
Parallel LDPC Decoder Based on Low-Complexity

Corrected Min Sum Algorithm

Yisong Sun

University of Chinese Academy of

Sciences (UCAS)

Institute of Automation, Chinese

Academy of Sciences (CASIA)

Beijing, China

sunyisong2016@ia.ac.cn

Huan Li

Institute of Automation, Chinese

Academy of Sciences (CASIA)

Chinese Academy of Sciences

(CAS)

Beijing, China

lihuan2013@ia.ac.cn

Xinyu Zhang

Department of Applied

Algorithm

Beijing Smart Logic East

Technology Co., Ltd.

Beijing, China
xinyu.zhang@smartlogictech.com

Chen Guo

Institute of Automation, Chinese

Academy of Sciences (CASIA)

Chinese Academy of Sciences

(CAS)

Beijing, China

chen.guo@ia.ac.cn

Zijun Liu

Institute of Automation, Chinese

Academy of Sciences (CASIA)

Chinese Academy of Sciences

(CAS)

Beijing, China

zijun.liu@ia.ac.cn

Donglin Wang

Institute of Automation, Chinese

Academy of Sciences (CASIA)

Chinese Academy of Sciences

(CAS)

Beijing, China

donglin.wang@ia.ac.cn

Abstract—To correct the errors introduced by the

approximation in the Min Sum (MS) algorithm with low

complexity, we proposed Low-Complexity Corrected Min Sum

(LCC-MS) algorithm. Aiming at the implementation bottleneck of

the algorithm on the self-developed DSP (Universal

Communication Processor, UCP), we optimized the algorithm

process and expanded the instruction set of UCP. Therefore, the

LDPC decoder based on LCC-MS algorithm is implemented on

UCP, and verified on the chip that has been taped out. The

verification results of the longest code length and the highest code

rate show that the LCC-MS algorithm has a gain of 0.16dB when

the bit error rate is 10-5 compared with the MS algorithm, and the

decoder based on LCC-MS algorithm can process up to 149 code

blocks in one time slot.

Keywords—5G, LDPC decoder, LCC-MS, UCP

I. INTRODUCTION

Since the era of 2G communication, the channel coding and
decoding technology has been one of the key technologies of the
physical layer of the wireless communication system. An
excellent channel coding and decoding scheme can provide
greater data throughput, better transmission quality, lower
transmission delay and lower energy consumption for wireless
communication [1]. Among many channel coding and decoding
technologies, Low Density Parity Check (LDPC) code is a block
error-correction code with sparse parity check matrix proposed
by Robert Gallager of MIT in his doctoral thesis [2] in 1962.
LDPC code is suitable for almost all channels, and its
performance is close to the Shannon limit. The decoding process
of LDPC code is simple and can be implemented in parallel,
which is suitable for hardware implementation. At the 87th
meeting of 3GPP RAN1 held in Las Vegas in November 2016,
LDPC code was selected as the error control coding scheme for
data channel of 5G communication system [3]. Therefore, the

research on LDPC encoding and decoding technology is of great
significance for breaking through the performance bottleneck of
5G communication systems.

Regarding the implementation of LDPC code decoders,
researchers in related fields have carried out a lot of researches.
Mouhcine Razi et al. [4] use Horizontal Shuffled scheduling
instead of the usually used flooding scheduling and implement
it on the Digital Signal Processor. The results show that the
proposed algorithm not only improves the decoding
performance but also decreases the number of iterations. Aleksei
Kharin et al. [5] implement an LDPC belief propagation decoder
on a DSP+ARM platform. The effectiveness of the platform is
demonstrated, with up to 2 decoding iterations executing in real
time. Mouhcine Razi et al. [6] introduce two new improved
versions of the hard-decision algorithms, the adaptative gradient
descent bit-flipping and adaptative reliability ratio weighted
gradient descent bit-flipping. The results of numerical
simulations and DSP implementation reveal a faster
convergence with a low processing time and a reduction in
consumed memory resources. Gottfried Lechner et al. [7]
present a high-performance implementation of a belief
propagation decoder for decoding low-density parity-check
codes on a fixed-point digital signal processor. The decoder can
decode at 5.4Mbps on a Texas Instruments TMS320C64xx DSP
running at 600MHz.

Literature survey shows that the current decoding algorithm
researches are mostly based on Belief Propagation (BP)
algorithm, also known as Sum Product (SP) algorithm. The Min
Sum (MS) algorithm greatly reduces the computational
complexity of the SP algorithm at the cost of introducing errors.
For the errors introduced by the MS algorithm, the existing
researches have not proposed a correction scheme with lower
complexity, so that the decoding algorithm cannot take into

account the improvement of the data throughput performance
and the bit error rate performance.

To solve this problem, we proposed an improved algorithm
and implemented an LDPC decoder based on the algorithm on
our self-developed DSP (Universal Communication Processor,
UCP). Compared with other existing researches, the main
contributions of our works are:

• We proposed Low-Complexity Corrected Min Sum
(LCC-MS) algorithm to correct the errors introduced by
the approximation in the MS algorithm with low
complexity, to achieve better bit error rate performance
while ensuring data throughput.

• By considering the architectural characteristics of UCP,
we optimized the algorithm process and expanded the
instruction set of UCP, effectively solving the
performance bottleneck of the algorithm on UCP.

The rest of this paper is organized as follows: Chapter 2
introduces the basic principles of the MS algorithm. Chapter 3
presents the design of the LCC-MS algorithm. Chapter 4 and
Chapter 5 introduce the hardware implementation of the check
node and variable node, respectively. Chapter 6 and Chapter 7
give the experimental results and conclusions, respectively.

II. PRELIMINARIES

The concept of LDPC code and its iterative decoding
algorithm can be traced back to the early 1960s. Gallager
defined regular LDPC codes in his doctoral thesis [2], so named
because of the small number of non-zero elements in the parity
check matrix. In 1981, Tanner proposed the bidirectional graph
representation of LDPC codes [8], also known as Tanner graphs,
which laid the foundation for the decoding algorithm of LDPC
codes. In 1997, MacKay et al. proposed the Sum Product (SP)
algorithm [9], also known as the Belief Propagation (BP)
algorithm. The SP algorithm is an optimal LDPC decoding
algorithm based on iterative decoding. This algorithm mainly
consists of two steps: the update of the check node and the
update of the variable node. To avoid a large number of
multiplication operations, the decoding process is often
performed in the log-likelihood domain in practical applications.
The SP algorithm can be further optimized, such as the Min Sum
(MS) decoding algorithm [10] that simplifies the check node
processing.

The MS algorithm includes three steps: initialization, check
node processing, and variable node processing.

A. Initialization

We denote the output sequence of the LDPC encoder as nx ,

the symbol sequence received by the receiver as ky , the prior

Log-Likelihood Ratio (LLR) of variable node n derived from

ky as nF , and the LLR of variable node n passed to check

node m as mnZ . This step assigns an initial value to each

variable node, that is, the prior LLR:

()

()
2

0 |
log

1|

n k

mn n

n k

P x y
Z F

P x y

=
= =

=
 (1)

B. Check node processing

We denote the hard decision result of mnZ as mn , the result

of modulo-2 addition of mn related to check node m as m ,

and the LLR of check node m passed to variable node n as

mnL . First calculates mn and m according to mnZ :

 ()mn mnsign Z = (2)

()

mod 2m mn

n N m

 


=  (3)

The sign function in this paper means to get the sign bit in
the complement representation. For each check node m ,

compute the LLR that it passes to each variable node connected
to itself:

()

()

()

()

()

'

'

'

'

' \

' \

'

' \

'

' \

1 '

' \

1
1

1
ln

1
1

1

1 tanh
2

ln

1 tanh
2

2 tanh tanh
2

mn

mn

mn

mn

z

z
n N m n

mn z

z
n N m n

mn

n N m n

mn

n N m n

mn

n N m n

e

e
L

e

e

Z

Z

Z









−



−
+

+
=

−
−

+

+

=

−

 
=   

 











 (4)

From the properties of the hyperbolic tangent function, the

absolute value of 'tanh
2

mnZ
 is very close to 1 in most cases, so

we can only keep the item with the smallest absolute value
among the consecutive multiplication items, approximate the
absolute value of the other items as 1, and only keep the signs of
the other items:

()
()

()
()

()
()

1 '

' \

'
' \1

'
' \

2 tanh 1 min tanh
2

min

2 tanh 1 tanh
2

1 min

m mn

m mn

m mn

mn

mn
n N m n

mn
n N m n

mn
n N m n

Z
L

Z

Z

 

 

 

−



 −





 
 − 

 

 
 = −
 
 

= −

 (5)

C. Variable node processing

We donate the LLR of check node m passed to variable

node n as mnL , the posterior LLR of variable node n as nZ ,

and the hard decision result of nZ as n . For each variable node

n , compute the LLR that it passes to each check node m

connected to itself:

()

'

' \

mn n m n

m M n m

Z F L


= +  (6)

For each variable node n , compute its posterior LLR:

()

n n mn

m M n

Z F L


= +  (7)

The bit sequence n is obtained by hard decision based on

posterior LLR:

 ()n nsign Z = (8)

The bit sequence n is checked with the check matrix, and

if the check is passed, the decoding result is output and the
decoding ends. Otherwise, repeat the above iterative process
until the maximum number of iterations is reached.

III. LOW-COMPLEXITY CORRECTED MIN SUM ALGORITHM

For the error introduced by the approximation in the MS
algorithm, we propose the Low-Complexity Corrected Min Sum
(LCC-MS) algorithm to correct the error with low complexity.
It can be seen from (5) that the absolute value of other terms is

approximated to 1 when mnL is calculated. For the error

introduced by this approximation, we determine a correction
factor  through simulation to correct the error:

()
()

()
()

()
()

1 '

' \

'
' \1

'
' \

2 tanh 1 min tanh
2

min

2 tanh 1 tanh
2

1 min

m mn

m mn

m mn

mn

mn
n N m n

mn
n N m n

mn
n N m n

Z
L

Z

Z

 

 

 







−



 −





 
 − 

 

 
 = −
 
 

= −

 (9)

We denote the current iteration number as p , the number of

check nodes as 0M , the number of variable nodes as 0N , the

average number of check nodes connected to each variable node

as 1M , the average number of variable nodes connected to each

check node as 1N , and the number of correction factor

multiplications required for each iteration as 1S , then

 1 0 1S N M= (10)

Since the LLR transmitted in the iterative process is used for
absolute value comparison and hard decision, multiplying the
LLR by a constant greater than 0 does not affect the decoding

result. So we can use mn

p

L


 instead of mnL and mn

p

Z


 instead of

mnZ to participate in the iterative process. As a result, we can

change (5) to

 ()
()

'

1' \
1 minm mnmn mn

p pn N m n

L Z 

 



−
 − (11)

change (6) to

()

'

' \

mn n m n

p p p
m M n m

Z F L

  

= +  (12)

change (7) to

()

n n mn

p p p
m M n

Z F L

  

= +  (13)

In this case, it is only necessary to compute n

p

F


 for each

variable node per iteration. Since  is a constant, each power

of  can be pre-computed and stored, and read directly when

needed. The number of correction factor multiplications
required for each iteration after optimization is

 1 0S N= (14)

Compared with (10), it can be seen that the LCC-MS
algorithm reduces the number of correction factor

multiplications from ()0 1O N M to ()0O N , thus correcting the

error introduced in the MS algorithm with a lower complexity.

To implement the LDPC decoder based on the LCC-MS
algorithm on our self-developed Universal Communication
Processor (UCP), we have improved the LCC-MS algorithm
flow under the premise of considering the characteristics of UCP.
This reduces the overall computational load and improves the
degree of parallelism, making the algorithm more suitable for
implementation on UCP. There are two aspects of optimization,
which will be discussed below.

A. Optimization of minimum absolute value solving in

complement set

It can be seen from (11) that each time mn

p

L


 is calculated, the

minimum absolute value of the incoming LLRs needs to be
found in the complement set. Denote the number of comparison

operations required for each iteration as 2S , then

 ()2 0 1 1 1S M N N= − (15)

It can be observed that the minimum absolute value of the
incoming LLRs in the complement set is at most the second
minimum absolute value in the incoming LLRs in the complete
set, that is,

()

() ()

() ()

' '

1 1 1' '
'

1' \
' '

1 1 1''

min , if min

min

second min , if min

mn mn mn

p p pn N m n N m
mn

pn N m n
mn mn mn

p p pn N mn N m

Z Z Z

Z

Z Z Z

  



  

− − − 

−

− − −





= 
 =


 (16)

Therefore, we can compare the incoming LLRs in the

complete set 1N times to find the minimum absolute value and

the second minimum absolute value. Then, for each edge, judge
whether the absolute value of the incoming LLR is equal to the
minimum absolute value of the incoming LLRs in the complete
set, and obtain the minimum absolute value of the incoming
LLR in the complement set accordingly. The number of
comparison operations required for each iteration after
optimization is

 ()2 0 1 1 0 12S M N N M N= + = (17)

Compared with (15), it can be seen that the optimization

reduces the number of comparison operations from ()2

0 1O M N

to ()0 1O M N .

B. Optimization of variable node processing

It can be seen from (12) that each time mn

p

Z


 is calculated,

the incoming LLRs in the complement set need to be
accumulated. Denote the number of accumulation operations

required for each iteration as 3S , then

 ()3 0 1 1 1S N M M= − (18)

We can first calculate n

p

Z


 according to (13), and then

calculate mn

p

Z


 according to n

p

Z


, that is, change (12) to

 mn n mn

p p p

Z Z L

  
= − (19)

The number of accumulation operations required for each
iteration after optimization is

 ()3 0 1 1 0 12S N M M N M= + = (20)

Comparing with (18), this optimization can reduce the

number of accumulation operations from ()2

0 1O N M to

()0 1O N M .

IV. HARDWARE IMPLEMENTATION OF CHECK NODE

PROCESSING

This chapter will introduce the specific implementation of
key steps in check node processing, as well as the design of the
overall implementation scheme of check node processing. The
key steps include the solving of the minimum absolute value and
the second minimum absolute value of the incoming LLRs in
the complete set, the solving of the minimum absolute value of
the incoming LLRs in the complement set and the appending of
the symbolic term.

It should be noted that, for the sake of brevity, most of the
figures in this paper only show the processing of a single byte.
In fact, the instructions mentioned in this paper can all process

multiple bytes in parallel with the specified degree of parallelism.
This will not be repeated in the description of each figure below.

A. Solving of minimum and second minimum absolute value

in complete set

In this step, it is necessary to traverse the incoming LLRs of

the 1N edges connected to the current check node to find the

minimum absolute value and the second minimum absolute
value. It takes a lot of computing resources to complete this
operation through conventional instructions. Therefore, we
customized the absolute value comparison instruction CompMR
based on the UCP architecture. The instruction function is
described in Fig. 1.

We use this instruction to solve the minimum absolute value
and the second minimum absolute value in the complete set, as
shown in Fig. 2.

B. Solving of minimum absolute value in complement set

This step needs to determine whether the absolute value of
the incoming LLR is equal to the minimum absolute value
obtained in the previous step for each edge connected to the
current check node. If not equal, select the minimum absolute
value as the output result, otherwise select the second minimum
absolute value as the output result. We have customized the
absolute value comparison selection instruction CompAbsSel
based on the UCP architecture. The instruction function is
described in Fig. 3.

_MR LByte_MR HByte mT

sec_min min

Fig. 1. Fuction description of CompMR instruction. The multiplexer takes the

absolute value of
mT , the low byte of MR and the high byte of MR as input,

and selects the minimum value and the second minimum value and stores them

back into the low byte and high byte of MR respectively.

'

1' 1
min mn

pn

Z

 −=

'

1
' 1

sec min mn

p
n

Z

 −
=

'

1' 1,2
min mn

pn

Z

 −=

'

1
' 1,2

sec min mn

p
n

Z

 −
=

1

'

1' 1,2,..., 1
min mn

pn N

Z

 −= −

1

'

1
' 1,2,..., 1
sec min mn

p
n N

Z

 −
= −

()

'

1'
min mn

pn N m

Z

 −

()

'

1
'

sec min mn

p
n N m

Z

 −


CompMR CompMR ... CompMR CompMR

()2

1

m

p

Z

 −

()3

1

m

p

Z

 −

()1

1

m N

p

Z

 −

Fig. 2. Process of iteratively solving the minimum absolute value and the
second minimum absolute value in the complete set. Traverse each incoming

LLR in the complete set, and iteratively update the current minimum absolute

value and the second minimum absolute value. After the traversal is completed,
the minimum absolute value and the second minimum absolute value in the

complete set are obtained.

()lsign T

pT− pT
lT− lT

()psign T

n mT T

1 0

1 0

1 0

Result
Fig. 3. Fuction description of CompAbsSel instruction. This instruction is
formed by cascading two stages of multiplexers. The first-stage multiplexers

select to output pT or pT− through the sign bit of
lT , and select to output

lT

or
lT− through the sign bit of pT .The second-stage multiplexer selects which

first-stage multiplexer to output through the comparison result of the absolute

value of
nT and

mT .

The function of this instruction can also be described by the
following expression:

 ()() ()()? ? : : ? :n m l p p p l lT T sign T T T sign T T T − − (21)

We use this instruction to solve the minimum absolute value

of the incoming LLRs in the complement set, and configure mT

as
1

mn

p

Z

 −
, nT and lT as

()

'

1'
min mn

pn N m

Z

 −
, and

pT as

()

'

1'
second min mn

pn N m

Z

 −
, as shown in Fig.4.

C. Appending of symbolic term

This step needs to append the symbolic term ()1 m mn 
− in

(11) to the output of the previous step. Using the traditional
multiplication instruction will consume a large amount of
computing resources, so we reuse the customized CompAbsSel

instruction in the previous step, and configure mT as 0, nT as

1

mn

p

Z

 −
, and

pT as
()

'

1' \
min mn

pn N m n

Z

 −
 to realize the appending of

symbolic item, as shown in Fig. 5.

D. Overall scheme design

The processing of the check node can be divided into two
stages. Pre-computation stage: traverse the incoming LLRs of
all edges through the CompMR instruction to obtain the
minimum absolute value and the second minimum absolute
value, and perform modulo-2 addition on the sign bits of the
incoming LLRs of all edges through the XOR logic instruction,
as shown in Fig. 6.

Parallel processing stage: For each edge, the minimum
absolute value of the incoming LLRs in the complement set is
solved in parallel by the CompAbsSel instruction, the symbolic
term is solved in parallel by the XOR logic instruction, and the
symbolic term is appended to the minimum absolute value of the
incoming LLRs in the complement set in parallel by the
CompAbsSel instruction, thereby obtaining the outgoing LLR
of each edge in parallel, as shown in Fig. 7.

V. HARDWARE IMPLEMENTATION OF VARIABLE NODE

PROCESSING

This chapter will introduce the specific implementation of
key steps in variable node processing, as well as the design of
the overall implementation scheme. The key step is the hard
decision for posterior LLR of variable nodes.

A. Hard decision for posterior LLR of variable nodes

This step requires a hard decision based on the sign of n

p

Z


.

If n

p

Z


 is positive, the decision is 0, otherwise the decision is 1.

We use the comparison selection instruction CompSel to
implement this decision. The instruction function is described in
Fig. 8 (a) and (22).

 ? :n m p lT T T T (22)

1 0

1 0 1 0
()

'

1'
min mn

pn N m

Z
sign

 −

 
 
  ()

'

1
'

sec min mn

p
n N m

Z
sign

 −


 
 
 

()

'

1'
min mn

pn N m

Z

 −()

'

1
'

sec min mn

p
n N m

Z

 −


()

'

1' \
min mn

pn N m n

Z

 −

()

'

1 1'
min mn mn

p pn N m

Z Z

 − −


Fig. 4. Process of solving the minimum absolute value in the complement set.

Since the absolut values must be non-negative, the first-stage multiplexer only
selects the input of 0. The second-stage multiplexer is based on the comparison

expression between the minimum value and current value, which is true if and

only if the two are equal since the minimum value cannot be greater than current
value. In this situation, the second minimum value is selected as the output.

Otherwise select the minimum value as the output. The output conforms to the

minimum absolute value in the complement set.

1 0

1 0

mn

p

L



1
0mn

p

Z

 −


()

'

1' \
min mn

pn N m n

Z

 −
−

()

'

1' \
min mn

pn N m n

Z

 −

m mn 

Fig. 5. Process of symbolic term appending. Since the absolut values must be

non-negative, the second-stage multiplexer only selects the input of 1 in this

step. The first-stage multiplexer selects to output minimum absolute value in

the complement set or its negative value through
m mn  , thereby realizing

the appending of symbolic term.

...

CompMR

...

XOR

()

'

1'
min mn

pn N m

Z

 −

()1 1

1

m N

p

Z



−

−

()1

1

m

p

Z

 −

()1

1

m N

p

Z

 −

()

'

1
'

sec min mn

p
n N m

Z

 −


()1m


m

()1m N


()1 1m N


−

Fig. 6. Pre-computation stage of check node process. Minimum absolute

value, second minimum absolute value and m are obtained at this stage.

CompAbsSel

()

'

1'
min mn

pn N m

Z

 −

1

mn

p

Z

 −

()

'

1
'

sec min mn

p
n N m

Z

 −


()

'

1' \
min mn

pn N m n

Z

 −

XOR
mn

m

m mn 

CompAbsSel
1

mn

p

L

 −

Fig. 7. Parallel processing stage of check node process. The outgoing LLR

passed to variable node is obtained at this stage.

We configure nT as n

p

Z


, mT and

pT as 0, and lT as 1 to

implement the hard decision of n

p

Z


, as shown in Fig. 8 (b).

B. Overall scheme design

The processing of variable nodes can be divided into two

stages. Pre-computation stage: n

p

F


 is obtained by

multiplication instruction, and n

p

Z


 is obtained by accumulating

mn

p

L


 by addition instruction, and a hard decision is made on

n

p

Z


 through CompSel instruction, as shown in Fig. 9 (a).

Parallel processing stage: For each edge, the outgoing LLR
is solved in parallel by the subtraction instruction according to
(19), as shown in Fig. 9 (b).

VI. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the LDPC decoder based on
the LCC-MS algorithm, we implemented the encoder with
UCP's self-developed assembly language, and performed RTL
simulation with UCP's own tool chain, and performed hardware
verification on the tape-out UCP chip. The UCP chip adopts
Taiwan Semiconductor Manufacturing Company (TSMC) 16-
nm tape-out process, which can work stably at 1.2GHz main
frequency.

We selected the maximum code length and maximum code
rate agreed in the 5G protocol [3] for performance verification,
as shown in Table Ⅰ. First, we compare the bit error rate
performance of the LCC-MS algorithm and the MS algorithm
through floating-point simulation. As shown in Fig. 10, when

the bit error rate is
510−

, the LCC-MS algorithm obtains a gain

of about 0.16dB compared to the MS algorithm. This proves that
the LCC-MS algorithm can effectively correct the errors
introduced in the MS algorithm. Then we converted the LCC-
MS algorithm into fixed-point form, and implemented the
algorithm on the chip with 8-bit fixed-point data accuracy. As

shown in Fig. 10, when the bit error rate is
510−

, the fixed-point

algorithm only loses about 0.04dB compared to the floating-
point algorithm.

At the same time, we test the data throughput performance
of the decoder based on the LCC-MS algorithm on the chip. As
shown Table Ⅰ, the processing time for a single code block is
3.34μs. Therefore, within a time slot of 0.5ms, the decoder can
process up to 149 code blocks, which is significantly more than
the maximum number of code blocks agreed in the 5G protocol
[3]. This proves that the LCC-MS algorithm can correct the error
while ensuring the decoder achieves high data throughput.

To sum up, the LDPC decoder based on the LCC-MS
algorithm corrects the errors introduced by the MS algorithm
with a lower complexity, reduces the bit error rate on the premise
of ensuring a higher data throughput rate, thereby improving the
overall performance of the communication link. According to
our analysis, its excellent performance is mainly due to the
following two aspects:

First, the excellent performance benefits from the design and
process improvements of the LCC-MS algorithm. The design of

... Add

Sub

()1M n

p

L



()1 1M n

p

L



−

()1 n

p

L



n

p

F



n

p

Z



CompSel

n

n

p

Z



mn

p

L


mn

p

Z



(a) (b)

Fig. 9. Pre-computation stage of variable node process is shown in (a). Parallel

processing stage of variable node process is shown in (b).

pT
lT

1 0

n

0n

p

Z


n mT T

(a) (b)

1 0

0 1

Result

Fig. 8. Fuction description of CompSel instruction is shown in (a). The

multiplexer selects pT or pT according to the expression
n mT T . Hard

decision process is shown in (b). Outputs 0 when the expression is true, and 1

otherwise. This is in line with the definition of hard decision.

19.4 19.6 19.8 20.0 20.2 20.4
1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

B
i
t

E
r
r
o
r

R
a
t
e

Signal-Noise Ratio (dB)

 MS Float
 LCC-MS Float
 LCC-MS Fixed

Fig. 10. Bit error rate curves. There are three curves in the figure, which are the

bit error rate curve of floating-point MS algorithm, the bit error rate curve of

floating-point LCC-MS algorithm and the bit error rate curve of fixed-point

LCC-MS algorithm.

TABLE I. PARAMETERS AND PERFORMANCE

Parameters Performance

Information bits

length (bits)
8448

Processing time

(μs)
3.34

Code rate 0.92
Data throughput

(Gbps)
2.53

Expansion factor

(bits)
384 Number of cycles 4013

the LCC-MS algorithm reduces the number of correction factor

multiplications from ()0 1O N M to ()0O N . In addition, the

improvement of the process for the hardware architecture also
significantly reduces the number of comparison operations and
accumulation operations. The performance speedup is
especially significant when the number of nodes is large.

Second, the excellent performance benefits from the
architectural advantages of UCP. UCP's powerful computing
power and high-speed main frequency are the underlying
guarantee for excellent performance. UCP's efficient parallel
architecture allows the computation of the algorithm to be
executed in parallel. UCP's easy-to-expand instruction set
allows us to easily customize instructions, such as CompAbsSel
instruction, thus solving the key implementation bottleneck of
the algorithm.

VII. CONCLUSIONS

In this paper, we proposed the LCC-MS algorithm to correct
the error introduced by the MS algorithm with lower complexity.
Aiming at the implementation bottleneck of the algorithm in
hardware, we optimized the algorithm flow and expanded the
instruction set of UCP. Thus, the LCC-MS-based LDPC decoder
is implemented on UCP, and the performance is verified on the
tape-out chip. The experimental results show that the LCC-MS

algorithm has a gain of 0.16dB when the bit error rate is
510−

compared with the MS algorithm, and the decoder based on
LCC-MS can process up to 149 code blocks in one time slot.
Therefore, we believe that the LCC-MS-based decoder is able to
correct the errors introduced in the MS algorithm with lower
complexity.

Although we only evaluate the performance of the LCC-MS-
based LDPC decoder on UCP, the decoder design is equally
applicable to other SIMD architectures. In future researches, we

will continue to explore parallelization schemes for other
physical layer algorithms of 5G communication, and conduct
researches on efficient hardware implementation on UCP.

REFERENCES

[1] Hui, Dennis, et al. "Channel coding in 5G new radio: A tutorial overview
and performance comparison with 4G LTE." ieee vehicular technology
magazine 13.4 (2018): 60-69.

[2] Gallager, Robert. "Low-density parity-check codes." IRE Transactions on
information theory 8.1 (1962): 21-28.

[3] 3GPP TS 38.212. "NR; Multiplexing and channel coding." (2020).

[4] Razi, Mouhcine, et al. "Fast DSP Implementation of a Low Complexity
LDPC Decoder." 2019 International Conference on Wireless
Technologies, Embedded and Intelligent Systems (WITS). IEEE, 2019.

[5] Kharin, Aleksei, et al. "LDPC decoder implementation on DSP+ ARM
platform with OpenCL." 2018 7th Mediterranean Conference on
Embedded Computing (MECO). IEEE, 2018.

[6] Razi, Mouhcine, et al. "An improvement and a fast DSP implementation
of the bit flipping algorithms for low density parity check decoder."
International Journal of Electrical & Computer Engineering (2088-8708)
11.6 (2021).

[7] Lechner, Gottfried, Jossy Sayir, and Markus Rupp. "Efficient DSP
implementation of an LDPC decoder." 2004 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Vol. 4. IEEE,
2004.

[8] Tanner, R. "A recursive approach to low complexity codes." IEEE
Transactions on information theory 27.5 (1981): 533-547.

[9] MacKay, David JC, and Radford M. Neal. "Near Shannon limit
performance of low density parity check codes." Electronics letters 32.18
(1996): 1645.

[10] Fossorier, Marc PC, Miodrag Mihaljevic, and Hideki Imai. "Reduced
complexity iterative decoding of low-density parity check codes based on
belief propagation." IEEE Transactions on communications 47.5 (1999):
673-680.

