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Abstract
Purpose – The purpose of this study is developing the minimum parameter learning law for the weight updating, which reduces the updating of
neural network (NN) weight only at triggering instants and makes a trade-off between the estimation accuracy and triggering frequency such that
the computing complexity can be decreased. Besides that, a novel “soft” method is first constructed for the control updating at the triggered
instants, to reduce the chattering effect of discontinued renewal of control. Addressing to the proposed control and updating method, a novel dead-
zone condition with variable boundary about the triggered control signal is derived to ensure the positivity of adjacent execution intervals.
Design/methodology/approach – In this paper, to achieve the motion tracking of manipulator with uncertainty of system dynamics and the
communication constraints in the control-execution channel, an adaptive event-triggered controller with NN identification is constructed to improve
the transmission efficiency of control on the premise of the guaranteed performance. In the proposed method, the NN with intermittent updating is
proposed to perform the uncertain approximation with the saved computation, and the triggered mechanism is constructed to regulate the
transportation of the signal in the channel of controller-to-actuator.
Findings – According to the impulsive Lyapunov function, it can be proved that all the signals are semi-global uniformly ultimately bounded, and
the positivity of adjacent execution intervals is also guaranteed by the proposed method. In addition, the chattering effect of control updating at the
jumping instants can be relieved by the proposed “soft” mechanism, such that the control accuracy and stability can be guaranteed. Experiments on
the JACO2 real manipulator are carried out to verify the effectiveness of the proposed scheme.
Originality/value – To the best of the author’s knowledge, this study is firstly to propose a “soft” method to reduce the chattering effect caused by
discontinuous updating. Addressing to the updating method designed above, a novel dead-zone condition with variable threshold and boundary is
first constructed to ensure the positivity of execution intervals.
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1. Introduction

Recently, a growing application of robotic manipulators has
catalyzed a variety of tasks being expected from a system with
the least consumption of resources as much as possible (Yang
et al., 2018; Wu et al., 2017). In particular, digital
microprocessors own important applications in almost all
modern controller-to-actuator (C-A) of manipulator systems
for data processing and system monitoring (Zhang and Wei,
2017). Due to the constrained bandwidth and limited resources
of chips at their disposal, the signal transmission delay, packet
loss may happen in heavy communication workload (Mostafa
et al., 2019; Yu et al., 2019; Sandra, 2020). Based on the above
facts, aperiodic control techniques were developed upon
because there always exists some redundancy in control signal
transmission. A better solution is to reduce the signal
transmission and updating to instant when the performance is
not guaranteed. Event-triggered control (ETC) enables the

system to be concerned if a predetermined error-related
criterion is satisfied (Romain et al., 2014; Chen and Li, 2018;
Liu et al., 2020). In this way, the flexible control resource
allocation with satisfactory control accuracy can be achieved by
designing a proper triggering condition (Zhu, 2020).
Literatures in Tripathy et al. (2014), Seungmin et al. (2021)

have studied event triggered mechanisms with different control
methods to achieve the limited control transferring of
manipulator systems. For example, Tripathy et al. (2014) have
discussed the optimal control approach to solve robust
stabilization problem for robot manipulators with event-based
control law. Baek S et al have proposed a communication
efficient event-triggered time-delay control for network
manipulator control systems (Seungmin et al., 2021). These
experimental results show that, compared with the uniform-
interval controller, the communication resources have been
greatly reduced. However, the above methods are mainly
applicable to systems with determinate dynamic parameters
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and structure. With the increasing complexity of the
mechanical structure of robot, some biological heuristic control
methods have been investigated for controlling such a system.
Chen et al. have proposed some muscle-synergies-based
neuromuscular control and learning methods, which effectively
improve themotion performance of musculoskeletal robots and
enlighten the control of complex robotic systems with strong
redundancy, coupling and nonlinearity (Chen and Qiao,
2020a, 2020b), whereas these methods need the real-time
transmission and updating of signals to guarantee the
performance, which may cause the waste of communication
and calculation.
On account of the control problem of uncertain nonlinear

systems with unmatched conditions, the backstepping method
combined with the neural network (or called NN for short)
identification has been developed, which causes the exact
system information dependence to be removed from the
control (He et al., 2017; Kong et al., 2019). In particular, the
static NN such as radial basis function neural network
(RBFNN) is mostly taken into account in the adaptive
feedback control for the uncertain and disturbed nonlinear
system due to its rigorous convergence (He and Dong, 2018;
Kong et al., 2018; Mei, 2019; Huang and Liu, 2019; Li et al.,
2021a, 2021b). Apart from the continuous system, NN
identification can also be implemented into ETC (Ma et al.,
2019; Wang and Philip, 2020; Zhang et al., 2021; Gao et al.,
2021a; Sun et al., 2019; Zhao et al., 2021; Qiu et al., 2021). For
example, Gao et al. (2021b) have developed the adaptive event-
triggered tracking control of a manipulator subjecting to
uncertain dynamics and unknown disturbance; Sun et al.
(2019) have proposed a novel dynamic event-triggered robust
tracking control method in the C-A channel for manipulators,
and the reduced-order observer was designed to deal with
disturbance; aiming at the flexible single-link manipulator
system, Zhao et al. (2021) have built an adaptive event-
triggered boundary control scheme. In Qiu et al. (2021), they
have studied event-triggered-based adaptive NN tracking
control of a robotic manipulator with output constraints and
disturbance. It is worth noting that the design of event-sampled
adaptive controller with NN to solve system uncertainties is still
an open problem because the updating form of NN has an
influence on control performance. In the above works of
adaptive ETC in the C-A channel, NN’s updating is driven by
time, which will increase the computational complexity.
Addressing this problem, some researchers have developed the
aperiodic updating with the principle of minimum parameter
learning (MPL) for the event-based control (Gao et al., 2021a;
Wang et al., 2018; Liu et al., 2019; Margareta and Safonov,
2008) for details. In these works, the weight of NN updates
only when it is needed, namely, at triggering instants, whereas a
longer updating interval may degrade the estimation of
accuracy; thus, a tradeoff between accuracy and efficiency is
demanded for the befitting contraction of updating, and this
can be realized through designing the reasonable triggering
condition and adaptive law. In Gao et al. (2021a), the discrete
dynamic ETC with aperiodic network estimation has been
developed for the robotic manipulator, to improve the
adaptability of control method to the system.
Chattering effect is another problem in implementing ETC

into the actual control system. The traditional triggering

control method usually adopts the “judgment-switch”
mechanism; that is, when the triggered condition is met, the
feedback state of control will directly jump to the current value
of the system.Hence, this “hard” switchingmechanism leads to
a serious discontinuity of system control and may further cause
the chattering effect that degrades the control stability (Lee and
Utkin, 2007; Zhang et al., 2019). In other words, this
discontinuous jumping function enforces the motion of the
system state to oscillate near the predefined switch surface
determined by the triggered threshold. One important solution
to overcome the chattering problem is to use a saturation
function or filter to smooth the discontinuous control while the
system is near the switch surface in a boundary layer (Hou and
Fei, 2019; Balamurugan et al., 2017; Wang et al., 2020).
However, to the best of the author’s knowledge, no study has
considered the chattering problem in triggering systems, which
motivates this research. In our proposed framework, a novel
filter-like “soft” triggering mechanism is constructed in this
paper to realize the relative smooth transition from the original
state to the new one. Besides that, the updating step size can be
changed through introducing the extra parameter.
This paper mainly focuses on the manipulator system with

uncertain dynamics and communication constraints. Through
combining the NN approximation and backstepping
technique, an adaptive NN control policy is developed to deal
with the effect of uncertainty on tracking performance. Here,
the congestion in communication networks between the
controller and actuator is considered. To alleviate the
communication and computing burden, the triggering
transmission is introduced into the control execution channel
and the updating of the network, which is different from the
existing time continuous control method in Huang and Liu
(2019) and Li et al. (2021a, 2021b), whereas the controller
design needs to face the following difficulties and challenges:
� How to design control and aperiodic adaptive law to

promote asymptotic stability of tracking and weight
estimation error?

� How to construct the appropriate “soft” triggering
mechanism and corresponding condition, such that the
chattering instability can be reduced with a guaranteed
Zeno-free behavior?

Compared with the existing methods, the main contributions
and innovations of this paper are as follows:
� To reduce chattering and instability caused by the “hard”

switching method in traditional ETC, a novel “soft”
triggering mechanism is first constructed in the C-A
channel, to achieve the relative smooth transition of the
control from the original state to the new one at the
triggered instants. In addition, through introducing a
parameter b , the updating size could be adjusted for the
convergence and stability.

� To decrease the computing complexity, the MPL
principles are involved in the derived adaptive controller,
where the updating of NN weight is only conducted at
triggering instants, which is different from the existing
ETC studies in Huang and Liu (2019), Ma et al. (2019)
and Zhang et al. (2021).

� Based on the triggered mechanism and adaptive law
proposed above, a novel dead-zone triggered condition
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with variable boundary is derived. Different from the
existing dead-zone ETC in Qiu et al. (2021), Gao et al.
(2021a), Wang et al. (2018) and Liu et al. (2019), the
triggering threshold and dead-zone boundary change with
the control variable, so as to improve the adaptability of
triggering to control performance and ensure the positivity
of adjacent execution intervals within the above design.

� Finally, based on the impulse Lyapunov function, semi-
global uniformly ultimate boundedness (SGUUB) of all
the error signals in the closed-loop system is proved.

Notations. I 2 RN�N denotes the identity matrix. In case x is a
scalar, jxj denotes its absolute value. Given a vector
a 2 RN�1; kak denotes its 2-norm of a. For a matrix
B 2 RN�M; kBkF represents the Frobenius norm ofB. BT is the
transposition of the B. For a square matrix S 2 RN�N ; lmax Sð Þ
and l min (S) denote the minimum and maximum eigenvalues
of S, respectively.

2. Preliminaries and problem formulation

2.1 Lemmas
In this paper, the Lyapunov stability theory of impulsive
systems and some inequalities are applied, and the specific
contents are listed as follows:
Lemma 1. (The stability of impulsive system) (Romain et al.,

2014) Given a nonlinear impulsive system with the assumption
that the jumping only occurs at distinct time instants defined as
follows:

_z ¼ fc zð Þ; z 2 NC � Rm

Dz ¼ fd zð Þ; z 2 ND � Rm
(1)

where fc and fd are the function of the system. NC and ND

represent the time flow and jumping set of the n-dimensional
vector z , respectively. If there exists a continuously
differentiable Lyapunov function V zð Þ : Nz ! Rm and classic
K1 functions a() and b () satisfying as:

akz k � V zð Þ � b kz k; z 2 Nz

@V zð Þ
@z

fc zð Þ < 0; kz k > r ; z 2 NC; z 2 Nz

DV zð Þ ¼ V z 1 fd zð Þð Þ � V zð Þ < 0; knz k > r ;

z 2 ND; z 2 Nz

(2)

where r is a positive constant such that the boundary can be
written as: Ba�1 b rð Þð Þ ¼ fr 2 Rm : krk � a�1 b rð Þ� �g � Nz

with r > b (r). Supposing another boundary in the discrete
domain exists, which can be defined as:
cDD sup

r2Ba�1 b rð Þð Þ\Nz

z 1Vd zð Þð Þ exists. Then, the variable z

satisfies the semi-global ultimately bounded with a�1(max {b (r),
c }). Furthermore, as t ! 1, it is satisfied as:
limsup

t!1
kz k � a�1 b rð Þ� �

.

Lemma 2. (Young’s inequality) (He et al., 2017; He and
Dong, 2018) For any vectors a; b 2 Rn, the following inequality
holds as:

aTb � kh

h
jajh 1

jbjm
mkm

(3)

where k , m and h are positive constants, and the latter two
variables satisfy that: (m – 1)(h – 1) = 1.
Lemma 3 (He et al., 2017; He and Dong, 2018). For any

positive variables ˆ and scalar z, the hyperbolic tangent
function has the following properties:

0 � jzj � zT tanh
z
ˆ

� �
� 0:2785ˆ (4)

where�zT tanh z
ˆ

� � � 0.
Lemma 4 (He et al., 2017; Kong et al., 2019). Consider a

real, symmetric and positive-definite matrix Q 2 Rn�n. For
8y 2 Rn, the minimum and maximum eigenvalues of Q,
denoted by lmin and lmax, respectively, satisfy the following
inequalities:

lmin Qð Þkyk2 � yTQy � lmax Qð Þkyk2 (5)

2.2 Dynamics of manipulator
Consider the dynamics of a robotic manipulator system with
the dimension of joint space being n can be described by He
andDong (2018):

Mm qmð Þ€qm 1Vm qm; _qmð Þ _qm 1Gm qmð Þ1 fdis tð Þ ¼ C (6)

where qm 2 Rn�1 is the rotation angle vector of joints.
Mm qmð Þ 2 Rn�n; Vm qm; _qmð Þ 2 Rn�n and Gm qmð Þ 2 Rn�1

represent the inertia, Coriolis and gravitational force matrices,
respectively. fdis(t) is the external disturbance. C 2 Rn�1 is the
applied control torque. Some assumptions are made on the
Mm qmð Þ; Vm qm; _qmð Þ and fdis as follows.
Property 1 (He and Dong, 2018; Kong et al., 2018).Mm (qm)

is the symmetric and positive matrix satisfying boundedness.
There exists two positive constantsMm1 and Mm2 with Mm2 �
Mm1 such that the inequation Mm1I � Mm (qm) � Mm2I is
satisfied. In addition, the matrix Vm qm; _qmð Þ is also bounded;
namely, there exists a positive value V m such that
kV qm; _qmð Þk � Vm _qm is satisfied.
Property 2 (He and Dong, 2018; Kong et al., 2018). The

matrix _Mm qmð Þ � 2Vm qm; _qmð Þ is skew-symmetric.
Assumption 1 (Mei, 2019). The external disturbances fdis(t)

is bounded such that jjfdis tð Þjj � fd1 and jj_f dis tð Þjj � fd2, where
fd1 and fd2 are two positive upper bound values.

2.3 Function estimation with event-triggered radial
basis neural networks
To deal with the uncertain dynamics in the control field,
RBFNNs are applied to estimate unknown nonlinear
functions, and the approximating capability is written in the
following form:

fv ¼ #̂
T
U vð Þ (7)

where fv 2 Rn is the continuous function whose input is defined
in the compact set v 2 Xv � Rl. #̂ 2 Rml�n is the estimated
weight matrix. The response function vector

Neural network estimation

Jie Gao

Assembly Automation



U vð Þ ¼ U1 vð Þ;U2 vð Þ; � � � ;Uml vð Þ½ 	 can be obtained by the
gaussian radial basis function as follows:

Ui vð Þ ¼ exp
� v� m ið ÞT v� m ið Þ

s2
i

 !
(8)

where m i and s i is the center and width of the gaussian radial
basis function. With the expected weight # 2 Rml�n, the
nonlinear function fv can be written as the NN’s fitting with the
following form:

fv ¼ #TU vð Þ1 z v (9)

where z v 2 Rn is the approximation error with continuous
variable v, which is a bounded value satisfying as: kz vk � z v;M,

where z v;M is a positive constant. Next, the function estimation
of the event-sampled NN is illustrated by the following
Lemma.
Lemma 5 (Wang and Philip, 2020; Zhang et al., 2021).

Define a discrete monotonically increasing time sequence
tkf g1k¼0 with t0 = 0, and as k!1, tk!1. The sampling points
at discrete triggering times are defined as triggered variables,

which can be written by v^ tð Þ ¼ v tkð Þ; tk � t < tkþ1. Then,

8v^ 2 Xv^ � Rl, such that f(v) can be reconstructed by the

weight #̂ and activation functionU v^ð Þwith event sampled input
as:

f v^ j#
� �

¼ #TU v^ð Þ1 z
v^

(10)

where # in (10) is the expected matrix with event-sampled
network, which can be computed by:

# ¼ arg min
#�Rm�n

sup
v2Xv v

^2X
v^

jf vð Þ � f̂ v^ j#
� �

j
" #

(11)

where z
v^

is the event-sampled reconstructed error being
defined as: z

v^
D¼#

TU vð Þ � #TU v^ð Þ1 z v.
It can be seen from (10)–(11) that the approximation

performance is affected by the inexact sampling input of NN,
thus, causing a trade-off between the triggering frequency
and the estimation performance. The following assumptions
about the estimation error and activation function of the event-
triggeredNN aremade:
Assumption 2 (Wang and Philip, 2020; Zhang et al.,

2021). The approximation error of the event-sampled NN
satisfies boundedness as: sup

v2X
v^

kz
v^
k � z

v^;M
with the positive

constant z
v^;M

> 0.
Assumption 3 (Wang and Philip, 2020; Zhang et al., 2021).

Activation function satisfies the boundedness and locally
Lipschitz, where kU �ð Þk � Umax and kU að Þ � U bð Þk � LU

ka� bk; 8a; b 2 Xv.LU> 0 is the Lipschitz constant.
Remark 1. Based on the description of Stone–

Weierstrass theorem, the continuous NN identification
error can be made arbitrary small by selecting the
appropriate number of neurons. For the estimation error of
event-triggered NN, namely, z

v^
, it satisfies that:

kz
v^
k � k#TU vð Þk1 k#TU v^ð Þk1 kz vk with #, U(v) and z v

being the bounded value. As such, kz v^k is also a bounded
value. Moreover, the gaussian kernel function acting as the
activation function has the locally Lipschitz and
boundedness. Thus, the above assumptions are reasonable.

3. Design of event-triggered control

Consider the model-based control problems without network’s
estimation. Given that the full state information is available, the
generalized tracking errors in joint space are defined as:

z1 ¼ qm � qmd (12)

z2 ¼ _qm � a1 (13)

where qmd 2 Rn�1 is the desired trajectory of joints, and
a1 2 Rn�1 is a virtual control signal, which will be defined as
follows:

a1 ¼ _qmd �K1z1 �Krtanh z1ð Þkz2k (14)

where K1 2 Rn�n and kr 2 Rn�n are positive diagonal matrix.
tanh() is the hyperbolic tangent saturation function to reduce
the control instability under the effect of the uncertain
dynamics and disturbance.
For the convenience of dealing with z1 and z2, it follows from

(6), (12), (14) and (13) that:

_z1 ¼ z2 1a1 � _qmd

_z2 ¼ Mm
�1 qmð Þ C� Vm qm; _qmð Þz2 � Vm qm; _qmð Þa1½

�Gm qmð Þ �Mm qmð Þ _a1 � fdis
�

8>><
>>:

(15)

where _a1 ¼ @a1
@ _qmd

qmd 1
@a1
@z1

_z1. Let Hm ¼ Vm qm; _qmð Þa1 1

Gm qmð Þ1Mm qmð Þ _a1 be the dynamic parameters of the system.
According to the model-based control rule, the controller is
constructed as follows:

C ¼ �z1 �Kpz2 1Hm 1 fdis (16)

whereKp 2 Rn�n is the positive diagonal matrix.
Actually, the parameters the involving kinetic term

Vm qm; _qmð Þa1 1Gm qmð Þ1Mm qmð Þ _a1 and disturbance fdis is
uncertain to the controller. To this end, an RBFNN is applied
to estimate it as follows:

#TU vð Þ1 z v ¼ Hm 1 fdis (17)

where v = [x1,x2,a1,C] [ is the input of NN. z v is the bounded
error.
Let #̂ represent the approximation value of #. Then, the

adaptive controller with approximate NN estimation can be
rewritten as:

C ¼ �z1 �Kpz2 1 #̂
T
U vð Þ (18)

It could be seen from (18) that the control system only
considers the situation that both the controller and NNs are
transmitted and updated in a time-continuous manner. To
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release more communication resources inside the robot, the
event-triggered law is constructed in the C-A channel. In this
case, the event-based control signal is switched between two
modes: one is state holding during the non-triggered period t
[[tk, tk11), and another is state updating in the jumping phase.
According to the traditional ETC, the event-based control
torque is defined as:

C
^

tð Þ ¼ C tkð Þ; t 2 tk; tk1 1½ Þ (19)

C
^

t1ð Þ ¼ C tð Þ; t ¼ tk (20)

where the control signal is directly jumping into the latest one at
the event time. By using this switching method, the chattering
effect will be caused. To alleviate this problem, a novel state
updatingmethod is designed as:

C
^

t1ð Þ ¼ bC
^

tð Þ1 1� bð Þ C tð Þ � bC
^

tð Þ
� �

(21)

It can be seen from progressive updating formula (21) that the

step size of updating 1� bð Þ C tð Þ � bC
^

tð Þ
� �

can be
modulated based on the parameter b .
Actually, through designing different values of b , the

updating of control can be transformed into different modes.
For b = 1, (21) is equivalent to the state holding, whereas for
b = 0, (21) becomes the traditional state “hard” jumping. As
such, updating mode allows flexible switching according to the
value of b , and the soft triggered mechanism can be
constructed as (21) with b being designed by:

0 � b < 1; if event is true

b ¼ 1; if event is false

(
(22)

Based on the event-sampled control value, the controller with
event-triggeredNN estimation is rewritten as:

C ¼ �z1 �Kpz2 1 #̂
T
U v^ð Þ (23)

where v^ ¼ x1; x2;a1;C
^

h i
is the input of NN, which is

composed of the ETC signal.
To determine the event instants, a novel dead-zone

condition with event-triggered error is constructed by:

e tð Þ ¼ C tð Þ � C
^

tð Þ; t 2 tk; tk1 1½ Þ (24)

tk1 1 ¼ tk 1min d t > 0 jsupt2 tk;tk 1 d t½ Þ g1 e tð Þð Þ � g2 C tð Þð Þ
n o

(25)

where g1(e(t)) in (25) is the dead-zone functions, which can be

defined as: g1 e tð Þð Þ ¼ ke tð Þk; if kC tð Þk > BC tð Þ
0;

	
. g2(C(t)) is

the threshold function which is used to transform the triggered
control error into the evolution of the control state, so as to
further promote the convergence of the system. For this reason,
BC(t) is the time-varying boundary of the dead-zone, and its
concrete form will be given in the later. When the control
quantity is located within the boundary, the performance of the
system is considered to meet expectations, and no extra

triggering is needed. Note that the proposed dead-zone
condition could reduce the triggering frequency and increase
the inter-event period according to the system’s performance
by using a time-varying boundary.
To make the system convergent without violating the Zeno-

free behavior, the condition function and boundary of the dead-
zone during the time interval t [ [tk, tk11) can be designed as
follows:

g2 C tð Þð Þ ¼ ks

11 k#̂kLU

� � kC tð Þk1 z e�b tk
� �

(26)

BC tð Þ ¼
11 k#̂kLU

� �
ks

b ke tkð Þk1 b 1� bð ÞkC^ tkð Þk
� �

(27)

where z e�tk is the positive term with z being a positive
constant.LU is the Lipschitz coefficient.
With the event-sampled control signal in (19) and the

triggered error in (25), the dynamics of z2 in the updating
intervals becomes as follows:

_z2 ¼ M�1
m qmð Þ C

^

tð Þ � Vm qm; _qmð Þz2 � Vm qm; _qmð Þ
h

a1 �Gm qmð Þ
�Mm qmð Þ _a1 � fdis	

¼ M�1
m qmð Þ C tð Þ � e tð Þ � Vm qm; _qmð Þz2 � Vm qm; _qmð Þa1



�Gm qmð Þ �Mm qmð Þ _a1 � fdis	; t 2 tk; tk1 1½ Þ (28)

According to (23), the NN with triggering input is used to
estimate the system dynamics. According to the
characteristics of the triggering system and MPL criteria, an
aperiodic adaptive law is designed to update the weights only
at the instant when the estimation fails to achieve the desired
control performance. In addition, to make a trade-off
between the estimation accuracy and triggering efficiency, the
adaptive law can be designed as the function of the triggered
error as follows:

_̂
#i ¼ 0; t 2 tk; tk½ Þ
#̂i t1ð Þ ¼ #̂ tð Þ � r1U v^ð Þl � y1#̂ tð Þ; i ¼ 1;2; . . . n

t ¼ tk

8>>><
>>>:

(29)

where l ¼ eTLs
ke2k1 c is the feedback signal about the event error

with Ls being the matrix for the matching of dimension. c> 0 is
the constant. v and r1 are tuning parameters to modulate the
updating.
Remark 2. When the state of the system reaches the

switching surface composed of trigger threshold, the “soft”
mechanism designed by (21) can reduce the chattering by
appropriately decreasing the updating size. Taking the norm on
both sides of (21), one has:

kC^ t1ð Þk � b kC^ tð Þk1 1� bð ÞkC tð Þk1 1� bð Þb kC^ tð Þk
� kC^ tð Þk1 kC tð Þk1 kC^ tð Þk

(30)
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In addition, one knows that the norm of the event-triggered just
after updating according to traditional ETC in (20) satisfies:

kC^ t1ð Þ � kC^ tð Þk1 kC tð Þk1 kC^ tð Þk (31)

It is clear that the maximum absolute update amplitude under
the proposed updating method is smaller than that of the
traditional ETCmethod.
The whole control framework of the proposed method is

portrayed in Figure 1, which can be divided into two parts,
namely, control generation and control transmission. In the
control generation, the state feedback with aperiodic NN
identification is constructed, and in the control transmission,
the proposed dead-zone event condition is constructed to
determine the control to be transmitted through the
communication network, and when the condition is met, the
control signal is updated along (21).

4. Stability and feasibility analyze

To better illustrate the availability of the control method, the
parameter conditions of the convergence of weight estimation
and tracking errors based on Lyapunov function are provided.
Theorem 1. Consider the aperiodic updating law expressed

in (29) with tenable Properties in 1 and 2, as well as
Assumptions 1–3. Assume that the initial value of estimated
weight #̂i t0ð Þ is located in a compact set X#̂, then under the
event-triggered mechanism given in (24)–(25), the weight
estimation error ~# i remain SGUUB.
Proof. First, the convergence of NN weight estimation error

is proved, and the Lyapunov function is constructed as follows:

V ~# ¼
Xn
i¼1

1
2
~#
T
i
~#i (32)

Next, the derivate ofV #̂ is calculated in two cases. For the non-
triggered cases, i.e. tk � t < tk11, the derivate _V ~# is equivalent
to zero. Now, the difference of V #̂ at the triggered moment is
discussed. Consider the first-order difference as follows:

DV ~# ¼ V ~# t1ð Þ � V ~# tð Þ ¼
Xn
i¼1

1
2
~#
T 1

i
~#

1

i �
Xn
i¼1

1
2
~#
T
i
~# i

(33)

Substituting the discrete updating law (29) into (32), one has:

DV ~# ¼
Xn
i¼1

1
2
ð~#iðtÞ þ r1Uðv^Þl i þ y1#̂iðtÞÞT ð~#iðtÞ

þ r1Uðv^Þl i þ y1#̂ iðtÞÞ �
Xn
i¼1

1
2
~#
T
i
~#i

¼ 1
2

Xn
i¼1

~#
T
i ðtÞ~#iðtÞ þ 1

2

Xn
i¼1

~#
T
i ðtÞr1Uðv^Þl i

þ 1
2

Xn
i¼1

l iUðv^ÞT rT
1
~#iðtÞ

þ 1
2

Xn
i¼1

l T
i U

T ðv^ÞrT
1 r1Uðv^Þl i

þ 1
2

Xn
i¼1

l T
i Uðv^ÞrT

1 y1#̂iðtÞ þ 1
2

Xn
i¼1

#̂
T
i ðtÞyT1 y1#̂iðtÞ

þ 1
2

Xn
i¼1

#̂
T
i ðtÞyT1 r1Uðv^Þl i þ 1

2

Xn
i¼1

#̂
T
i ðtÞyT1 ~#iðtÞ

þ 1
2

Xn
i¼1

~#
T
i ðtÞy1#̂iðtÞ � 1

2

Xn
i¼1

~#
T
i
~#i

�
Xn
i¼1

~#
T
i ðtÞy1#̂iðtÞ þ

Xn
i¼1

l iUðv^ÞT rT
1
~#iðtÞ

þ 1
2

Xn
i¼1

l T
i U

T ðv^ÞrT
1 r1Uðv^Þl i

þ
Xn
i¼1

l T
i Uðv^ÞrT

1 y1#̂iðtÞ þ
Xn
i¼1

1
2
#̂
T
i ðtÞyT1 y1#̂iðtÞ

(34)

Substituting the equation: #i tð Þ � #̂i tð Þ ¼ ~#i tð Þ into (34), one
has:

Figure 1 Control framework of the proposed method
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DV #̂ �
Xn
i¼1

~#
T
i ðtÞy1ð#iðtÞ � ~#iðtÞÞ þ

Xn
i¼1

l iUðv^ÞT rT
1
~# iðtÞ

þ 1
2

Xn
i¼1

l T
i U

T ðv^ÞrT
1 r1Uðv^Þl i

þ
Xn
i¼1

l T
i Uðv^ÞrT

1 y1ð#iðtÞ � ~# iðtÞÞ

þ 1
2

Xn
i¼1

ð#T
i ðtÞ � ~#

T
i ðtÞÞyT1 y1ð#iðtÞ � ~#iðtÞÞ

¼
Xn
i¼1

~#
T
i ðtÞy1#iðtÞ þ

Xn
i¼1

ð1� y1Þl iUðv^ÞT rT
1
~# iðtÞ

�
Xn
i¼1

~#
T
i ðtÞy1~#iðtÞ þ 1

2

Xn
i¼1

l T
i U

Tðv^ÞrT
1 r1Uðv^Þl i

þ
Xn
i¼1

l T
i Uðv^ÞrT

1 y1#iðtÞ þ 1
2

Xn
i¼1

#T
i ðtÞyT1 y1#iðtÞ

�
Xn
i¼1

#T
i ðtÞyT1 y1~# iðtÞ þ 1

2

Xn
i¼1

~#
T
i ðtÞyT1 y1~#iðtÞ

�
Xn
i¼1

l T
i Uðv^ÞrT

1 y1#iðtÞ

� 1
2

Xn
i¼1

~#
T
i ðtÞð�2yT1 y1 þ y1Þ~#iðtÞ

þ 1
2

Xn
i¼1

l T
i U

T ðv^ÞrT
1 r1Uðv^Þl i

�
Xn
i¼1

ðy1 � 1Þl iUðv^ÞT rT
1
~# iðtÞ

þ 1
2

Xn
i¼1

#T
i ðtÞð2yT1 y1 þ y1Þ#iðtÞ

(35)

Let x1 ¼ 1
2 �2yT1 y1 1 y1
� �

; x2 ¼ y1 � 1ð Þl iU v^ð ÞT rT
1 , then,

the first and second terms of (35) could be transformed into:

x1
~#
T
i tð Þ~#i tð Þ � x2

~#i tð Þ

¼ � 1
2
x1

~#
T
i tð Þ~# i tð Þ �

ffiffiffiffiffiffi
x1

2

r
~#i tð Þ �

ffiffiffiffiffiffi
2
x1

s
x2

2

0
@

1
A2

1
x2
2

2x1

(36)

Substituting (36) into (35), one has:

DV ~# � �
Xn
i¼1

1
4
ð�2yT1 y1 þ y1Þ~#T

i ðtÞ~#iðtÞ

þ
Xn
i¼1

½ðy1 � 1Þl iUðv^ÞT rT
1 	2

ð�2yT1 y1 þ y1Þ

þ 1
2

Xn
i¼1

l T
i U

T ðv^ÞrT
1 r1Uðv^Þl i

þ
Xn
i¼1

l T
i Uðv^ÞrT

1 y1#iðtÞ þ
Xn
i¼1

#T
i ðtÞð2yT1 y1 þ y1Þ#iðtÞ

� �
Xn
i¼1

1
4
ð�2yT1 y1 þ y1Þk~#iðtÞk2 þ

1
2

Xn
i¼1

kl ik2kUðv^Þk2kr1k2

þ
Xn
i¼1

k#iðtÞk22ky1k2 þ
Xn
i¼1

ky1 � 1k2kl ik2kUðv^Þk2kr1k2
k � 2yT1 y1 þ y1k

þ
Xn
i¼1

k#iðtÞk2ky1k þ
Xn
i¼1

kl ikkUðv^Þkkr1kky1kk#iðtÞk

(37)

Let :

xn ¼
1
2

Xn
i¼1

kl ik2kU v^ð Þk2kr1k2

1
Xn
i¼1

ky1 � 1k2kl ik2kU v^ð Þk2kr1k2
k � 2yT1 y1 1 y1k

1
Xn
i¼1

k#i tð Þk2ky1k2 1
Xn
i¼1

kl ikkU v^ð Þkkr1kky1kk#i tð Þk

It can be known from (37) that the difference can be expressed

as: DV #̂ � � 1
2 x1

Xn
i¼1

k~# i tð Þk2 1 xn. When 0 < y1 < 0.5, x1 > 0

is ensured to come true. There is no denying that DV #̂ < 0 as

long as
Xn
i¼1

k~#i tð Þk2 > 2xn
x1
. According to the stability of

impulsive system in Lemma, ~# is ultimately bounded during
the updating process of NN, which satisfies as:

limsup
t!1

Xn
i¼1

k~# tð Þk �
ffiffiffiffiffiffi
2xn
x1

q
.

In the following theorem, the boundedness of the tracking
errors z1 and z2, and all the estimation errors are illustrated.
Theorem 2. Consider the dynamic manipulator system

under the action of the proposed virtual signal in (14) and
event-based transported controller (19)–(23).With the effect of
aperiodic adaptive law in (29) by the violation of event
condition in (24) and (25). Let Assumptions 1–3 hold. Then,
all the tracking errors z1 and z1, as well as the weight estimation
error ~#i remain uniformly ultimately bounded (UUB) as t !
1.
Proof. Construct a newLyapunov function as follows:

V1 ¼ 1
2
zT1 z1 1

1
2
zT2Mm qmð Þz2 1 1

2

Xn
i¼1

~#
T
i
~# i (38)

where the boundedness of the NN weight estimation error ~# i

has been proved in the previous content. Taking the derivative
of V1 with respect to time for t [ [tk, tk11), introducing the
dynamics of z1 and z2 with event sampled control torque into
(38), one has:

_V 1 ¼ zT1 �K1z1 1 z2 �Krtanh z1ð Þkz2k
� �

1 zT2 C tð Þ � e tð Þ � Vm qm; _qmð Þz2 � #TU vð Þ � z v

� �
� �zT1K1z1 �KrzT1 tanh z1ð Þkz2k � zT2Kpz2

1 zT2 #̂
T
U v^ð Þ � #TU vð Þ

� �
� zT2 e tð Þ � zT2 z v

(39)
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Conducting the norm operation and substituting the property
of tan type function in Lemma 3 into (39) to obtain:

_V 1 � �zT1K1z1 � kKrkkz1kkz2k10:2785kKrkkz2k
�zT2Kpz2 1 zT2 #̂

T
U v^ð Þ � #̂

T
U vð Þ � ~#

T
U vð Þ

� �
�zT2 e tð Þ � zT2 z v

� �zT1K1z1 1 0:2785kKrkkz2k � zT2Kpz2

1 kz2kk#̂T
U v^ð Þ � #̂

T
U vð Þk1 kz2kk~#T

U vð Þk
1 kz2kke tð Þk1 kz2kkz vk

(40)

Introducing the inequation of triggered errors in the event
condition with the Assumption 3, (40) transforms to:

_V 1 � �zT1K1z1 1 0:2785kKrkkz2k � zT2Kpz2

1 kz2k 11 k#̂kLU

� �
ke tð Þk1 kz2kk~#kkU vð Þk1 kz2kkz vk

� �zT1K1z1 10:2785kKrkkz2k � zT2Kpz2
1 kskz2kkC tð Þk1 kz2kk~#kkU vð Þk1 kz2kkz vk

(41)

as kC tð Þk � kz1k1Kpkz2k1 k#̂kkU v^ð Þk according to (28).
Then, (41) can be converted into:

_V 1 � �zT1K1z1 1 0:2785kKrkkz2k � zT2Kpz2

1 kskz2k kz1k1 kKpkkz2k1 k#̂kkU v^ð Þk
� �

1 kz2kk~#kkU vð Þk1 kz2kkz vk1 kskz2kz e�b tk

� �zT1K1z1 1 0:2785kKrkkz2k � zT2Kpz2

1 kskz2kkz1k1 kskKpkkz2k2 1 kskz2kk#̂kkU v^ð Þk
1 kz2kk~#kkU vð Þk1 kz2kkz vk1 kskz2kz e�b tk

¼ � zT1K1z1 � zT2Kpz2 10:2785kKrkkz2k1 kskKpkkz2k2
1 kskz2kk#̂kkU v^ð Þk1 kz2kk~#kkU vð Þk1 kz2kkz vk
1 kskz2kz e�b tk

(42)

Based on Young’s inequality, the following results are
obtained:

0:2785kKrkkz2k � 0:2785kKrkð Þ2
2

1
1
2
kz2k2 (43)

kskz2kk#̂kkU v^ð Þk � k2s
2
kz2k2 1 1

2
k#̂k2kU v^ð Þk2 (44)

kz2kk~#kkU vð Þk � 1
2
kz2k2 1 1

2
k~#k2kU vð Þk2 (45)

kz2kkz vk � 1
2
kz2k2 1 1

2
kz vk2 (46)

kskz2kz e�tk � ks
2
kz2k2 1 ks

2
z 2e�2b tk (47)

Substituting the above results (43)–(46) into (42) leads to:

_V 1 � �zT1K1z1 � zT2Kpz2 1
0:2785kKrkð Þ2

2
1

3
2
kz2k2

1 kskKpkkz2k2 1 1
2
k#̂k2kU v^ð Þk2 1 1

2
k~#k2kU vð Þk2

1
k2s
2
kz2k2 1 ks

2
kz2k2 1 ks

2
z 2e�2b tk 1

1
2
kz vk2

� �zT1K1z1 � zT2 Kp � ks
2

1
k2s
2

1 kskKpk1 3
2

� �
I

� �
z2

1
0:2785kKrkð Þ2

2
1

1
2
k#̂k2kU v^ð Þk2 1 1

2
k~#k2kU vð Þk2

1
ks
2
z 2e�2b tk 1

1
2
kz vk2

� �cV1 1M
(48)

where c =min(c 1, c 2) with c 1, c 2 being defined as:

c 1 ¼ lmin 2K1ð Þ (49)

c 2 ¼
lmin 2Kp � ks 1 k2s 1 kskKpk1 3

2

� �
I

� �
lmax Mm qmð Þ� �� � (50)

andM is expressed as follows:

M ¼ 0:2785kKrkð Þ2
2

1
1
2
k~#k2kU vð Þk2 1 1

2
k~#k2kU vð Þk2

1
1
2
kz vk2 1

ks
2
z 2e�2b tk :

(51)

For the addressed system, the initial parameter is bounded, that
is, 0�V1(0)� kv, kv> 0. According to Lemma 1, we know that
_V 1 < 0, indicating the uniformly boundedness if V1 > M

c with

c > 0 and M > 0. Apparently,M is a positive value from (51),
and c is positive when K1 > 0; 2Kp � ks � 2
k2s
2 � kskKpk � 3

2

� �
I > 0.

Another case considers the stability of the jumping at the
triggered times. Constructing the difference of Lyapunov
function as follows:

DV1 ¼ 1
2
z1T
1 z1

1 � 1
2
zT1 z1 1

1
2
z1T
2 Mm qmð Þz1

2

� 1
2
zT2Mm qmð Þz2 1 1

2

Xn
i¼1

~#
1T
i

~#
1

i � 1
2

Xn
i¼1

~#
T
i
~#i

(52)

As z1 and z2 are time-continuous variable, one has:

1
2
z1T
1 z1

1 � 1
2
zT1 z1 1

1
2
z1T
2 Mm qmð Þz1

2 � 1
2
zT2Mm qmð Þz2 ¼ 0

Then, DV1 < 0 is true only when
Xn
i¼1

k~#i tð Þk2 > 2x n
x1

according

to (37). According to the above analyze, the uniformly
ultimately boundness of all variables are proved.
Next, the feasibility of ETC with Zeno-free is illustrated by

the following theorem.
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Theorem 3. Consider the uncertain manipulator system under
the effect of virtual signal in (14) and event-based controller in
(19) and (23). Suppose all the properties and assumptions hold.
When the controller and NN are updated along the “soft” law in
(21) and aperiodic adaptive rule in (29) by the violation of event
condition in (24) and (25), then the minimum time interval is
lower bounded by a nonzero positive constant, which indicates
that none of the Zeno behavior occurs.
Proof. Consider the following derivative inequation of the

event triggered error e(t) for tk � t < tk11 (Liu et al., 2020;
Tripathy et al., 2014):

d
dt
ke tð Þk ¼ d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e tð ÞTe tð Þ

q
� k_e tð Þk ¼ k _Ck (53)

Integrating both sides of (53) in the time interval t1k ; t

 �

with
t0 = 0 to get:ðt

t1k

d
ds

ke sð Þkds �
ðt
t1k

k _Ckds; tk � t < tk1 1 (54)

where t1k is the time just after tk.
According to (15) and (23), one has:

_C ¼ K1z1 � z2 1 kstanh z1ð Þkz2k �KpM�1
m qmð Þ �z1½

�Kpz2 1 #̂
T
U v^ð Þ � e tð Þ � Vm qm; _qmð Þz2

�Vm qm; _qmð Þa1 �Gm qmð Þ �Mm qmð Þ _a1 � fdis
�

tk � t < tk1 1

(55)

Taking the norm of both sides of (55), and substituting the NN
identification as well as event condition, the following
inequation is satisfied:

k _Ck � kK1kkz1k1 kz2k1 jksjktanh z1ð Þkkz2k
1 kKpkkM�1

m qmð Þk kz1k1 kKpkkz2k



1
ks

11 k#̂kLU

� � kz1k1 kKpkkz2k1 k#̂kkU v^ð Þk
� �

1 k#̂T
U v^ð Þk1 k#TU vð Þk1 kVm qm; _qmð Þkkz2k

i
(56)

Figure 2 Structure of JACO2 robot

Figure 3 Comparison results of tracking performance of three joints
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Table 1 DH parameters
i ai ai di qmi

1 p /2 0 �D1 qm1
2 p /2 0 0 qm2
3 p /2 0 �(D21 D3) qm3
4 p /2 0 �e2 qm4
5 p /2 0 �(D41 D5) qm5
6 p /2 0 0 qm6
7 p 0 �(D61 D7) qm7
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Figure 4 Comparison results of tracking error of three joints
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Figure 5 Control torque of three joints: (a) the traditional HETC and (b) the proposed SETC
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It has been proved that all the signals on the right-hand side of
(56) are bounded. As such, there exists a positive constant CM

such that the following inequation is satisfied, namely,
k _Ck � CM. Substituting the bound valueCM into (54) results in:

ke tð Þk � ke t1k
� �k �

ðt
t1k

CMds ¼ CM t � t1k
� �

; tk � t < tk1 1

(57)

Noting that e t1k
� � 6¼ 0, its value can be written as the following

form:

e t1k
� � ¼ C t1k

� �� C
^

t1k
� �

¼ b C tkð Þ � C
^

tkð Þ
� �

� bC
^

tkð Þ1 b 2C
^

tkð Þ
¼ b e tkð Þ � b 1� bð ÞC^ tkð Þ

(58)

By using the inequality of matrix norm, one has:
ke t1k
� �k � b ke tkð Þk1 b 1� bð ÞkC^ tkð Þk. Then, (57) is

rewritten as:

ke tð Þk � CM t � t1k
� �

1 b ke tkð Þk1 b 1� bð ÞkC^ tkð Þk
tk � t < tk1 1

(59)

The interval Dtk ¼ tk1 1 � t1k at which events are emitted is the
time it takes for the error ke tð Þk to evolve to g2(C(t)) according
to the event condition. For t = tk11, one has
ke tk1 1ð Þk > g2 C tk1 1ð Þ� �

. Based on the above description, the
time interval satisfies the following inequality:

Dtk �
g2 C tk1 1ð Þ� �� b ke tkð Þk � b 1� bð ÞkC^ tkð Þk

CM

(60)

Substituting the definition of g2(C(t)) in the event condition
(27), one has Dtk � ks

11 k#̂kLUð ÞCM
z e�b tk > 0. As such, Zeno

behavior is excluded.

Figure 6 Approximation of the NN: (a) the traditional HETC and (b) the proposed SETC
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Remark 3. The parameters of the proposed triggered controller
include control gainsK1,Kr andKp; the updating coefficient ofNN
y1 and r1; and the parameters of triggeredmechanism ks and b 1.
The parameters like K1, Kr and Kp are reflected both in the

final bound of control error and the time interval [see (51) and
(60)]; The parameterKr is reflected in the final bound of control
error [see (51)]; The parameter b 1 is reflected in the time interval
of adjacent events [see (60)]; The parameters like y1 and r1 are
reflected in the final upper bound of network’s weights [see (37)].
The selection of K1, Kr, Kp, y1 is mainly based on the

parametric conditions of Lyapunov stability [see (49), (50) and
(51)]. Other parameters like r1 and b 1 can be set by the
designer according to the task performance requirements.

5. Simulation

In this paper, to demonstrate the effectiveness and superiority
of the proposed method in realizing the stable tracking control,
the hardware experiment based on the Kinova JACO2

manipulator (see Figure 2) is conducted. The computer that
runs the robot control program is configured as Intel(R) Core
(TM) i5-7200CPU@2.50GHz 2.70Ghz RAM 8.00GB, and
the control program is made in MATLAB 2018b. Data
interaction between manipulator and computer is realized
through the universal serial bus connection. The Denavit-
Hartenberg parameters of themanipulator are listed in Table 1,
in which the specific parameter are set as:
D1 = 0.2755m,D2 = 0.2050m,D3 = 0.2050m, D4 = 0.2073m,

D5=0.1038m,D6=0.1038m,D7=0.1600m and e2=0.0098m.
In the experiment, only joints qm1,qm2 and qm3 are controlled

to ensure that Cartesian space has no position redundancy. The
desired trajectory (the units are in rad) qmd for tracking is
designed as:

xc tð Þ ¼
qmd1

qmd2

qmd3

2
664

3
775 ¼

r1 1 r1cos p tð Þ
r2 1 r2sin p tð Þ
r3 1 r3cos 2p tð Þ

2
664

3
775 (61)

Figure 7 Varies of weight of three joints: (a) the traditional HETC and (b) the proposed SETC
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where the values of amplitude are set as: r1 = r2 = r3 = 0.15.
The initial location of the joint is chosen as qm1(0) = 0.2 rad,

qm2(0) = 0.15 rad and qm3(0) = 0.1 rad. The initial velocity is set
as _qm1 0ð Þ ¼ 0rad=s; _qm2 0ð Þ ¼ 0rad=s and _qm3 0ð Þ ¼ 0rad=s. The
total length of simulation is 30 s with the maximum number of
sampling points being 4,000. The disturbance is introduced as
follows:

fdis tð Þ ¼
fdis1
fdis2
fdis3

2
64

3
75 ¼

0:1sin p tð Þcos 2p tð Þ
0:15cos p tð Þ
0:01

2
64

3
75 (62)

The configuration of the whole control is designed here. Gain
parameters are set as:
K1 = diag ([30, 25, 25]), Kp = diag([1,0.9, 0.9]), Ks = diag

([0.01, 0.01, 0.01]). The initial weight is designed as

#̂i 0ð Þ ¼ 0; 0 . . .0½ 	T 2 R212�1. The updating coefficient is

designed as: c = 1, Ls ¼ 1;1;1
1;1;1

� T
and v = 1. The size of NN

input v^ is 12. The number of hidden nodes is set as l = 212. The

center of activation function U v^ð Þ is chosen as
�1; 1½ 	 � �1;1½ 	 � �1;1½ 	 � � � � � �1;1½ 	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n¼12

. In general, the

center value can be determined via the empirical approach or
the training method, and the center value of 1 or �1 could
represent the primary components of most data and brings the
satisfactory accuracy in discrimination and estimation. Other
parameters for the event condition are set as: Lf = 0.05 and
b = 0.2. To illustrate the effectiveness of our method in
depressing the chattering-induced instability and
communication burden with guaranteed tracking performance,
our method is compared with the traditional ZOH-based hard
ETCmethod in Zhao et al. (2021), Qiu et al. (2021), Gao et al.
(2021a) and two time continuous adaptive control methods in
Li et al. (2021a, 2021b). For the sake of distinction, the
proposed “soft” ETC method and the traditional “hard” ETC
method is called SETC and HETC for short, the RBFNN-

Figure 8 Threshold and event error: (a) the traditional HETC and (b) the proposed SETC
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based time continuousmethod in Li et al. (2021a) and the fuzzy
NN-based time continuousmethod in Li et al. (2021b) is called
RBFTC and FTC for short.
The experimental results are portrayed in Figures 3–8. Figure 3

exhibits the fitting of actual joint position to expected trajectories.
It can be seen that the actual trajectory corresponding to the
continuous adaptive network control method named RBFTC
and FTC follow the desired one, accurately. In addition, the
proposed SETC method has slower oscillation than the
traditional HETC method. Figure 4 shows the position tracking
error of three joints, where the variation of error curve of the
proposed SETC is kept small and basically consistent with that of
continuous RBFTC and FTC method, whereas the error of
HETC has large vibration. The control signal is depicted in
Figure 5; it is clear from the partial enlargement of Figure 5(a)
and 5(b) that the red-dotted line corresponding to the event-
sampled torque has a discontinuous property. In addition, one
can see from Figure 5(b) that through developing the “soft”
method, the jumping change has been alleviated. Figure 6 shows

the approximation result of the NN, and affected by the
discontinuous updating, the network’s output has chattering
property. Figure 7 describes the change of the weight, where the
weight in Figure 7(b) has an obvious convergence based on the
proposed MPL adaptive law. Figure 8 provides the variation of
the event-triggered error and threshold of two event-triggered
methods, where the error varies within the threshold. It is worth
noting from Figure 8(a) that a noticeable chattering occurs in the
error curve around the switch surface of threshold, whereas this
chattering effect is largely reduced by our proposed “soft”
mechanism in Figure 8(b). Figure 9 shows that around 500 and
800 events are obtained by the traditional and proposed
triggering method, respectively. While the total sampling number
of time is 5,000, which indicates that the event-triggered
mechanism can effectively reduce the burden of communication
and computation without causing significant degradation of
system performance. Moreover, through the comparison of
Figure 9(a) and 9(b), it can be known that our proposed method
produces more events than the traditional ETC through

Figure 9 Number of events: (a) the traditional HETC and (b) the proposed SETC
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designing a “soft” method, and this mechanism will lead to a
decline of control differences at triggered instants, such that the
chattering effect can be reduced to guarantee the control
performance. Figure 10 shows that the time interval of two
adjacent events keeps positive.

6. Conclusion

In this article, the tracking control with uncertain system
dynamics and constrained communication in the control-
execution channel is considered. To deal with the above
problems, an adaptive event-triggered controller with aperiodic
estimation is constructed to realize the discontinued
transmission of control signals. In the construction of event-
triggeredmechanism, the chattering effect is first to be addressed
by proposing a novel “soft” mechanism to adjust the control
updating, which increases the flexibility of communication
modulation. In addition, the adaptive law with minimum
learning parameters principle is designed for a trade-off between
accuracy and triggering frequency. Aiming at the above design, a
novel dead-zone condition with variable boundary is designed to
avoid Zeno-behavior. Finally, the validity of our method is
proved by both theory and hardware experiments. The
experiment results show the superiority of the proposed method
in reducing control chattering and improving accuracy
compared with the traditional triggered control method,
although at the expense of increased communication burden. In
future works, triggered control methods can be further designed
to minimize communication burden as much as possible with
guaranteed triggered control stability.
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