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Abstract. Human pose estimation has drawn much attention recently,
but it remains challenging due to the deformation of human joints, the
occlusion between limbs, etc. And more discriminative feature represen-
tations will bring more accurate prediction results. In this paper, we
explore the importance of aggregating keypoint contextual information
to strengthen the feature map representations in human pose estima-
tion. Motivated by the fact that each keypoint is characterized by its
relative contextual keypoints, we devise a simple yet effective approach,
namely Keypoint Context Aggregation Module, that aggregates informa-
tive keypoint contexts for better keypoint localization. Specifically, first
we obtain a rough localization result, which can be considered as soft key-
point areas. Based on these soft areas, keypoint contexts are purposefully
aggregated for feature representation strengthening. Experiments show
that the proposed Keypoint Context Aggregation Module can be used in
various backbones to boost the performance and our best model achieves
a state-of-the-art of 75.8% AP on MSCOCO test-dev split.

Keywords: Human pose estimation · Keypoint context · Feature
augmentation

1 Introduction

Multi-person human pose estimation aims at recognizing and localizing the
anatomical keypoints of all persons in a given image. As one of the most
fundamental tasks in computer vision, it serves as a key component for
many other vision applications, including human action recognition, human-
computer interaction, virtual or augmented reality, etc. Despite the notice-
able improvements achieved in this area by advanced deep learning tech-
niques [7,8,17,18,20,22,25,30], pose estimation still remains extremely challeng-
ing. It is still difficult to locate the keypoint coordinates precisely, due to the
variation of clothing, the occlusion between the limbs and the deformation of
human joints under different poses.

To address the above problems, full utilization of contextual information has
been widely concerned. A line of previous works focus on exploring multi-scale
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contextual information to enhance the performance of keypoint localization. [15,
20] aggregated multi-scale contexts that generated from well-designed interactions
among feature maps of different levels and resolutions. Another line of works are
from the perspective of promoting the information communication within a local
scope. [6] designed a hierarchical visual attention scheme to zoom in a smaller body
part, which generated a specific attention map for each body joint. [1] proposed a
novel network - RSN, which aims to learn delicate local representations by efficient
intra-level feature fusion.

Although the existing works exploit contextual information from different
perspectives, none of them explore keypoint areas as context. However, keypoint
context is crucial for precise keypoint localization. Each position on the feature
map contains different keypoint information, for example, a specific pixel may
contain more characteristics of the left shoulder than the left ankle. Therefore,
more characterized keypoint context information aggregation helps to make more
accurate localization for prediction. Motivated by this, in this paper, we propose
a Keypoint Context Aggregation Module (KCAM) to leverage the relationships
between pixels and its contextual keypoints.

For each pixel on the image, KCAM can effectively learn the relationships
between it and all human keypoints, thus we can aggregate the keypoint rep-
resentations purposefully for the current pixel according to their relationships.
The augmented feature can lead to more accurate localization. The whole scheme
for KCAM can be summarized as follows. Firstly, we obtain a rough keypoint
localization result, which can be considered as soft keypoints. Secondly, based on
the coarse keypoint localization, we acquire the informative keypoint representa-
tions. Thirdly, we compute the relationship between each pixel and all keypoint
representations. For the last step, for each pixel, we aggregate keypoint repre-
sentations purposefully according to the calculated relationships, thus obtaining
the augmented feature representation. The augmented feature is then used for
final precise keypoint localization. We evaluate the proposed method on the
benchmark dataset MSCOCO [16], and experimental results demonstrate the
effectiveness of KCAM.

In summary, our main contributions are three-fold as follows:

– We propose a Keypoint Context Aggregation Module for human pose esti-
mation, which can effectively aggregate representative and informative key-
point contextual information for reasonable feature augmentation and con-
duce more accurate keypoint localization results.

– Keypoint Context Aggregation Module can serve as a model-agnostic refine-
ment method, which can be easily applied to the existing pose estimation
methods.

– Our method outperforms state-of-the-art methods on the challenging bench-
mark MSCOCO dataset for human pose estimation.
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Fig. 1. Illustration of the pipeline of our proposed Keypoint Context Aggre-
gation Module. (a) Acquire rough localization results for soft keypoint areas with
intermediate supervision. (b) Obtain the informative keypoint representations. (c)
Compute keypoint contextual representations and acquire the aggregated represen-
tation. (d) Concatenate original feature representation and the aggregated representa-
tion, followed by a conv 1 × 1 layer to get the final augmented feature representation.

2 Related Work

Multi-person Pose Estimation. For multi-person pose estimation, it can be
classified into top-down and bottom-up methods. Top-down methods [4,9,11,24–
26,29] construct human body poses by detecting the people first and then apply
single-person pose estimators to predict the keypoints for each person. Different
from top-down methods, bottom-up methods [2,5,10,13,14,19,21,23] detect all
the body joints in one image first and then group them into individual poses. In
the top-down pipeline, the number of people in the input image will directly affect
the computing time. The computing speed for bottom-up methods is usually
faster than top-down methods since they do not need to detect the pose for each
person separately.

Relational Context. Previous works always explore the relationships among
different keypoints. Zhang et al. [31] build a pose graph directly on keypoint
heatmaps and use Graph Neural Network for modeling, which only considers
the relationship between heatmap weights at the same location, while et al. [27]
build pose graph considering the visual features at the position of corresponding
keypoints. The above methods are dedicated to strengthening the relationships
between keypoints. However, our approach is quite different, that we explore the
relationships between feature maps and keypoints.

Coarse-to-Fine Pose Estimation. Various coarse-to-fine pose estimation
schemes have been developed to gradually refine the result heatmaps from coarse
to fine. Carreira et al. [3] refine pose estimation by predicting error feedback at
each iteration, [1,2,20] design a cascaded architecture for mining multi-stage
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prediction. Our approach in some sense can also be regarded as a coarse-to-
fine scheme. The difference lies in that we use the coarse segmentation map
for generating a contextual representation instead of directly used as an extra
representation.

3 Proposed Method

The overall pipeline of our method is illustrated in Fig. 1. First of all, the input
image is sent to the backbone network. Then, taking the backbone output as
input, the proposed Keypoint Context Aggregation Module can be summarized
as: Firstly, heatmap regression network is applied to acquire rough localization
results, which are considered as soft keypoint areas. Secondly, based on the
keypoint areas, we obtain the informative keypoint representations. Thirdly, we
compute the relationships between each pixel on the feature map and all keypoint
representations. Then, we aggregate the feature representations with keypoint
context through the computed relationships. Finally, with feature fusion, we
acquire the augmented features for precise localization.

3.1 Keypoint Representations

Considering that we will leverage keypoint areas information to augment feature
representations, it is essential to roughly locate the keypoint first. We predict
K keypoint areas {G1, ..., GK , Gk ∈ R

H×W } from the output feature map F ∈
R

C×H×W of the input image I. Each keypoint area can be described as a 2D
heatmap whose per-pixel value gik indicates the probability of the k-th (k =
1, 2, ...K) keypoint’s presence at this location i. In order to get more accurate
location, we use intermediate supervision here and take the keypoints Guassian
maps as ground-truth.

After obtaining the soft keypoint areas, we acquire the keypoint representa-
tions R ∈ R

K×C through the following formulation:

Rk =
HW∑

i=1

gikfi (1)

where gik is the normalized degree for i-th pixel belonging to the k-th keypoint
and fi ∈ R

1×C indicates the representation of this pixel. And Rk ∈ R
1×C is the

representation for k-th keypoint.

3.2 Pixel-Keypoint Relationships

In order to model rich contextual relationships, we encode contextual keypoint
information into pixel features, thus enhancing feature representations capabil-
ity. First, we compute the relationships between the feature of each pixel and
keypoint representations. Given the original visual feature F ∈ R

C×H×W , key-
point representations R ∈ R

K×C , we firstly feed it into a convolution layer to
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generate two new features as F ′ ∈ R
C×H×W , R′ ∈ R

K×C , respectively. After
reshaping F to R

C×N , where N = W × H we apply a matrix multiplication
between the transpose of F ′ and R′, and apply a softmax layer to calculate the
relationships S ∈ R

N×K between pixels and keypoint representations:

Sij =
exp(F ′

i × R′
j)∑K

j=1 exp(F ′
i × R′

j)
(2)

where Sij indicates j-th keypoint’s impact on i-th pixel. The greater the atten-
tion weight is, the more the pixel is related with the corresponding keypoint
representation.

3.3 Augmented Representation

Meanwhile, keypoint representations R ∈ R
K×C is fed into a convolution layer

to generate a new feature R′′ ∈ R
K×C . Based on the above attention map, we

compute the aggregated representation E ∈ R
C×H×W as the weighted sum of

projected keypoint representations:

Ei =
K∑

j=1

SijR
′′
j (3)

Then, We combine F and E through concatenation operation, and feed it to
a conv 1 × 1 layer to get the final feature representation A ∈ R

C×H×W . The
resulting features are used for final keypoints localization.

3.4 Overall Loss Function

The overall loss is composed of two keypoints heatmap losses: one for interme-
diate supervision result, the other for the final output. The loss function can be
described as:

L = αLinter + Loutput (4)

where the hyperparameter α is set to 0.2. Both Linter and Loutput are computed
as:

L =
1
N

N∑

n=1

∑

x,y

||Pn(x, y) − Gn(x, y)||2 (5)

where Pn(x, y) and Gn(x, y) represent the predicted and the ground-truth con-
fidence maps at the pixel location (x, y) for the n-th keypoint, respectively.

4 Experiments

4.1 Dataset

Our experiments are conducted on human keypoint detection task of the large-
scale benchmark MSCOCO dataset [16]. The dataset contains over 200K images
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and 250K person instances labeled with 17 keypoints. Following the common
practice [1], we train our model on MSCOCO trainval dataset (includes 57K
images and 150K person instances) and validate on MSCOCO minival dataset
(includes 5000 images). We report our main results on the test-challenge set (20K
images). Unless specified, we only make use of the human keypoint annotations
without bounding-boxes. The performance is computed with Average Precision
(AP) based on Object Keypoint Similarity (OKS).

4.2 Implementaion Details

We use two different input sizes (256 × 192, 384 × 288) in our experiments. We
initialize the backbones using the model pre-trained on ImageNet. Meanwhile, we
initialize the Keypoint Context Aggregation Module randomly. The data augmen-
tation includes random rotation ([−40◦, 40◦]), random scale ([0.5, 1.5]), and flip-
ping. Following [28], half-body data augmentation is also involved. All models are
trained using 4-GPU machines, with a batch size of 128 images. Batch normaliza-
tion is used in our network. We use the Adam optimizer [12]. The base learning
rate is set as 5e-4, and is dropped to 5e-5 and 5e-6 at the 170th and 200th epochs,
respectively. The training process is terminated within 210 epochs.

We use the same person detectors provided by SimpleBaseline [29] for both
validation and test-dev set. Following the same techniques used in [4], we also
predict the pose of the corresponding flipped image and average the heatmaps
to get the final prediction; a quarter offset in the direction from the highest
response to the second highest response is used to obtain the final location of
the keypoints.

4.3 Ablation Studies

We conduct the empirical analysis on MSCOCO validation set. Unless specified,
all the ablation experiments are based on the backbone of Resnet-50 with the
input size of 256 × 192.

Table 1. Influence of the soft keypoint supervision scheme. We can find that
the soft keypoint supervision scheme is important for the performance.

Method AP AP50 AP75 APM APL

w/o supervision 70.19 89.59 78.10 66.27 76.99

w/ supervision 71.87 89.77 79.89 68.26 78.45

Keypoint Region Supervision. We study the influence of the supervision for
keypoint areas. We modify our approach by removing the supervision on the soft
keypoint areas. We keep all the other settings unchanged and report the results
in the Table 1. From the result, we can see that the performance decreased by
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a large margin without the intermediate supervision. Thus, it can be inferred
that the intermediate supervision for the keypoints is crucial for KCAM. The
reason is that more accurate localization of the keypoint areas will lead to more
informative and representative keypoint representations.

Table 2. Influence of the different feature fusion operations. We can find that
concatenation operation is the most effective.

Method AP AP50 AP75 APM APL

Concatenation 71.87 89.77 79.89 68.26 78.45

Element-wise addition 71.77 89.82 79.41 68.11 78.50

w/o fusion 70.94 89.92 79.37 67.22 77.61

Feature Fusion. We explore the fusion operation for aggregating the original
visual features and the augmented features. Here we discuss the influence of
several different ways to fuse these two features. We finally choose the fusion
operation which achieves the better performance on AP metric, for AP metric
is an overall metric for measuring human pose estimation model performance
and is much more important than other metrics. As shown in Table 2, feature
concatenation achieves an AP of 71.87, which slightly surpasses element-wise
addition operation by an AP of 0.1. Additionally, we study the result of only
using the augmented features for final prediction, whose performance decreased
by an AP of 0.93. The above results show that the feature fusion is necessary
and concatenation operation leads to better performance.

Visualization Analysis. As shown in Fig. 2, we visualize the relationships
between the chosen pixel (indicated by stars) and contextual keypoint areas
(indicated by circles). Red, blue and other colors denote 1, 0, and the values
between them, respectively. The closer to red, the more related to the current
keypoint. So the left one shows us, the center point of the person is more relevant
to the shoulder and hip, which is spatially closer to it. From the right one we
can conclude that, the point on the left calf is more related to the keypoints
on limbs. The above results further show that our proposed method effectively
aggregates the keypoints context. Incorporating with the keypoint context helps
to distinguish the keypoint type for the current pixel. Figure 3 illustrates some
results generated using our method. In multi-person scenes, keypoints occluded
by clothes or other limbs can also be accurately located.

4.4 Comparison with State-of-the-Art

We compare our method with top-performers including G-RMI [22], CPN [4],
HigherHRNet [5], SimpleBaseline [29], and HRNet [25]. Table 3 shows the accu-
racy results of these state-of-the-art methods and KCAM on the MSCOCO test-
dev set. In this test, we use the person detection results from [29]. We have



Keypoint Context Aggregation for Human Pose Estimation 393

1.0

0.0

Fig. 2. Visualization of the relationships between the chosen pixel and con-
textual keypoint areas. The circles indicate the keypoint areas, while the star indi-
cates the chosen pixel. Red, blue and other colors denote 1, 0, and the values between
them, respectively. (Color figure online)

Fig. 3. Visualization of the results predicted by our models.

observed that KCAM with HRNet-W48 at the input size of 384 × 288 achieves
the best accuracy. Specifically, compared with the best competitor (HRNet-W48
with the same input size), KCAM further improves AP by 0.3. The result again
illustrates the effectiveness of our method.
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Table 3. Comparisons on MSCOCO test-dev dataset. (+) indicates models
ensembled.

Method Backbone Input size AP AP50 AP75 APM APL

CMU-Pose [2] – – 61.8 84.9 67.5 57.1 68.2

Mask-RCNN [7] ResNet-50-FPN - 63.1 87.3 68.7 57.8 71.4

G-RMI [22] ResNet-101 353 × 257 64.9 85.5 71.3 62.3 70.0

AE [19] – – 65.5 86.8 72.3 60.6 72.6

PersonLab [21] – – 68.7 89.0 75.4 64.1 75.5

HigherHRNet [5] HRNet-W48 640 × 640 70.5 89.3 77.2 66.6 75.8

CPN [4] ResNet-Inception 384 × 288 72.1 91.4 80.0 68.7 77.2

CPN+ [4] ResNet-Inception 384 × 288 73.0 91.7 80.9 69.5 78.1

SimpleBaseline [29] ResNet-152 384 × 288 73.7 91.9 81.1 70.3 80.0

HRNet-W48 [25] HRNet-W48 384 × 288 75.5 92.5 83.3 71.9 81.5

Ours HRNet-W48 384 × 288 75.8 92.7 83.6 72.3 81.8

5 Conclusion

In this work, we have proposed a Keypoint Context Aggregation Module for
human pose estimation, which can effectively aggregate representative and infor-
mative keypoint contextual information for reasonable feature augmentation and
conduce more accurate keypoint localization results. We empirically show that
our approach brings consistent improvements on MSCOCO benchmark.
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