5 60.4
Activity Recognition 61.9 54.0 56.6 62.8
Positional Reasoning 41.8 31.9 47.4 44.4
Object Recognition 89.4 90.4 88.1 90.2
Absurd 92.7 98.1 98.1 95.0
Utility&Affordances 44.1 45.5 48.3 48.3
Object Presence 96.2 97.1 95.5 96.7
Counting 59.3 55.5 54.9 62.9
Sentiment 71.8 65.5 67.3 72.7
Overall Accuracy 86.9 87.1 86.8 88.0

Table 3: Comparison of different DCAF variants under different
types of questions on the TDIUC test set.

the table, our models outperform the baseline by a signifi-
cant margin of 1.5%∼1.9%. This demonstrates the effective-
ness of the proposed DCAF. The best result is obtained when
k = 2. There is a slight performance drop when employing
3-layer DCAF. We then investigate the influence of the num-
ber of glimpses. It can be seen from the table that 4 glimpses
attains the best performance. 8 glimpses incurs a massive in-
crease in the number of parameters (53.5M→75.6M), making
the network harder to optimize. The third block of the ta-
ble shows the impacts of the dimension of attention features.
Increasing the dimension from 1 to 4, produces a 0.2% per-
formance drop. When we set the dimension to be 8, 16 and
32, the performance is 65.4%∼65.7% (not reported in Table
1 due to the lack of space). Considering the efficiency, we set
the dimension to be 1 in our model. The last block of the ta-
ble shows the effect of dense interactions. We remove dense
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Model test-dev test-std

Yes/No Number Other Overall Overall
Bottom-up [Anderson et al., 2018] 81.8 44.2 56.1 65.3 65.7
DCN [Nguyen and Okatani, 2018] 83.5 46.6 57.3 66.9 67.0
DA-NTN [Bai et al., 2018] 84.3 47.1 57.9 67.6 67.9
Counter [Zhang et al., 2018] 83.1 51.6 59.0 68.1 68.4
CoR [Wu et al., 2018] 85.2 47.9 59.2 68.6 69.1
MFH+Bottom-Up [Yu et al., 2018] 84.3 49.6 59.9 68.8 -
BAN+Glove [Kim et al., 2018] 85.5 50.7 60.5 69.7 -
DCAF (ours) 86.0 50.5 61.1 70.2 70.4

Table 4: Comparison with previous state-of-the-art methods on the VQA 2.0 dataset.

Model test-dev test-std

Yes/No Number Other Overall Overall
QGHC [Gao et al., 2018] 83.5 38.1 57.1 65.9 65.9
VKMN [Su et al., 2018] 83.7 37.9 57.0 66.0 66.1
MFH [Yu et al., 2018] 85.0 39.7 57.4 66.8 66.9
DCN [Nguyen and Okatani, 2018] 84.6 42.4 57.3 66.9 67.0
DA-NTN [Bai et al., 2018] 85.8 41.9 58.6 67.9 68.1
CoR [Wu et al., 2018] 85.7 44.1 59.1 68.4 68.5
DCAF (ours) 86.8 45.5 61.0 69.9 70.0

Table 5: Comparison with previous state-of-the-art methods on the VQA 1.0 dataset.

Question Type RAU CATL-QTAW CoR DCAF
[Kafle and Kanan, 2017] [Shi et al., 2018] [Wu et al., 2018] (ours)

Sceen Recognition 94.0 93.8 94.7 95.0
Sport Recognition 93.5 95.6 95.9 96.7
Color Attributes 66.9 60.2 74.5 74.9
Other Attributes 56.5 54.4 60.0 60.4
Activity Recognition 51.6 60.1 62.2 62.8
Positional Reasoning 35.3 34.7 40.9 44.4
Object Recognition 86.1 87.0 88.8 90.2
Absurd 96.1 100.0 94.7 95.0
Utility and Affordances 31.6 31.5 37.4 48.3
Object Presence 94.4 94.6 95.8 96.7
Counting 48.4 53.3 58.8 62.9
Sentiment Understanding 60.1 64.4 67.2 72.7
Overall (Arithmetric MPT) 67.8 69.1 72.6 75.0
Overall (Harmonic MPT) 59.0 60.1 65.8 69.9
Overall Accuracy 84.3 85.0 86.9 88.0

Table 6: Comparison with previous state-of-the-art methods on the TDIUC dataset.

connections while retain the encoding layers in the DCAF
module. Such modifications decrease the accuracy by 1.2%.
This indicates that the efficacy of DCAF is due to not only
the depth of the network (i.e., stacked encoding layers) but
also dense interactions. Furthermore, the dense interactions
contribute more to the final performance compared with the
stacked encoding layers (1.2% vs. 0.7% gain).

Some methods [Yang et al., 2016; Nguyen and Okatani,
2018] perform sequential interactions by stacking several in-
teraction layers/modules. We compare this interaction struc-
ture with our dense interactions in Table 2. We implement the
stack structure of MLB and MUTAN. The stack structure is
proposed by SAN [Yang et al., 2016], which stacks multiple
attention layers. DCN [Nguyen and Okatani, 2018] is imple-
mented by stacking multiple symmetric co-attention layers.

As shown in Table 2, with a similar number of parameters,
the dense interaction structure models more interactions and
achieves better performance than the sequential interaction
structure. Furthermore, for the sequential interaction struc-
ture, there is no or a slight performance gain when stack-
ing more layers (e.g. 0%, 0.1% and -0.2% gains for MLB,
MUTAN and DCN, respectively). While our DCAF(2) can
achieve a 0.4% improvement compared with DCAF(1). This
phenomenon is in line with our intuition. Our structure con-
tains dense connections, which are helpful to gradient flow
and information flow. This enables us to exploit more poten-
tiality of a large network to boost the performance.

In Table 3, we compare the performance of different DCAF
variants under different question types. We develop three
variants, and they have different sparse connections between
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Figure 3: Visualization of attention weights. We highlight the top 4 boxes in each picture and top 4 words in each question using different
colors. The box or word highlighted in red has the highest attention weight. The boxes or words highlighted in orange, blue, and green have
descending attention weights. The weight value of each box is also shown in the picture. Best view in color.

the encoding layers. The first variant SCAF-1 only connects
the encoding layers at the same hierarchical level (i.e. con-
necting q0/v0, q1/v1, and q2/v2). The second variant SCAF-
2 has cross-hierarchical connections (i.e. connecting q0/v1,
q1/v0, q1/v2, and q2/v1). The third variant SCAF-3 has dif-
ferent cross-hierarchical connections (i.e. connecting q0/v2,
and q2/v0). From the table, we can find that each variant
has its unique ability to answer a particular type of questions.
For question type of “Attributes”, SCAF-1 outperforms other
variants and DCAF. For question type of “Positional Rea-
soning”, SCAF-3 performs best. These variants show dif-
ferent strengths on different types of questions. In contrast,
DCAF integrates the three types of connections above, form-
ing dense connections. It inherits the strengths of the vari-
ants with sparse connections to a certain extent, and capture
fine-grained multi-modal information, thus achieving the best
performance in overall accuracy.

4.3 Comparison with State-of-the-arts

In this section, we compare our single DCAF model with
the state-of-the-art models on three datasets. Firstly, Table
4 shows the results on the VQA 2.0 dataset. Remarkably,
our approach outperforms other state-of-the-art methods in
overall accuracy and all question types except for “Number”.
Secondly, Table 5 shows the results on the VQA 1.0 dataset.
Compared with the most recent state-of-the-art model CoR
[Wu et al., 2018], our single DCAF model achieves a new
state-of-the-art result of 70.0% on test-std set. Thirdly, Table
6 shows the results on the TDIUC dataset. DCAF improves
the overall accuracy of the state-of-the-art CoR from 86.9%
to 88.0%. In particular, there is an improvement of 10.9%
in “Utility and Affordances” and 5.5% in “Sentiment Under-
standing”. In summary, DCAF achieves consistently the best
performance on all three datasets.

4.4 Qualitative Evaluation
In Figure 3, we visualize four object regions with the high-
est attention weights in each picture and four words with the
highest attention weights in each question. The first column
shows two visualization examples from our model. We can
see that the model focuses on relevant object regions and
words, thus generates the correct answers. To better under-
stand the effect of attention features, we remove the attention
features when visualization. As shown in the second column,
the model pays attention to some background regions or ne-
glects some relevant objects (e.g. basketball hoop), obtaining
the wrong answers. This shows these attention features can
capture some fine-grained information, and help to locate im-
portant regions accurately. In the third column, we show the
visualization results from 3-layer DCN model as comparison.
Some failure examples are shown in the last column. Both
failure cases are due to wrong attention regions.

5 Conclusions
In this paper, we present a novel framework Densely Con-
nected Attention Flow (DCAF) for VQA. The core of the
framework is the DCAF module, which is designed to enable
dense image-question interactions. The proposed Attention
Connectors are used to densely connect image and question
features at arbitrary layers in the DCAF module and model
the interaction between image and question. The experimen-
tal results on the VQA 1.0, VQA 2.0 and TDIUC datasets
confirm the effectiveness of the proposed framework, and
DCAF outperforms state-of-the-art approaches on the three
datasets. DCAF is applicable to other multimodal tasks.
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