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Abstract—Accurate localization of robots in a specific 
environment often requires the cooperation of multiple sensors, 
and how to establish a more general data fusion model is always 
a difficult problem. For the localization of robot fish in an 
indoor pool environment, this paper proposes an adaptive 
fusional algorithm based on fuzzy inference of dynamic weights. 
This paper firstly constructs a confidence probability table of 
sensors’ signals based on the calibration data sets of BLE and 
UWB nodes at different distances, as the basis for updating the 
weights of the BLE or UWB nodes; secondly, the data obtained 
by each node in a single sampling period in the robot fish 
movement is vectorized to form a judgment matrix, and then the 
estimated distance is obtained by fuzzy inference together with 
the sensor weight; finally, the coordinates are calculated by the 
four-point positioning method. In this paper, more than 40 sets 
of experiments have been carried out with a simplified 
carangidae-like robot fish. The results show that the average 
positioning error is about 0.189m, which is 88.3% and 31.8% 
lower than that of using BLE only and using UWB only. In this 
paper, the fusional positioning method based on statistics 
combines the advantages of different sensors to reduce the data 
scale and achieve data denoising while fusing sensor data, which 
provides a reference for indoor positioning of robot fish and 
multi-sensor data fusion. 
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I. INTRODUCTION  

As people's expectations for the intelligentization of 
mobile robots increase, as one of the most critical 
technologies for mobile robots, the research on autonomous 
navigation technology has become particularly important. 
The so-called "positioning" refers to the process of 
determining the robot’s position in its working environment[1]. 

The biomimetic robot fish, as the combining point of 
robot technology and fish propulsion mechanism, has rich 
research significance and broad application prospects, and it 
also has high requirements for precise positioning technology. 
The research on robot fish has a long history. The 
Massachusetts Institute of Technology (MIT) successfully 
developed the world's first imitated tuna robot fish (Robotuna) 
[2]. Its appearance was the beginning of robot fish research. In 
recent years, there have been endless researches on robot fish: 
the tuna-like fish Tunabot developed by Zhu et al. has a 
swimming speed of 4 BL/s, and quantitatively analyzed the 
difference in the tail flow field at different frequencies[3]; 
Muralidharan et al. used shape-memory alloy to drive the 
sub-trout robot fish, which can restore the real fish swimming 
posture to the greatest extent[4]; Marcin et al. systematically 
explored the influence of fluid resistance on the mechanical 
structure design of robot fish in underwater navigation[5]. 

Different from traditional robot positioning on land, the 
indoor positioning of robot fish often needs to consider the 
instability of the robot fish during movement and the 
particularity of the indoor pool environment. Wang et al. used 
cameras and inertial measurement units, combined with 
Monte Carlo positioning, to realize the limited range 
positioning of micro underwater robots[6]; Novak et al. 
deployed sound sources in the robot fish and its water tank 
and designed the location algorithm based on the spectrum 
ratio to realize the spatial location of robot fish[7]. Zheng et al. 
used pressure sensors to construct a lateral line sensing 
system, and calculated the robot fish motion trajectory 
through the obtained flow field information[8]. 

At present, there are still the following difficulties in the 
positioning of robot fish in an indoor pool environment: 1) 
The types of available sensors are limited. In the experimental 
pool, GPS is difficult to achieve accurate positioning, and 
positioning devices such as DVL are poorly adaptable and 
basically cannot be used; 2) Data fluctuations caused by robot 
fish movement. Different from the stable motion state of 
indoor robots, robot fish relies on high-frequency fluctuations 
to achieve advancement. This motion law adds additional 
noise to the sensor data; 3) The complexity of the system. The 
positioning system under the experimental pool often needs 
to have both low construction cost and good versatility. 

The BLE positioning and UWB positioning technologies 
used in this article are the most commonly used technical 
methods in indoor positioning scenarios in recent years. BLE 
positioning is a technology based on the Bluetooth low 
energy transmission protocol to measure the position of the 
target based on the signal attenuation model; and the ultra-
wideband technology (UWB) is a new technology, which 
transmits data by sending and receiving extremely narrow 
pulses with less than nanoseconds, has the advantages of 
strong anti-interference and high positioning accuracy. It is a 
common method for indoor positioning at present. 

Based on the previous work [9], this paper uses BLE and 
UWB technology to implement an indoor robot fish 
positioning system based on fuzzy inference of dynamic 
weights. This paper considers the sensitivity of BLE and 
UWB nodes to different distance ranges. According to the 
calibration data set obtained by sampling the sensor, the 
distance ambiguity interval is delineated and the confidence 
probability table of BLE-UWB in different intervals is 
constructed, and the fuzzy inference algorithm with dynamic 
changes in weights is designed to achieve adaptive robot fish 
positioning in different ranges. The advantage of the 
positioning method in this paper is to make full use of the 
signal features of BLE and UWB at different distances to 
carry out probability-based sensor fusion, which realizes the 



adaptive localization based on automatic sensor weight 
change according to the distribution of received signal 
strength during the movement of the robot fish.  

II. MECHANICAL STRUCTURE AND SENSING SYSTEM 

A simplified carangidae-like robot fish is used as the 
positioning experiment object in this article, and the fish body 
structure is shown in Fig. 1. The fish body as a whole includes 
two parts: the main fish cabin and the driving structure. The 
main fish cabin is streamlined. The main control circuit board 
equipped with the communication module is installed in the 
cabin, which drives the UWB positioning tag and the steering 
gear. The tail made of nylon can swing within ±45°; other 
peripheral sensing devices include the BLE waterproof 
positioning tag on the top of the fish, and the SMA antenna 
used to receive signals from each UWB node. The 
communication of the system is shown in Fig. 2. 

 
Fig. 1 Fish body mechanical structure and sensor layout 

 
Fig. 2 The overall communication architecture 

III. POSITIONING SYSTEM DESIGN 

This part will focus on the basic positioning principle used 
in this article, which includes the process of constructing the 
sensor's confidence probability table through ranging 
calibration, and the design of the fuzzy inference positioning 
algorithm with dynamic weights within the sampling period. 

A. Four-point positioning 

This paper uses four BLE nodes and four UWB nodes to 
collect sensor data to calculate the final coordinates of the fish. 
Theoretically, it is as shown in Fig. 3(a).  

 

 
(a)                                (b)                                 (c) 

Fig. 3 Schematic diagram of four-point positioning method (a) 
Ideal situation. (b) Two circles intersect. (c) Two circles do not 

intersect. 

If we measure the distance from each node to the robot 
fish and make a circle with the distance as the radius, then 
take any three circles, they must intersect at a point, and the 
intersection is the location of the fish. However, in actual 
situations, due to the sensor measurement error, the 
relationship between the two circles may be as shown in Fig. 
3(b) or 3(c). In this case, the actual coordinates need to be 
estimated based on the proportional relationship. 

Suppose two circles intersect at A  and  B , as shown in 
Fig. 3(b). The position of each node is known, PA  and AQ   
can be obtained according to the Euclidean distance formula. 
According to the Pythagorean theorem, we can obtain PC , 
and estimate the coordinates of the robot fish according to (1). 
Where C  is the horizontal (vertical) coordinate of the fish. 
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Suppose that the two circles do not intersect, as shown in 
Fig. 3(c). According to the ratio of the radii of the two circles, 
the sum of the radii of the two circles is used to replace PQ  
in (1), and the radius of the circle P  is used to replace PC , 
so as to estimate the point C  coordinates. 

B. Sensor calibration 

This section first samples the data of BLE and UWB 
sensors at different distances to observe the distribution of 
ranging errors, and compares the actual performance curve 
with the theoretical curve, then obtains the sensing features 
of the two types of sensors. 

1) BLE sensor calibration 
This article uses a Beacon device that supports the BLE 

low-power protocol as a label and is placed on the robot fish; 
the other four receiving nodes are arranged at different 
locations around the pool to obtain the signal sent by the BLE 
Beacon in real time. The relationship model between signal 
strength and actual distance can be expressed as (2) . 
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In (2), cr  is the distance between the sending node and 
the receiving node ( m ). tP  is the transmit power ( dBm ), rP  
is the receive power ( dBm ).  In this article, the transmission 
power is selected as -85dBm, a large amount of data is 
sampled at different distances and the average value is taken, 
then the sampling average point and the fitting curve in the 
actual pool environment are shown in Fig. 4. 
 

 
Fig. 4 Sampling point and fitting curve when transmitting power is 

-85dBm 



According to Fig. 4, it can be clearly seen that within the 
distance range of 1.2m, the actual signal attenuation is more 
consistent with the theory and has a better distance 
discrimination. Fitting the signal strength value and distance 
within 1.2m to get the relationship model as (3). 
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According to (3), the actual sampled signal strength is 
converted into the measured distance, and compared with the 
actual distance to observe the ranging performance of BLE, 
as shown in Fig. 5(a). It can be seen that within the range of 
0.3m, BLE has an average error of less than 0.15m. 
 

 
Fig. 5 BLE ranging performance (a) Comparison between the 

measured distance and the actual distance. (b) The distribution of 
the ranging error in different distance ranges. 

 

2) UWB sensor calibration 
This paper uses four UWB base station nodes and one 

UWB tag to form a positioning system. The DS-TWR 
bilateral two-way ranging algorithm is used to calculate the 
distance between each node and the robot fish, that is, the 
signal flight time is determined by signal transmission and 
response timestamp to obtain propagation distance. 

As in (4), where t  is the time measurement error, e  is 
the clock frequency deviation, t  is the actual flight time of 
the signal, ABt  is the response time difference between the 
two parties, and   is the ranging offset error caused by the 
antenna transmission and reception delay difference[10]. 
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Similarly, by sampling a large number of data at different 
distances and taking the average value, the measured distance 
and the actual comparison is as shown in Fig. 6(a), and Fig. 
6(b) reflects the distribution of the ranging error within 5m. 
It can be seen that as distance increases, the error increases, 
which is consistent with (4). Except in the range of (0.6,1.2), 
the average ranging error is basically stable below 0.3m. 
 

 
Fig. 6 UWB ranging performance (a) Comparison of measured 
distance and actual distance. (b) Distribution of ranging error in 

different distance ranges. 

C. Fuzzy inference fusion positioning 

It is clear to see from the calibration results that the 
performance of BLE and UWB ranging in different distance 
ranges is different. In this section, the confidence probability 
table of the measured sensor data will be constructed in 
reverse based on the sampled data set as the basis for the 
weight distribution of the fusion process. In the process of 
fuzzy inference positioning, the signal in every sampling 
period of the fish motion is described as a judgment matrix. 
The BLE and UWB sampling data will be respectively used 
as matrix components. The judgment matrix and the above 
weights are calculated to obtain each evaluation degree of the 
defined fuzzy interval divided by distance, and the sensor 
signal is weighted according to the evaluation result to obtain 
the final estimated robot fish coordinate. 

1) Confidence probability table 
Four typical distance values of 0.3m, 0.5m, 1.5m, and 

3.0m are selected to compare the ranging error between BLE 
and UWB. The 1000 sampled values obtained during the 
calibration process are randomly divided into five groups and 
the average error is calculated as shown in Fig. 7. It can be 
seen that at 0.3m and 0.5m, the BLE error is significantly 
lower than UWB, while at 1.5m and 3.0m, UWB is more 
accurate. At 3.0m, BLE has completely lost its effectiveness. 
 

 

 
Fig. 7 Comparison of the average ranging error between BLE and 

UWB at four typical distances 
 

However, in the actual positioning process, the credibility 
of each piece of sensor data is unknown. Therefore, this 
article adopts the method of constructing the confidence 
probability table of the sensing data based on the sampled 
data set, that is, dividing the real sensing data into fuzzy 
distance intervals with 0.05m intervals, and calculating the 
distance between each data and the actual distance. For error, 
whether the error is 0.15m or less is used as the criterion for 
judging whether a piece of data is credible, and all credible 
data are counted as the confidence probability of the sensor 
data interval. According to this method, the confidence 
probability table of BLE and UWB sensor data can be 
obtained as shown in Table 1.  

TABLE I.  CONFIDENCE PROBABILITY TABLE OF BLE AND UWB RANGING 

SENSING DATA 

Sensor 
type 

Confidence probability of measured distance ranges(m) 

(0,0.05] (0.05,0.1] (0.1,0.15] (0.15,0.2] … (1.35,1.4] 

BLE 1.000 1.000 0.972 0.904 … 0.184 

UWB 0.874 0.926 0.940 0.654 … 0.263 

Sensor 
type 

Confidence probability of measured distance ranges(m) 

(1.4,1.45] (1.45,1.5] (1.55,1.6] (1.6,1.65] … (4.95,5] 

BLE 0.094 0.089 0.132 0.052 … 0.002 

UWB 0.564 0.643 0.611 0.614 … 0.262 



2) Weight distribution method 
In the multi-sensor fusion problem, the weighting of 

multi-source sensing is an important step. In the robot fish 
positioning implemented in this paper, within a single 
sampling period (about 1 second), each BLE node can obtain 
about 15 pieces of reported data, and each UWB node can 
obtain about 12 pieces of data. In order to subsequently merge 
them to output the positioning results, the weights will be 
assigned according to the probabilities given in Table 1. Each 
pair of BLE and UWB base stations deployed around the pool 
will serve as a ranging unit at that location. After the weight 
is determined, the two will perform a weighting calculation 
based on the given weight to obtain the ranging results. 

Suppose that within a single sampling period, the average 
value of the ranging obtained by the BLE node is bd , and the 
average value of the ranging obtained by the UWB node is 

ud . Suppose the set of fuzzy intervals formed by all fuzzy 
intervals in Table 1 is U , and for each interval u U , the 

bd  subordinate interval is bu , and the ud  subordinate 
interval is uu , and the corresponding confidence probabilities 
are respectively bp  and up , then the weight A can be 
obtained by formula (5). 
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3) Fuzzy reasoning 
This section will build a fuzzy inference fusion model for 

the UWB and BLE nodes at the same place in the positioning 
process to obtain the distance value calculated based on 
probability statistics within the sampling period as close to 
the true value as possible, and finally obtain the robot fish 
coordinates by four-point positioning method. 

This paper divides the distance interval according to the 
actual experimental scene, taking the maximum value of 
6.25m as the maximum upper bound, and using 0.05m as the 
interval length to divide intervals: (0,0.05],  (0.05,0.1) ... 
(6.2,6.25]. For BLE and UWB sensor data during a single 
sampling period, we respectively count the number of sensor 
signals that fall into the above-mentioned corresponding 
interval. As (6) and (7) are the vectors composed of the 
distribution of the sensor data received by a BLE node and a 
UWB node in each distance range in a sampling period. 
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In (6) and (7), b  and u  are the sensor signal 
distribution vectors acquired by a single BLE and UWB node 
in the sampling period, bn  and  un are the number of signals,  

( 1,2,..., )ir i k  are the divided distance intervals, 
ir

  and 

ir
  are the number of sensing signals in the interval. 

The vectors obtained by  (6) and (7) can form a judgment 
matrix R as in (8), that is, the matrix constituted by the sensor 
information description vector of the BLE and UWB nodes 
at the same place in a single sampling period is used as the 
input of fuzzy fusional evaluation judgment. 

 [ ]b

u

R



  (8) 

In the previous article, the difference in distance 
perception between BLE and UWB has been clarified. 
Therefore, when performing fuzzy inference, the weights of 
BLE and UWB should be dynamically adjusted to obtain the 
current more accurate distance. In the previous subsection in 
(5), a method of automatically adjusting the weight according 
to the single-period sampling signal value has been proposed. 
Combining (8), the single-period multi-sensor fusion distance 
evaluation result matrix B can be obtained as (9). 
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(9) 

The actual significance of the evaluation result matrix B
obtained by (9) is to give the fuzzy interval evaluation result 
based on the signal statistical result in a single positioning 
period. According to the value of each element of the 
evaluation matrix, it can be seen that the actual distance 
between the current node and the robot fish is consistent with 
each distance interval, so as to better fuse the BLE and UWB 
signals to reduce the positioning error. 

4) Coordinate calculation 
After obtaining the single-period fuzzy evaluation result 

matrix B , it is also necessary to obtain the current distance 
in combination with the obtained sensor signal value. We can 
mix and average the distance values obtained from the 
corresponding distance interval between the BLE node and 
the UWB node at the same place in a period, and calculate it 
with the evaluation result matrix, as shown in (10), where d̂  
is the output final distance value, and  ( 1,2,..., )

ir
d i k  is the 

mean value of sensor data of each original interval. 
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IV. EXPERIMENTAL RESULTS AND EVALUATION 

The experimental environment in this paper is an indoor 
pool of 5m*4.13m, of which the actual range is 5m*3.95m. 
And we carried out more than 40 sets of experiments in the 
pool area as shown in Fig. 8. 

 
Fig. 8 The arrangement of peripheral sensors around the pool 

 
This section will evaluate the three aspects of node sensor 

data processing, fusion positioning, and positioning error 
analysis. Some experiment results will be listed. 



A. Data processing 

Fig. 9(a) and Fig. 9(c) show the original robot fish 
distance measured at a node in the two experiments and the 
distance calculated by fusion, and Fig. 9(b) and Fig. 9(d) 
show the changes in the weights of the two nodes in the 
corresponding process, with the video frame number as the 
abscissa. It can be seen that the fusion calculation distance is 
basically close to the actual distance, and the change is 
relatively stable. It is also worth noting that in the short range, 
the weight of the BLE node is dynamically increased in the 
short range where the UWB node ranging error is large, 
which effectively reduces the ranging error. 

 

 
                     (a)                                                    (b) 

 
     (c)                                                    (d) 

Fig. 9 Sensor data during positioning (a) Example experiment 1 
raw sensor data and fusion data. (b) Example experiment 1 The 

weight change of BLE and UWB. (c) Example experiment 2 raw 
sensor data and fusion data. (d) Example experiment 2 BLE and 

UWB weight change. 

B. Fusion positioning results 

Fig. 10 shows four groups of example experiments. The 
CSRT algorithm is used to track the robotic fish to obtain 
coordinates as a comparison and verification standard for the 
coordinates obtained by the positioning algorithm.  

Fig. 11 shows the four sets of example experiments 
positioning results corresponding to Fig. 10. The red curve in 
the figure is the actual fish swimming trajectory obtained by 
video processing, the yellow point is the coordinate point 
calculated using only the actual sensing distance data of each 
UWB node, and the blue point is calculated using only the 
actual sensing distance data of each BLE node. The 
coordinate points of the green triangle are the coordinate 
points of the robot fish calculated by the fuzzy fusion 
positioning algorithm of this paper. In order to see the 
positioning effect more intuitively, a sliding window of size 

two is used to simply filter the calculated coordinate points, 
and the green curve is the final fish swim trajectory obtained 
by the fusion positioning algorithm. 

C. Positioning error analysis 

In order to more intuitively see the positioning accuracy 
of the robot fish in each area of the experimental pool by each 
positioning method, this paper conducts uniform positioning 
data sampling at different locations in the entire pool, and 
obtains the spatial error distribution as shown in Fig. 12. 

Comparing the error distribution of only BLE positioning, 
only UWB positioning, and BLE-UWB fuzzy inference 
fusion positioning, it can be seen that when only BLE 
positioning is used, the distance measurement is completely 
invalid under the signal attenuation limit, so the closer the 
boundary position is, the distance measurement error The 
larger is; the sensing data acquired by UWB positioning in a 
single sampling period is limited, the positioning results 
fluctuate significantly, and the positioning effect in the near 
node range is not good; the BLE-UWB fuzzy fusion 
positioning reduces the positioning error in a large range, and 
is based on The method of periodic statistics naturally 
eliminates data fluctuations. Fig. 13 quantifies the error 
distribution of each method, counts the proportion of all 
experimental positioning points in different error ranges and 
calculates the average, and gives the distribution of 
positioning errors less than 0.75m. It can be seen that the 
UWB positioning error is concentrated in the range below 
0.45m, the total proportion is 81.84%, and the overall error 
average is 0.277m; the BLE-UWB fusion positioning error is 
mainly concentrated in the range less than 0.3m, accounting 
for 90.54%, the overall error average It is 0.189m. 

V. SUMMARY AND FUTURE WORK 

This paper proposes an indoor robot fish fusion 
positioning method based on dynamic weight fuzzy inference. 
The experimental results show that the positioning error of 
the method in this paper is significantly reduced compared to 
only using a single type sensor. The method in this paper not 
only improves the positioning accuracy, but also reduces the 
cost of data processing, provides a new reference for the robot 
fish indoor positioning, and also provides a new idea for 
multi-source sensor data fusion.  

In the next step, we will consider the system to explore 
the causes of positioning errors, and integrate more sensors 
such as pressure lateral line sensors and inertial measurement 
unit to assist in achieving more accurate robot fish indoor 
pool positioning. 

 
 

       
(a)                                           (b)                                             (c)                                           (d) 

Fig. 10 Video tracking results of four sets of example experiments (a) Example experiment 3. (b) Example experiment 4. (c) Example 
experiment 5. (d) Example experiment 6. 

 



 

 
(a)                                           (b)                                             (c)                                           (d) 

Fig. 11 Comparison of positioning effects of four example experiments (a) Example experiment 3. (b) Example experiment 4. (c) Example 
experiment 5. (d) Example experiment 6. 

 

           

 
(a)                                          (b)                                          (c) 

Fig. 12 Spatial distribution of positioning errors in different methods (a) Only BLE. (b) Only UWB. (c) BLE-UWB.

 

 
Fig. 13 BLE only, only UWB and BLE-UWB fusion positioning 

error proportion and average 
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