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Abstract—The RNN-Transducers and improved attention-
based encoder-decoder models are widely applied to streaming
speech recognition. Compared with these two end-to-end models,
the CTC model is more efficient in training and inference.
However, it cannot capture the linguistic dependencies between
the output tokens. Inspired by the success of two-pass end-to-
end models, we introduce a transformer decoder and the two-
stage inference method into the streaming CTC model. During
inference, the CTC decoder first generates many candidates in a
streaming fashion. Then the transformer decoder selects the best
candidate based on the corresponding acoustic encoded states.
The second-stage transformer decoder can be regarded as a
conditional language model. We assume that a large enough
number and enough diversity of candidates generated in the
first stage can compensate the CTC model for the lack of
language modeling ability. All the experiments are conducted
on a Chinese Mandarin dataset AISHELL-1. The results show
that our proposed model can implement streaming decoding in
a fast and straightforward way. Our model can achieve up to a
20% reduction in the character error rate than the baseline CTC
model. In addition, our model can also perform non-streaming
inference with only a little performance degradation.

I. INTRODUCTION

Streaming speech recognition has been applied to many real
scenarios, like meeting real-time transcription and keyboard
dictation systems on mobile phones. The mainstream models
for streaming speech recognition include RNN-Transducer
(RNN-T) models and the improved attention-based encoder-
decoder models [1], [2], [3], [4], [5], [6], [7].

The RNN-T model, which utilizes unidirectional recurrent
neural networks as the encoder, can be directly applied to
streaming speech recognition [3], [6], [8], [9]. However, the
RNN-T model suffers from the inefficiency of training and
inference [10], [11]. The traditional attention-based encoder-
decoder model decodes the output sequences based on the
previously predicted tokens and the entire acoustic encoded
states, which prevents it from decoding the output sequence
in a streaming way [7]. The improved attention-based encoder-
decoder models mainly include the following versions: the
monotonic chunk-wise attention (MoChA) [12], the triggered
attention [4], the continuous integrate-and-fire (CIF) [13], the

synchronous transformer [7], and so on. These models utilize
many complicated methods to segment the acoustic encoded
states and then compute the attention weights on the segment
states. As a kind of end-to-end model, connectionist temporal
classification (CTC) models were first proposed to transcribe
the acoustic feature sequences into the corresponding text
sequence [14], [15], [16]. The CTC models cannot capture
the linguistic dependencies between the output tokens [8].
To address this problem, CTC models tend to depend on
an external language model or a WFST-based graph to im-
prove the performance [16], [17]. Recently, some very deep
convolution CTC models, like Jasper [18] and ContextNet
[19], have achieved competitive performance with other end-
to-end models. Although very deep convolution layers make
the model able to model long-range contexts, it will also result
in a large latency and prevent the model from being applied
to streaming speech recognition.

The CTC models are more efficient in inference than the
other two end-to-end models. Inspired by the success of two-
pass end-to-end models [20], we introduce a transformer de-
coder and the two-stage inference method into the CTC model
to improve the model performance on streaming speech recog-
nition. Now that the CTC model cannot model the linguistic
dependencies between the output tokens, the transformer de-
coder can be regarded as a conditional language model, which
can pick out the best sequence from the top-N candidates
based on the linguistic knowledge and the corresponding
acoustic information. We assume that a large enough number
and diversity of candidates generated by the CTC model can
compensate for the lack of language modeling ability. We
rename the process that selecting the best sequence from
numerous candidates as One-In-A-Hundred(OAH). Our model
consists of three components, a latency-controlled stream-
ing transformer encoder, a CTC decoder, and a transformer
decoder. We first force the self-attention mechanism in the
transformer encoder to focus on the local context to model
the input sequence in a streaming fashion. Then we introduce
a latency-controlled context layer at the top of the transformer
encoder to model the future context of limited range. During
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Fig. 1: (a) illustrates the overall structure of our proposed model. The model consists of a latency-controlled streaming
transformer encoder (LC-STE), a CTC decoder, and a transformer decoder. (b) illustrates the details of the encoder. The LC-
STE consists of a convolutional down-sampling block, N streaming transformer blocks, and a latency-controlled context layer.
(c) illustrates the one-in-a-hundred inference process. The inference process can be split into two stages: pre-selection and
one-step scoring. The CTC decoder can generate many possible candidates at the pre-selection stage. Then, the transformer
decoder selects the best predicted sequence from the candidates in one step. The best candidate C-3 means that ”the deal is
almost stalled”.

training, these three components are optimized jointly. The
one-in-a-hundred inference process can be divided into two
stages: pre-selection and one-step scoring. At the pre-selection
stage, the CTC decoder generates many possible sequences
as candidates. At the one-step scoring stage, the transformer
decoder scores all these candidates based on the corresponding
acoustic encoded states and then selects the sequence with the
highest average score as the final predict sequence.

The contributions of this paper can be summarized in the
following two aspects. Firstly, we introduce the two-pass
inference method into the streaming CTC model and propose
an assumption that a large number of candidates generated
in the first inference stage can greatly improve the model
performance. Secondly, we propose a dual inference mode
for the hybrid CTC and transformer model, which can be
applied to the streaming and non-streaming tasks directly.
All experiments are conducted on a public Chinese Mandarin
dataset AISHELL-1. The results show that our proposed model
can achieve up to a 20% reduction in the character error rate
compared to the baseline CTC model. Furthermore, our model
can also perform non-streaming decoding.

The remainder of this paper is organized as follows. We
introduce the details of the model and related works in Section
2 and Section 3 respectively. Our experimental setup and
results will be presented in Section 4. The conclusions will
be given in Section 5.

II. OUR PROPOSED METHOD

Our model consists of three components, a latency-
controlled streaming transformer encoder, a CTC decoder, and

a transformer decoder, as shown in Fig.1(a).

A. Model Architecture

1) The Latency-Controlled Streaming Encoder: The trans-
former encoder generally consists of a convolutional down-
sampling block, a positional embedding, and N transformer
encoder blocks. The transformer encoder block is composed of
a multi-head self-attention block and a feed-forward network
layer [22]. The original transformer encoder depends on all
context to compute the self-attention mechanism, which makes
it powerful to model long-range temporal information, and
prevents it from being applied to streaming speech recognition
[23]. As depicted in Fig.1(b), we proposed a new streaming
encoder named latency-controlled streaming transformer en-
coder (LC-STE), which improves the transformer encoder in
two aspects.

On the one hand, we force the self-attention of LC-STE
to focus on the fixed-range previous context and ignore the
future context completely. It is well known that extending the
range of future context will improve the performance of the
model. However, with the increase of network depth, it will
lead to excessive dependence on future information, making
the latency of inference increase sharply. The streaming self-
attention (SSA) can be expressed as follows.

SSA(Qt,Kt−τ :t,Vt−τ :t) = softmax(
QtK

>
t−τ :t√
dk

)Vt−τ :t

(1)
where τ means the range of the previous context. Qt is the
query vector at the time t. K and V indicate the context. dk
is the dimension of K.
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Fig. 2: The Dual Inference Mode for Streaming and Non-
Streaming Tasks.

On the other hand, inspired by DeepSpeech2 [16], we put
a latency-controlled context layer at the top of the encoder
to model the fixed-range future context. The context layer is
composed of a 1D convolution layer with kernel size ε + 1.
The ε means the range of future context. The acoustic encoded
states can be expressed as ĥt.

ĥt =
ε∑
i=0

wiht+i + bi (2)

Where h is the output of the last streaming transformer en-
coder block. w and b indicate the weight and bias respectively.
The latency can be expressed as 40× (ε+1)ms, where 40ms
means the convolutional down-sampling block can reduce the
length of input sequences with frame shift 10ms by 4 times.
With the latency-controlled context layer, the computation of
ideal latency does not rely on the depth of the encoder.

2) The CTC Decoder and Transformer Decoder: The CTC
decoder contains only a linear project layer, which is utilized
to compute the label posterior probabilities of CTC. The trans-
former decoder is the same as it in speech transformer [23],
which is composed of masked multi-head self-attention, multi-
head cross-attention, feed-forward network and positional em-
bedding. During training, the decoder adopts a triangle-like
mask to mask force the decoder to focus on the previous
tokens [22]. We compute the CTC loss LCTC and the cross
entropy loss LCE with label smooth for the CTC decoder and
transformer decoder respectively. These three components are
optimized jointly. The joint loss is expressed as LJoint.

LJoint = αLCTC + (1− α)LCE (3)

where α is the weight of LCTC .

B. Inference

We introduce the two-pass inference method for streaming
inference, as shown in Fig.1(c). We assume that a large
enough number of candidates generated by the CTC model
at the first-stage inference can compensate for the lack of
language modeling ability. Therefore, we figuratively rename

the process that selecting the best sequence from numer-
ous candidates as One-In-A-Hundred(OAH). The inference
process can be split into two stages: pre-selection and one-
step scoring. At the pre-selection stage, the CTC decoder
can generate N candidate sequences by prefix beam search
[24] 1. The number of candidates is equal to the width of
beams. At the one-step scoring stage, the transformer decoder
scores all the candidates. Different from the language model
rescoring, the one-step scoring relies on the corresponding
acoustic encoded states to match the selected candidate with
the same pronunciation. Due to the transformer decoder can
perform parallel computation, the scoring can be finished in
one step, which greatly improve the efficiency of inference. As
long as the candidates are diverse enough, we might be able
to pick out the best one. The score of a sentence of length L
can be expressed as

Sy1:L = OneStepScoring(y1:L, ĥenc) ∗ 1/L (4)

where ĥenc means the corresponding acoustic encoded states.
We apply length normalization to the scoring process to
prevent the model from tending to select the short candidate
as the predicted sequence.

In addition, our model support two inference mode, stream-
ing and non-streaming, as depicted in Fig.2. When we adopt
the CTC decoder as the leading role and the transformer
decoder to re-score the candidates generated by the CTC
decoder, the model can perform the streaming inference. The
process is named one-in-a-hundred. From another viewpoint,
when we regard the transformer decoder as the leading role
and the CTC decoder as the assistant, the transformer decoder
can still model the whole context and decode in a non-
steaming fashion [21]. The non-streaming decoding process
starts with the beginning token <S/E>. At every step, we
interpolate the scores of two decoders. The model will repeat
the above process until the end-of-sentence token is predicted.

III. RELATED WORKS

Our work can be regarded as a good extension and supple-
ment of the previous two-pass end-to-end model [20]. The
inference of these two methods can be divided into two
stages, generating N-best candidates and selecting the best
candidates by the extra decoder. However, there are at least
three significant differences between these two works.

Firstly, the previous two-pass method is applied to the
hybrid RNNT and LAS model. It utilizes the RNN-based LAS
decoder to scoring the candidates, which is hard to perform
in parallel. However, we introduce the two-pass method into
the classical hybrid CTC and attention model and utilize a
transformer decoder to rescore the candidate in one step, which
is faster and more effective.

Secondly, it’s well known that the RNNT model has a strong
ability to model language. For the hybrid RNNT and LAS
model, the two-stage can be regarded as the fusion of two

1The code of prefix beam search is available at https://github.com/
PaddlePaddle/DeepSpeech/tree/develop/decoders
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conditional language models. By contrast, the CTC model
lacks the ability of modeling language. The second stage can
be considered as a process that fuses linguistic information
effectively.

Finally, it’s very challenging for RNNT to generate many
candidate sequences by beam search during inference, which
will cost plenty of time and memory. However, the CTC
model performs more effectively during inference and training.
Therefore, we try to generate up to one hundred candidates in
the first stage of inference, which far exceeds the candidates
from RNNT models. We assume that a large enough number
and enough diversity of candidates can compensate the CTC
model for the lack of language modeling ability.

IV. EXPERIMENTS AND RESULTS

A. Dataset

In this work, all experiments are conducted on a public
Mandarin speech corpus AISHELL-12.The training set con-
tains about 150 hours of speech (120,098 utterances) recorded
by 340 speakers. The development set contains about 20 hours
(14,326 utterances) recorded by 40 speakers. And about 10
hours (7,176 utterances / 36109 seconds) of speech is used as
the test set. The speakers of different sets are not overlapped.

B. Experimental Setup

For all experiments, we use 40-dimensional FBANK fea-
tures computed on a 25ms window with a 10ms shift. We
choose 4233 characters (including a padding symbol <PAD>,
an unknown symbol <UNK>, and an start-or-end-of-sentence
symbol <S/E>) as modeling units. <S/E> is also utilized as
a blank symbol for CTC Decoder.

Our model 3 consists of 12 encoder blocks and 6 decoder
blocks. There are 4 heads in multi-head attention. The 2D
convolution front end utilizes two-layer time-axis CNN with
ReLU activation, stride size 2, channels 320, and kernel size 3.
Both the output size of the multi-head attention and the feed-
forward layers are 512. The hidden size of feed-forward layers
is 768. The range of the self-attention in streaming transformer
encoder blocks is limited from 10 frames on the left to the
current position (τ = 10). We adopt an Adam optimizer with
warmup steps 12000 and the learning rate scheduler reported
in [22]. After 100 epochs, we average the parameters saved in
the last 30 epochs. We also use the time mask and frequency
mask method proposed in [25] instead of speed perturbation.

We use the character error rate (CER) to evaluate the
performance of different models. For evaluating the inference
speed of different models, we decode utterances one by one to
compute real-time factor (RTF) on the test set. The RTF is the
time taken to decode one second of speech. All experiments
are conducted on a GeForce GTX TITAN X 12G GPU.

2https://openslr.org/33/
3Our model is built on the open-source code https://github.com/

ZhengkunTian/OpenTransformer

C. Results

1) Comparison of models with different CTC weights: We
first compare the models with different CTC weights. We set
the range of future context in latency-controlled context layer
to 10 and adopt beam search with width 10 during inference.
We evaluate the CER on the development and test set in
two ways, which are one-pass beam-search (marked as OPS)
and two-pass one-in-a-hundred (marked as OAH). This naming
setting is still adopted in subsequent experiments.

As shown in Table.1, the model with CTC weight 0.1 can
achieve the best performance on development and test test.
Furthermore, it’s obvious that applying our OAH strategy can
generally improve the performance of the model. However,
with the increase of CTC weight, the performance of the
model gradually deteriorated. We assume that the weight
α can balance the importance of the CTC model in the
training process. An inappropriate weight will make the model
unbalanced in the training process, leading to the decline of
model performance. When the weight α is 1.0, the transformer
decoder is discarded. Under this condition, the model can be
regarded as a CTC model. By contrast, we find that the joint
training with an appropriate weight can improve performance.

TABLE I: Comparison of models with different CTC weights
(CER %).

Weight α 0.05 0.1 0.2 0.3 0.5 0.7 1.0

Dev OPS 8.46 8.22 8.26 8.31 8.89 9.53 8.88
OAH 7.20 6.92 7.04 7.14 7.55 8.03 -

Test OPS 9.37 9.25 9.36 9.67 10.21 11.03 10.27
OAH 8.15 7.76 8.02 8.18 8.69 9.26 -

2) Comparison of models with different ranges of future
context: We evaluate the models with different range ε of
future context in Table 2. We set the CTC weight of all
models to 0.1 and adopt the beam search with width 10 during
inference. The latency is proportional to the range of future
context. It can be calculated by 40 × (ε + 1) ms. It appears
that the more future information the model focuses on, the
better performance it achieves. Meanwhile, it will increase the
computation and the real-time rate. When the range ε is set to
10 and 20, there is no significant difference in the performance.
Considering that the model that focuses on the next 10 frames
can achieve lower latency and faster inference speed, we set
the range of future context to 10 in subsequent experiments.

TABLE II: Comparison of models with different ranges of
future context (CER %).

ε 0 1 5 10 20
Latency(ms) 40 80 240 440 840

Dev OPS 11.70 10.79 8.31 8.21 8.07
OAH 8.75 8.02 6.97 6.91 6.82

Test OPS 13.15 12.18 9.43 9.25 9.26
OAH 10.18 9.26 7.82 7.76 7.73

RTF OPS 0.0175 0.0209 0.0254 0.0263 0.0274
OAH 0.0217 0.0223 0.0286 0.0281 0.0295
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3) Comparison of the model with different beam widths:
We choose the model with the CTC weight 0.1 and the future
context range 10 to conduct these experiments in Table 3.
The results show that the beam widths have little effect on
the performance of the CTC decode results (without OAH).
We assume that the CTC part of our model has learned a
very sharp posterior probability distribution, which leads to a
numerous difference between the probabilities of search paths.
However, the beam width plays a vital role in our two-stage
inference method. The model with OAH scoring can achieve
up to 20% reduction in CER compared to the performance
of the base CTC model (without OAH). The beam widths
are equal to the number of candidate sequences. The larger
the beam width, the better performance the model achieves.
The model with beam width 50 achieves a CER of 7.41%
and an RTF of 0.0380. When the width is large than 50, the
performance will decline. We assume that generating more
hypotheses with larger beam sizes will also produce more
wrong sequences with better score, which may have a negative
impact on the final performance of the model [26].

TABLE III: Comparison of the model with different beam
widths (CER %).

Beam Width 1 5 10 50 100

Dev OPS 8.22 8.22 8.22 8.21 8.21
OAH - 7.15 6.92 6.73 6.76

Test OPS 9.25 9.25 9.25 9.25 9.25
OAH - 8.09 7.76 7.41 7.49

RTF OPS 0.0202 0.0216 0.0263 0.0262 0.0421
OAH - 0.0212 0.0281 0.0380 0.0487

TABLE IV: Comparison with other models (CER %).

Model Is Streaming Test RTF
TDNN-Chain(Kaldi) [27] N 7.45 -
Speech-Transformer* [23] N 6.47 0.0564
SA-Transducer [6] N 9.30 0.1536
ST-NAT [28] N 7.67 0.0056
Sync-Transformer [7] Y 8.91 0.1183
SAN-CTC* [29] N 7.80 0.0269
SAN-CTC* Y 10.27 0.0248

+ RNNLM Rescoring Y 9.02 0.0385
+ TransLM Rescoring Y 8.93 0.0384

Our Model (OAH) Y 7.41 0.0380
Our Model (Non-Streaming) N 7.05 0.0812
* These models are re-implemented by ourselves according to the

papers, which has the same parameters configuration as our
model.

4) Comparison with other models: We also compare our
model with other models. As shown in Table 4, our model with
OAH can achieve a comparable performance with TDNN-
Chain model [27] and ST-NAT [28]. What’s more, our model
has a real-time factor of 0.0380, which exceeds SA-Transducer
[6], Sync-Transformer[7], and speech-transformer [23].

Our model with OAH achieves better performance com-
pared to the CTC with language rescoring. We assume that the
model can’t distinguish between two grammatical sentences
that have similar pronunciation only depending on linguistic

information. Therefore, the acoustic information still plays an
import role in the second rescoring stage.

In addition, our model is able to decoding the output se-
quence in a non-streaming fashion (NS). Under this condition,
our model achieves a CER of 7.05%. Compared with the
speech-transformer with the same parameters configuration,
our model has a little performance degradation.

V. CONCLUSIONS

In this paper, we improve the hybrid CTC and attention
model and introduce a two-stage inference method named
one-in-a-hundred (OAH). Our proposed model consists of
three components, a latency-controlled streaming transformer
encoder, a CTC decoder, and a transformer decoder. The
latency-controlled streaming transformer encoder can model
the streaming input feature sequence in very low latency.
The streaming inference process can be split into two stages:
sampling and one-step scoring. At the first stage, the CTC
decoder can generate up to a hundred candidate sequences
quickly. At the second stage, the transformer decoder score all
the candidate sequences based on the corresponding acoustic
encoded states in one step. We conduct the experiments on
a public Chinese mandarin dataset AISHELL-1. The results
show that our proposed method can achieve up to 20%
reduction in CER compared to the baseline CTC model, which
also proves our assumption that the two-stage OAH inference
can compensate the CTC model for the lack of language
modeling ability. What’s more, our model also can perform
non-streaming decoding with a little performance degradation.
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