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ABSTRACT
Serial-section electron microscopy is a widely used technique for neuronal circuit reconstruction. However, the
continuity of neuronal structure is destroyed when the tissue block is cut into a series of sections. The neuronal
morphology in different sections changes with their locations in the tissue block. These content changes in
adjacent sections bring a difficulty to the registration of serial electron microscopy images. As a result, the
accuracy of image registration is strongly influenced by neuronal structure variation and section thickness.

To evaluate registration performance, we use the spherical deformation model as a simulation of the neuron
structure to analyze how registration accuracy is affected by section thickness and neuronal structure size. We
mathematically describe the trend that the correlation of neuronal structures in two adjacent sections decreases
with section thickness. Furthermore, we demonstrate that registration accuracy is negatively correlated with
neuronal structure size and section thickness by analyzing the second-order moment of estimated translation.
The experimental results of registration on synthetic data demonstrate that registration accuracy decreases with
the neuronal structure size.
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1. INTRODUCTION
Serial-section electron microscopy (ssEM) is a well-established imaging technique that has been widely used
in neuronal circuits reconstruction.1–4 Brain tissue is fixed in resin, sliced into a series of ultrathin sections,
and finally imaged by electron microscopy to obtain images of neural tissue sections at nanoscale resolution.5
However, due to the slicing process, the spatial continuity of the neuronal structures is disrupted. To solve
this problem, the registration process is introduced before volume reconstruction. By performing a linear or
nonlinear transformation on the sections, registration restores the spatial continuity of the neuronal structures
and facilitates subsequent reconstruction.

Since the tissue block is cut into a series of sections, the content in different sections changes with their
Z-axis locations in the block, which means the neuronal morphology in adjacent sections is similar but isn’t
precisely the same.2,6,7 And, an intuitive understanding is that the thicker the section is, the further apart
the adjacent images are in Z-axis, and the more significant the difference in their content. These structural
changes in adjacent sections bring difficulty to the registration of ssEM images, which is necessary to recover the
continuity of neuronal structure. As a result, the image registration accurary is strongly influenced by neuronal
structure variation and section thickness.

Previous registration performance analysis focus on the relation between registration accuracy and image
noise.8–10 However, the main factor affecting accuracy in ssEM image registration is structural variation related
to the image content and cannot be represented by Gaussian noise.7 Figure 1 shows the comparison between
noise-contaminated image and actual source image in ssEM image registration. Previous work divided the
deformation patterns in electron microscopy (EM) images of biological tissue into shape, texture, and quantity
variability.11 In this paper, we focus on the registration accuracy with the shape variation of a single neuronal
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Figure 1. Comparison of noise-contaminated images and actual source images in ssEM image registration. (a) Template
ssEM image. (b) shows the template image contaminated by Gaussian noise. The relationship between noise and
registration accuracy based on this noise image model had been analyzed in previous work. (c) Actual adjacent ssEM
image of (a). Red and blue mark the two neuronal structures in the ssEM images, respectively.

Figure 2. Illustration of registration model and further process. We use a structure described by the 3-dimensional shape
model (left) to simulate the morphological change of neuronal structure in adjacent sections. The neuronal structure
projections on images are regarded as the content of images to be aligned (middle). We register these two images and
analyze the registration accuracy (right). The section thickness is denoted as d.

structure. More specifically, we mathematically analyze the registration accuracy with the size of neuronal
structure and the section thickness. Our analysis provides a theoretical basis for the future improvement of
ssEM image registration.

2. METHOD
The neuronal structures acquired from reconstruction suffer from section stretching, distorting, and artifacts
individually during section preparation, imaging and registration. To get around the difficulty of getting accurate
neuronal structure, we use a shape model to generate a 3-dimensional object K as a neuron in biological tissue.
This object K is cut by two parallel planes with distance d. These cutting planes are regarded as different
sections in neuronal circuit reconstruction. And d is regarded as section thickness. The projections of K on
the cutting planes are considered as content on images to be registered. We register these two images and then
analyze the relationship between the section thickness d and neuron size. Figure 2 illustrates our registration
model and further process.

2.1 The Spherical Deformation Model
Before we analyze the factors affecting the accuracy of ssEM image registration, we first introduce the spherical
deformation model,12 which is used to simulate neurons in this paper. For a 3-dimensional sphere-shaped object



K, this model selects a point z ∈ K as origin and describes the surface of K by spherical coordinates as
{z + r(θ, ϕ)ω(θ, ϕ) : 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π}, where ω(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ) is the vector on the
unit sphere with polar longitude θ and polar latitude ϕ, and r(θ, ϕ) is the distance from z to the surface of K.
In the following sections, we consider the standardized radius r(θ, ϕ)/r̄, where r̄ is the mean radius length. The
standardized radius function is written as

r(θ, ϕ) = 1 +

∞∑
n=2

n∑
m=−n

amn φ
m
n (θ, ϕ), (1)

where φm
n (θ, ϕ) is the spherical harmonic function. The spherical harmonics are given by

φm
n (θ, ϕ) =


k
|m|
n P

|m|
n (cosϕ) cosmθ, m = −n, . . . ,−1

k0nP
0
n(cosϕ), m = 0

kmn P
m
n (cosϕ) sinmθ, m = 1, . . . , n,

where kmn is normalizing constant, and Pm
n is the associated Legendre function of the first kind. In the standard-

ized radius function, each spherical harmonic function has a coefficient amn , modeled as independent Gaussian
random variables submitted to N (0, λmn ). The surface of K is supposed to be stationary, and stationarity is
obtained by assuming λmn = λn, n ≥ 2, m = −n, . . . , n. We also assumed that the variance λn decrease
according to

1/λn = α+ β(np − 2p),

n ≥ 2, p > 2, α, β > 0.
(2)

The pre-defined parameter p determines the smoothness of K, while the other two pre-defined parameters
α and β determine the global and local shape, respectively. More information about the spherical deformation
model can be found in 12.

2.2 Correlation of Shapes in Adjacent Sections
In this subsection, we focus on the correlation of two radius ri at different polar latitudes ϕi, i = 1, 2. With
stationarity on K, the covariance of lengths of two points r(θ1, ϕ1) and r(θ2, ϕ2), depends on the angle ψ between
two points as following,

Cov(r(θ1, ϕ1), r(θ2, ϕ2)) =

∞∑
n=2

λn

n∑
m=−n

φm
n (θ1, ϕ1)φ

m
n (θ2, ϕ2) =

∞∑
n=2

λn(k
0
n)

2Pn(cosψ),

where cosψ = ω(θ1, ϕ1) ·ω(θ2, ϕ2), and Pn = P 0
n . The ψ represents the angle between two points on the surface.

Figure 3 (a) shows the angle ψ of two radius vectors, and figure 3 (b) shows the covariance function and weighted
legendre functions with ψ ∈ [0, π/2]. We firstly consider the correlation between two radius ri at different
longitudes ϕi with same latitude θ, which is corresponding to the correlation of same local structures in adjacent
sections. The covariance function becomes

Cov(r(θ, ϕ1), r(θ, ϕ2)) =

∞∑
n=2

λn(k
0
n)

2Pn(cos∆ϕ), (3)

where ∆ϕ = ϕ1−ϕ2, as figure 3 (c) shows. With pre-defined parameters (α, β, p), the covariance function depends
on ∆ϕ now. In the ssEM image registration, sin(∆ϕ/2) equals the ratio of half of section thickness d to the
mean radius r̄ of the neuronal structure, that is, ∆ϕ = 2arcsin(d/2r̄). Since in neuronal circuit reconstruction,
researchers use ultra-thin sections to reconstruct neuronal structure,13 we assume d is less than

√
2 times of

mean radius r̄, which makes ∆ϕ ∈ [0, π/2), and sin∆ϕ is a monotonic increasing function with ∆ϕ ∈ [0, π/2).
Figure 3 (d) shows the change of the covariance with thickness d. The above analysis describes the correlation
of a single point on the neuronal structure contour in adjacent sections with the section thickness d. When
this correlation is extended from a single point to the whole structure contour by θ = [0, 2π), the covariance
function mathematically describes the phenomenon that the correlation of neuronal structure in adjacent sections
decreases with section thickness d.
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Figure 3. (a) The angle ψ and the angle ∆θ of two radius vectors. ∆θ = θ1 − θ2, which means the difference of
longitude θ of two vectors. (b) The covariance function with n ≤ 6 and the weighted legendre functions, with ψ ∈ [0, π/2].
(α, β, p) = (20.2, 0.9, 4.4). The exponential decay characteristic of λn in equation (2) enables the covariance to be
approximated by the first few terms. (c) The angle ∆ϕ of two radius vectors at same θ. (d) The figure shows the
correlation decrease with the increase of section thickness d. For the covariance function and the weighted legendre
functions, we fix the mean radius r̄ = 1 and change d from 0 to 1.

2.3 Registration Accuracy Analysis
Since the translation-only registration is widely needed in ssEM image registration,5,7,14 in this subsection, we
focus on the translation-only registration where two images to be aligned with different cross-sections of object
K, which the spherical deformation model describes.

We consider two images S and T , representing the source image and target image, respectively. The true
translation between two images is denoted as (∆t,∆s). In registration, we first extract N corresponding land-
marks li = (xi, yi) in image S and T . Next, we estimate the translation based on the given cost function. The
cost function is as following,

N∑
i=1

(xiT − (xiS + u))2 + (yiT − (yiS + v))2, (4)

where u and v are the translation in X-axis and Y-axis, respectively. We align image S and T by estimating
the translation (∆̂t, ∆̂s), which minimizes the cost function. To minimize the effect of morphological variation
on registration, we select a center inside the structure and sample N landmarks on the contour at equal angular
intervals. Since we consider translation-only registration, landmark liT in T is corresponding to landmark liS in
S, which are both sampled at same θi.

We use ρik to represent distance from origin to the ith landmark lik sampled at θi in image k, k = {S, T}. ρi
is actually the projection of unnormalized radius-vector on the cutting plane. Thus, ρik = r(θi, ϕk)r̄ sinϕk. We
use the mean radius length r̄ to represent the neuronal structure size. Since researchers use ultra-thin sections in
neuronal circuit reconstruction, the size of neuronal structures in adjacent sections are assumed to be the same.
That is, the mean distance ρ̄T from the origin to the contour of the neuronal structure in T is assumed to be the
same with the mean distance ρ̄S in S. This relation can be written as E(ρiT ) ≈ E(ρiS), and can be simplified
to sinϕT ≈ sinϕS . In our experiments, we suppose sinϕT = sinϕS = sinϕ.

By computing the partial derivative of the cost function with respect to u and making the derivative function
be zero, we get

∆̂t =
1

N

N∑
i=1

(xiT − xiS) =
1

N

N∑
i=1

(x̄T + ρiT cos θi − x̄S − ρiS cos θi)

=∆t+
r̄ sinϕ

N

N∑
i=1

cos θi(riT − riS) ,



where x̄k is X-axis coordinate of the origin in image k, and x̄T = x̄S+∆t. The second-order moment of (∆̂t−∆t)
is as following,

E
(
(∆̂t−∆t)2

)
=
r̄2(sinϕ)2

N2
E

 N∑
i=1

N∑
j=1

cos θi cos θj(riT − riS)(rjT − rjS)


=
r̄2(sinϕ)2

N2

N∑
i=1,j=1

2 cos θi cos θj(CoviT jT − CoviSjT ) ,

(5)

where Covik1jk2
= Cov(r(θi, ϕk1

), r(θj , ϕk2
)). Equation (5) shows that E((∆̂t − ∆t)2) is proportional with r̄2,

which means the registration accuracy is negatively correlated with neuronal structure size. Meanwhile, we have

CoviT jT − CoviSjT =

∞∑
n=2

λn(k
0
n)

2 (Pn(cos∆θij)− Pn(cosψij))

=

∞∑
n=2

λn(k
0
n)

2Ṗn(δn)(cos∆θij − cosψij)

=
d2

4r̄2

∞∑
n=2

λn(k
0
n)

2Ṗn(δn)(1 + cos∆θij) ,

(6)

where Ṗn is the derivative function of Pn, and δn ∈ [pn, qn], pn = min(cosψij , cos∆θij), qn = max(cosψij , cos∆θij).
The last equation uses the cosine-formula.15 Equation (6) shows that (CoviT jT −CoviSjT ) is positively correlated
with d. Thus, E((∆̂t−∆t)2) is positively correlated with d, which means ∆̂t is more inaccurate with the increase
of section thickness. The above analysis is same to ∆̂s in Y-axis.

Consider selecting a point inside the neuronal structure as the origin. An ideal origin needs to be unaffected
by structural deformation and only responds to the translation of neuronal structure. Center of mass might be
a possible option. It can remain stable when the shape of the neuronal structure is slightly deformed. Moreover,
it is easy to calculate the center of mass. Next, we analyze how accurately the center of mass is positioned with
respect to the ground truth center.

We set the ground truth center, which is actually the projection of origin z in section 2.1, as (0, 0) and
calculate the center of mass (xc, yc) in this coordinate system. The X-axis coordinate of center of mass can be
written as xc = 1

M

∫∫
P
xdx, where P is the projection of K on the cutting plane and M is the area of P . M can

be calculated by integrating over the whole structure, M =
∫∫

P
dxdy. We use E(M) = πr̄2 sin2 ϕ instead of M

to reduce the computational complexity. And we have

1

E(M)

∫∫
P

xdx =
1

3E(M)

∫ 2π

0

ρ3(θ, ϕ) cos θdθ

≈ 2π

3NE(M)

N∑
n=1

ρ3(θn, ϕ) cos θn

=
2πr̄3 sin3 ϕ

3NE(M)

N∑
n=1

1 +

∞∑
i=2

i∑
j=−i

ajiψ
j
i (θn, ϕ)

3

cos θn

≈2r̄ sinϕ

N

N∑
n=1

∞∑
i=2

i∑
j=−i

ajiψ
j
i (θn, ϕ) cos θn .

(7)

The last equation is derived using Taylor expansion and discarding high-order terms. We can estimate E(x2c)
as follows,



E(x2c) ≈
4r̄2 sin2 ϕ

N2

∞∑
i=2

λi

i∑
j=−i

N∑
n=1

(
ψj
i (θn, ϕ) cos θn

)2

. (8)

Equation (8) demonstrates that the accuracy of estimate of centre of mass to ground truth center is negatively
correlated with r̄. This relation may suggest extracting the centers of mass on small neural structures to improve
registration accuracy.

3. RESULTS
In this section, we first design an experiment to demonstrate that the accuracy of center of mass is negatively
correlated with r̄. In figure 4(a), we illustrate the distribution of centers of mass at different r̄. Figure 4(b) and
(c) compare the experimental results E(x2c) and E(y2c ) with our theoretical prediction by equation (8).

Next we design an experiment to verify equation (5). We generate a set of section neuronal structure shape
data based on the deformation model. It contains 24 subsets with different r̄ and each subset contains 1000 pairs
of target image T and source image S, r̄ = {25, 50, 75, . . . , 600} pixels. The section thickness d is set to 40 pix
in all subsets. (∆t,∆s) =(4.5 pixels, 4.5 pixels). The model parameters we used are (α, β, p) = (20.2, 0.9, 4.4),
which is calculated by fitting neurons in human brain.12

For a pair of T and S, we first select origins and sample points at a pre-defined angular interval on the
contours. We use centers of mass and ground truth centers as origins to compare the influence of origin on
registration accuracy. And we extract landmarks from accurate contours and discrete images to compare the
influence of discrete samples. The angular interval is π/50. Secondly, we calculate ∆̂t and ∆̂s by the derivative
function of the cost function. Finally we calculate the second-order moment of (∆̂t−∆t) and (∆̂s−∆s) among
the subset of same r̄. The calculated second-order moments are compared with the prediction of equation (5) to
verify our analysis.

Figure 5 illustrates experimental results. The results obtained from the ground truth center are generally
consistent with our predictions. The experimental results also show that the second-order moments of estimated
translation with the center of mass grow in the same trend as predicted. However, there is a gap between the
results obtained from the center of mass and our prediction. Comparing the results using only the center of mass
shows that this gap is caused by the inaccurate positioning of the center of mass to the ground truth center. Our
results also illustrate that whether the landmarks are sampled from the accurate contours does not significantly
affect the registration accuracy.
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Figure 4. (a) illustrates distribution of the centers of mass at different r̄. The red points are regarded as (0, 0) for its
surronding samples. (b) compares the results of E(x2c) and (c) compares the results of E(y2c ) with theoretical prediction.
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Figure 5. (a) compares the results of the logarithm of the second-order moment of (∆̂t − ∆t) and (b) compares the
results of (∆̂s−∆s) with the theoretical prediction. GTC: Registration uses the ground truth center as the origin. CM:
Registration uses the center of mass as the origin. AccLM: Landmarks are extracted from accurate contours. DisLM:
Landmarks are extracted from discrete image contours. OnlyCM: Registration only uses the center of mass to register
two images, which is used to compare different origins’ influence.

4. CONCLUSION
In this paper, by using the spherical deformation model to simulate neuronal structures in ssEM images, we
mathematically describe the trend that the correlation of neuronal structure in adjacent sections decreases with
section thickness. Furthermore, we analyze the relationship between registration accuracy and section thickness
as well as neuronal structure size. Our analysis shows that the second-order moment of the estimated translation
increase with mean radius length r̄. The experimental results on the synthetic data sets effectively support our
analysis.
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