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Abstract—To correct the errors introduced by the 

approximation in the Min Sum (MS) algorithm with low 

complexity, we proposed Low-Complexity Corrected Min Sum 

(LCC-MS) algorithm. Aiming at the implementation bottleneck of 

the algorithm on the self-developed DSP (Universal 

Communication Processor, UCP), we optimized the algorithm 

process and expanded the instruction set of UCP. Therefore, the 

LDPC decoder based on LCC-MS algorithm is implemented on 

UCP, and verified on the chip that has been taped out. The 

verification results of the longest code length and the highest code 

rate show that the LCC-MS algorithm has a gain of 0.16dB when 

the bit error rate is 10-5 compared with the MS algorithm, and the 

decoder based on LCC-MS algorithm can process up to 149 code 

blocks in one time slot. 

Keywords—5G, LDPC decoder, LCC-MS, UCP 

I. INTRODUCTION 

Since the era of 2G communication, the channel coding and 
decoding technology has been one of the key technologies of the 
physical layer of the wireless communication system. An 
excellent channel coding and decoding scheme can provide 
greater data throughput, better transmission quality, lower 
transmission delay and lower energy consumption for wireless 
communication [1]. Among many channel coding and decoding 
technologies, Low Density Parity Check (LDPC) code is a block 
error-correction code with sparse parity check matrix proposed 
by Robert Gallager of MIT in his doctoral thesis [2] in 1962. 
LDPC code is suitable for almost all channels, and its 
performance is close to the Shannon limit. The decoding process 
of LDPC code is simple and can be implemented in parallel, 
which is suitable for hardware implementation. At the 87th 
meeting of 3GPP RAN1 held in Las Vegas in November 2016, 
LDPC code was selected as the error control coding scheme for 
data channel of 5G communication system [3]. Therefore, the 

research on LDPC encoding and decoding technology is of great 
significance for breaking through the performance bottleneck of 
5G communication systems. 

Regarding the implementation of LDPC code decoders, 
researchers in related fields have carried out a lot of researches. 
Mouhcine Razi et al. [4] use Horizontal Shuffled scheduling 
instead of the usually used flooding scheduling and implement 
it on the Digital Signal Processor. The results show that the 
proposed algorithm not only improves the decoding 
performance but also decreases the number of iterations. Aleksei 
Kharin et al. [5] implement an LDPC belief propagation decoder 
on a DSP+ARM platform. The effectiveness of the platform is 
demonstrated, with up to 2 decoding iterations executing in real 
time. Mouhcine Razi et al. [6] introduce two new improved 
versions of the hard-decision algorithms, the adaptative gradient 
descent bit-flipping and adaptative reliability ratio weighted 
gradient descent bit-flipping. The results of numerical 
simulations and DSP implementation reveal a faster 
convergence with a low processing time and a reduction in 
consumed memory resources. Gottfried Lechner et al. [7] 
present a high-performance implementation of a belief 
propagation decoder for decoding low-density parity-check 
codes on a fixed-point digital signal processor. The decoder can 
decode at 5.4Mbps on a Texas Instruments TMS320C64xx DSP 
running at 600MHz. 

Literature survey shows that the current decoding algorithm 
researches are mostly based on Belief Propagation (BP) 
algorithm, also known as Sum Product (SP) algorithm. The Min 
Sum (MS) algorithm greatly reduces the computational 
complexity of the SP algorithm at the cost of introducing errors. 
For the errors introduced by the MS algorithm, the existing 
researches have not proposed a correction scheme with lower 
complexity, so that the decoding algorithm cannot take into 



account the improvement of the data throughput performance 
and the bit error rate performance. 

To solve this problem, we proposed an improved algorithm 
and implemented an LDPC decoder based on the algorithm on 
our self-developed DSP (Universal Communication Processor, 
UCP). Compared with other existing researches, the main 
contributions of our works are: 

• We proposed Low-Complexity Corrected Min Sum 
(LCC-MS) algorithm to correct the errors introduced by 
the approximation in the MS algorithm with low 
complexity, to achieve better bit error rate performance 
while ensuring data throughput. 

• By considering the architectural characteristics of UCP, 
we optimized the algorithm process and expanded the 
instruction set of UCP, effectively solving the 
performance bottleneck of the algorithm on UCP. 

The rest of this paper is organized as follows: Chapter 2 
introduces the basic principles of the MS algorithm. Chapter 3 
presents the design of the LCC-MS algorithm. Chapter 4 and 
Chapter 5 introduce the hardware implementation of the check 
node and variable node, respectively. Chapter 6 and Chapter 7 
give the experimental results and conclusions, respectively. 

II. PRELIMINARIES 

The concept of LDPC code and its iterative decoding 
algorithm can be traced back to the early 1960s. Gallager 
defined regular LDPC codes in his doctoral thesis [2], so named 
because of the small number of non-zero elements in the parity 
check matrix. In 1981, Tanner proposed the bidirectional graph 
representation of LDPC codes [8], also known as Tanner graphs, 
which laid the foundation for the decoding algorithm of LDPC 
codes. In 1997, MacKay et al. proposed the Sum Product (SP) 
algorithm [9], also known as the Belief Propagation (BP) 
algorithm. The SP algorithm is an optimal LDPC decoding 
algorithm based on iterative decoding. This algorithm mainly 
consists of two steps: the update of the check node and the 
update of the variable node. To avoid a large number of 
multiplication operations, the decoding process is often 
performed in the log-likelihood domain in practical applications. 
The SP algorithm can be further optimized, such as the Min Sum 
(MS) decoding algorithm [10] that simplifies the check node 
processing. 

The MS algorithm includes three steps: initialization, check 
node processing, and variable node processing. 

A. Initialization 

We denote the output sequence of the LDPC encoder as nx , 

the symbol sequence received by the receiver as ky , the prior 

Log-Likelihood Ratio (LLR) of variable node n  derived from 

ky  as nF , and the LLR of variable node n  passed to check 

node m  as mnZ . This step assigns an initial value to each 

variable node, that is, the prior LLR: 
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B. Check node processing 

We denote the hard decision result of mnZ  as mn , the result 

of modulo-2 addition of mn  related to check node m  as m , 

and the LLR of check node m  passed to variable node n  as 

mnL . First calculates mn  and m  according to mnZ : 

 ( )mn mnsign Z =  (2) 
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The sign function in this paper means to get the sign bit in 
the complement representation. For each check node m , 

compute the LLR that it passes to each variable node connected 
to itself: 
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From the properties of the hyperbolic tangent function, the 

absolute value of 'tanh
2

mnZ
 is very close to 1 in most cases, so 

we can only keep the item with the smallest absolute value 
among the consecutive multiplication items, approximate the 
absolute value of the other items as 1, and only keep the signs of 
the other items: 
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C. Variable node processing 

We donate the LLR of check node m  passed to variable 

node n  as mnL , the posterior LLR of variable node n  as nZ , 

and the hard decision result of nZ  as n . For each variable node 

n , compute the LLR that it passes to each check node m  

connected to itself: 
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For each variable node n , compute its posterior LLR: 
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The bit sequence n  is obtained by hard decision based on 

posterior LLR: 

 ( )n nsign Z =  (8) 

The bit sequence n  is checked with the check matrix, and 

if the check is passed, the decoding result is output and the 
decoding ends. Otherwise, repeat the above iterative process 
until the maximum number of iterations is reached. 

III. LOW-COMPLEXITY CORRECTED MIN SUM ALGORITHM 

For the error introduced by the approximation in the MS 
algorithm, we propose the Low-Complexity Corrected Min Sum 
(LCC-MS) algorithm to correct the error with low complexity. 
It can be seen from (5) that the absolute value of other terms is 

approximated to 1 when mnL  is calculated. For the error 

introduced by this approximation, we determine a correction 
factor   through simulation to correct the error: 
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We denote the current iteration number as p , the number of 

check nodes as 0M , the number of variable nodes as 0N , the 

average number of check nodes connected to each variable node 

as 1M , the average number of variable nodes connected to each 

check node as 1N , and the number of correction factor 

multiplications required for each iteration as 1S , then 

 1 0 1S N M=  (10) 

Since the LLR transmitted in the iterative process is used for 
absolute value comparison and hard decision, multiplying the 
LLR by a constant greater than 0 does not affect the decoding 

result. So we can use mn

p

L


 instead of mnL  and mn

p

Z


 instead of 

mnZ  to participate in the iterative process. As a result, we can 

change (5) to 
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change (6) to 
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change (7) to 

 
( )

n n mn

p p p
m M n

Z F L

  

= +   (13) 

In this case, it is only necessary to compute n

p

F


 for each 

variable node per iteration. Since   is a constant, each power 

of   can be pre-computed and stored, and read directly when 

needed. The number of correction factor multiplications 
required for each iteration after optimization is 

 1 0S N=  (14) 

Compared with (10), it can be seen that the LCC-MS 
algorithm reduces the number of correction factor 

multiplications from ( )0 1O N M  to ( )0O N , thus correcting the 

error introduced in the MS algorithm with a lower complexity. 

To implement the LDPC decoder based on the LCC-MS 
algorithm on our self-developed Universal Communication 
Processor (UCP), we have improved the LCC-MS algorithm 
flow under the premise of considering the characteristics of UCP. 
This reduces the overall computational load and improves the 
degree of parallelism, making the algorithm more suitable for 
implementation on UCP. There are two aspects of optimization, 
which will be discussed below. 

A. Optimization of minimum absolute value solving in 

complement set 

It can be seen from (11) that each time mn

p

L


 is calculated, the 

minimum absolute value of the incoming LLRs needs to be 
found in the complement set. Denote the number of comparison 

operations required for each iteration as 2S , then 

 ( )2 0 1 1 1S M N N= −  (15) 

It can be observed that the minimum absolute value of the 
incoming LLRs in the complement set is at most the second 
minimum absolute value in the incoming LLRs in the complete 
set, that is, 
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Therefore, we can compare the incoming LLRs in the 

complete set 1N  times to find the minimum absolute value and 

the second minimum absolute value. Then, for each edge, judge 
whether the absolute value of the incoming LLR is equal to the 
minimum absolute value of the incoming LLRs in the complete 
set, and obtain the minimum absolute value of the incoming 
LLR in the complement set accordingly. The number of 
comparison operations required for each iteration after 
optimization is 

 ( )2 0 1 1 0 12S M N N M N= + =  (17) 



Compared with (15), it can be seen that the optimization 

reduces the number of comparison operations from ( )2

0 1O M N  

to ( )0 1O M N . 

B. Optimization of variable node processing 

It can be seen from (12) that each time mn

p

Z


 is calculated, 

the incoming LLRs in the complement set need to be 
accumulated. Denote the number of accumulation operations 

required for each iteration as 3S , then 

 ( )3 0 1 1 1S N M M= −  (18) 

We can first calculate n

p

Z


 according to (13), and then 

calculate mn

p

Z


 according to n

p

Z


, that is, change (12) to 
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The number of accumulation operations required for each 
iteration after optimization is 

 ( )3 0 1 1 0 12S N M M N M= + =  (20) 

Comparing with (18), this optimization can reduce the 

number of accumulation operations from ( )2

0 1O N M  to 

( )0 1O N M . 

IV. HARDWARE IMPLEMENTATION OF CHECK NODE 

PROCESSING 

This chapter will introduce the specific implementation of 
key steps in check node processing, as well as the design of the 
overall implementation scheme of check node processing. The 
key steps include the solving of the minimum absolute value and 
the second minimum absolute value of the incoming LLRs in 
the complete set, the solving of the minimum absolute value of 
the incoming LLRs in the complement set and the appending of 
the symbolic term. 

It should be noted that, for the sake of brevity, most of the 
figures in this paper only show the processing of a single byte. 
In fact, the instructions mentioned in this paper can all process 

multiple bytes in parallel with the specified degree of parallelism. 
This will not be repeated in the description of each figure below. 

A. Solving of minimum and second minimum absolute value 

in complete set 

In this step, it is necessary to traverse the incoming LLRs of 

the 1N  edges connected to the current check node to find the 

minimum absolute value and the second minimum absolute 
value. It takes a lot of computing resources to complete this 
operation through conventional instructions. Therefore, we 
customized the absolute value comparison instruction CompMR 
based on the UCP architecture. The instruction function is 
described in Fig. 1. 

We use this instruction to solve the minimum absolute value 
and the second minimum absolute value in the complete set, as 
shown in Fig. 2. 

B. Solving of minimum absolute value in complement set 

This step needs to determine whether the absolute value of 
the incoming LLR is equal to the minimum absolute value 
obtained in the previous step for each edge connected to the 
current check node. If not equal, select the minimum absolute 
value as the output result, otherwise select the second minimum 
absolute value as the output result. We have customized the 
absolute value comparison selection instruction CompAbsSel 
based on the UCP architecture. The instruction function is 
described in Fig. 3. 

_MR LByte_MR HByte mT

sec_min min

 
Fig. 1. Fuction description of CompMR instruction. The multiplexer takes the 

absolute value of 
mT , the low byte of MR  and the high byte of MR  as input, 

and selects the minimum value and the second minimum value and stores them 

back into the low byte and high byte of MR  respectively. 
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Fig. 2. Process of iteratively solving the minimum absolute value and the 
second minimum absolute value in the complete set. Traverse each incoming 

LLR in the complete set, and iteratively update the current minimum absolute 

value and the second minimum absolute value. After the traversal is completed, 
the minimum absolute value and the second minimum absolute value in the 

complete set are obtained. 
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Fig. 3. Fuction description of CompAbsSel instruction. This instruction is 
formed by cascading two stages of multiplexers. The first-stage multiplexers 

select to output pT  or pT−  through the sign bit of 
lT , and select to output 

lT  

or 
lT−  through the sign bit of pT .The second-stage multiplexer selects which 

first-stage multiplexer to output through the comparison result of the absolute 

value of 
nT  and 

mT . 

 



The function of this instruction can also be described by the 
following expression: 

 ( )( ) ( )( )? ? : : ? :n m l p p p l lT T sign T T T sign T T T − −  (21) 

We use this instruction to solve the minimum absolute value 

of the incoming LLRs in the complement set, and configure mT  

as 
1

mn

p

Z

 −
, nT  and lT  as 

( )

'
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, as shown in Fig.4. 

C. Appending of symbolic term 

This step needs to append the symbolic term ( )1 m mn 
−  in 

(11) to the output of the previous step. Using the traditional 
multiplication instruction will consume a large amount of 
computing resources, so we reuse the customized CompAbsSel 

instruction in the previous step, and configure mT  as 0, nT  as 

1

mn

p

Z

 −
, and 

pT  as 
( )

'

1' \
min mn

pn N m n

Z

 −
 to realize the appending of 

symbolic item, as shown in Fig. 5. 

D. Overall scheme design 

The processing of the check node can be divided into two 
stages. Pre-computation stage: traverse the incoming LLRs of 
all edges through the CompMR instruction to obtain the 
minimum absolute value and the second minimum absolute 
value, and perform modulo-2 addition on the sign bits of the 
incoming LLRs of all edges through the XOR logic instruction, 
as shown in Fig. 6. 

Parallel processing stage: For each edge, the minimum 
absolute value of the incoming LLRs in the complement set is 
solved in parallel by the CompAbsSel instruction, the symbolic 
term is solved in parallel by the XOR logic instruction, and the 
symbolic term is appended to the minimum absolute value of the 
incoming LLRs in the complement set in parallel by the 
CompAbsSel instruction, thereby obtaining the outgoing LLR 
of each edge in parallel, as shown in Fig. 7. 

V. HARDWARE IMPLEMENTATION OF VARIABLE NODE 

PROCESSING 

This chapter will introduce the specific implementation of 
key steps in variable node processing, as well as the design of 
the overall implementation scheme. The key step is the hard 
decision for posterior LLR of variable nodes. 

A. Hard decision for posterior LLR of variable nodes 

This step requires a hard decision based on the sign of n

p

Z


. 

If n

p

Z


 is positive, the decision is 0, otherwise the decision is 1. 

We use the comparison selection instruction CompSel to 
implement this decision. The instruction function is described in 
Fig. 8 (a) and (22). 

 ? :n m p lT T T T  (22) 

1        0

1        0 1        0
( )

'

1'
min mn

pn N m

Z
sign

 −

 
 
  ( )

'

1
'

sec min mn

p
n N m

Z
sign

 −


 
 
 

( )

'

1'
min mn

pn N m

Z

 −( )

'

1
'

sec min mn

p
n N m

Z

 −


( )

'

1' \
min mn

pn N m n

Z

 −

( )

'

1 1'
min mn mn

p pn N m

Z Z

 − −


 
Fig. 4. Process of solving the minimum absolute value in the complement set. 

Since the absolut values must be non-negative, the first-stage multiplexer only 
selects the input of 0. The second-stage multiplexer is based on the comparison 

expression between the minimum value and current value, which is true if and 

only if the two are equal since the minimum value cannot be greater than current 
value. In this situation, the second minimum value is selected as the output. 

Otherwise select the minimum value as the output. The output conforms to the 

minimum absolute value in the complement set. 
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Fig. 5. Process of symbolic term appending. Since the absolut values must be 

non-negative, the second-stage multiplexer only selects the input of 1 in this 

step. The first-stage multiplexer selects to output minimum absolute value in 

the complement set or its negative value through 
m mn  , thereby realizing 

the appending of symbolic term. 
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Fig. 6. Pre-computation stage of check node process. Minimum absolute 

value, second minimum absolute value and m  are obtained at this stage. 
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Fig. 7. Parallel processing stage of check node process. The outgoing LLR 

passed to variable node is obtained at this stage. 



We configure nT  as n

p

Z


, mT  and 

pT  as 0, and lT  as 1 to 

implement the hard decision of n

p

Z


, as shown in Fig. 8 (b). 

B. Overall scheme design 

The processing of variable nodes can be divided into two 

stages. Pre-computation stage: n

p

F


 is obtained by 

multiplication instruction, and n

p

Z


 is obtained by accumulating 

mn

p

L


 by addition instruction, and a hard decision is made on 

n

p

Z


 through CompSel instruction, as shown in Fig. 9 (a). 

Parallel processing stage: For each edge, the outgoing LLR 
is solved in parallel by the subtraction instruction according to 
(19), as shown in Fig. 9 (b). 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

To evaluate the performance of the LDPC decoder based on 
the LCC-MS algorithm, we implemented the encoder with 
UCP's self-developed assembly language, and performed RTL 
simulation with UCP's own tool chain, and performed hardware 
verification on the tape-out UCP chip. The UCP chip adopts 
Taiwan Semiconductor Manufacturing Company (TSMC) 16-
nm tape-out process, which can work stably at 1.2GHz main 
frequency.  

We selected the maximum code length and maximum code 
rate agreed in the 5G protocol [3] for performance verification, 
as shown in Table Ⅰ. First, we compare the bit error rate 
performance of the LCC-MS algorithm and the MS algorithm 
through floating-point simulation. As shown in Fig. 10, when 

the bit error rate is 
510−

, the LCC-MS algorithm obtains a gain 

of about 0.16dB compared to the MS algorithm. This proves that 
the LCC-MS algorithm can effectively correct the errors 
introduced in the MS algorithm. Then we converted the LCC-
MS algorithm into fixed-point form, and implemented the 
algorithm on the chip with 8-bit fixed-point data accuracy. As 

shown in Fig. 10, when the bit error rate is 
510−

, the fixed-point 

algorithm only loses about 0.04dB compared to the floating-
point algorithm. 

At the same time, we test the data throughput performance 
of the decoder based on the LCC-MS algorithm on the chip. As 
shown Table Ⅰ, the processing time for a single code block is 
3.34μs. Therefore, within a time slot of 0.5ms, the decoder can 
process up to 149 code blocks, which is significantly more than 
the maximum number of code blocks agreed in the 5G protocol 
[3]. This proves that the LCC-MS algorithm can correct the error 
while ensuring the decoder achieves high data throughput. 

To sum up, the LDPC decoder based on the LCC-MS 
algorithm corrects the errors introduced by the MS algorithm 
with a lower complexity, reduces the bit error rate on the premise 
of ensuring a higher data throughput rate, thereby improving the 
overall performance of the communication link. According to 
our analysis, its excellent performance is mainly due to the 
following two aspects: 

First, the excellent performance benefits from the design and 
process improvements of the LCC-MS algorithm. The design of 
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Fig. 9. Pre-computation stage of variable node process is shown in (a). Parallel 

processing stage of variable node process is shown in (b). 
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Fig. 8. Fuction description of CompSel instruction is shown in (a). The 

multiplexer selects pT  or pT  according to the expression 
n mT T . Hard 

decision process is shown in (b). Outputs 0 when the expression is true, and 1 

otherwise. This is in line with the definition of hard decision. 
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Fig. 10. Bit error rate curves. There are three curves in the figure, which are the 

bit error rate curve of floating-point MS algorithm, the bit error rate curve of 

floating-point LCC-MS algorithm and the bit error rate curve of fixed-point 

LCC-MS algorithm. 

TABLE I.  PARAMETERS AND PERFORMANCE 

Parameters Performance 

Information bits 

length (bits) 
8448 

Processing time 

(μs) 
3.34 

Code rate 0.92 
Data throughput 

(Gbps) 
2.53 

Expansion factor 

(bits) 
384 Number of cycles 4013 

 



the LCC-MS algorithm reduces the number of correction factor 

multiplications from ( )0 1O N M  to ( )0O N . In addition, the 

improvement of the process for the hardware architecture also 
significantly reduces the number of comparison operations and 
accumulation operations. The performance speedup is 
especially significant when the number of nodes is large. 

Second, the excellent performance benefits from the 
architectural advantages of UCP. UCP's powerful computing 
power and high-speed main frequency are the underlying 
guarantee for excellent performance. UCP's efficient parallel 
architecture allows the computation of the algorithm to be 
executed in parallel. UCP's easy-to-expand instruction set 
allows us to easily customize instructions, such as CompAbsSel 
instruction, thus solving the key implementation bottleneck of 
the algorithm. 

VII. CONCLUSIONS 

In this paper, we proposed the LCC-MS algorithm to correct 
the error introduced by the MS algorithm with lower complexity. 
Aiming at the implementation bottleneck of the algorithm in 
hardware, we optimized the algorithm flow and expanded the 
instruction set of UCP. Thus, the LCC-MS-based LDPC decoder 
is implemented on UCP, and the performance is verified on the 
tape-out chip. The experimental results show that the LCC-MS 

algorithm has a gain of 0.16dB when the bit error rate is 
510−
 

compared with the MS algorithm, and the decoder based on 
LCC-MS can process up to 149 code blocks in one time slot. 
Therefore, we believe that the LCC-MS-based decoder is able to 
correct the errors introduced in the MS algorithm with lower 
complexity. 

Although we only evaluate the performance of the LCC-MS-
based LDPC decoder on UCP, the decoder design is equally 
applicable to other SIMD architectures. In future researches, we 

will continue to explore parallelization schemes for other 
physical layer algorithms of 5G communication, and conduct 
researches on efficient hardware implementation on UCP. 
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