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 Abstract - Learning control has been an active topic of re-
search for several decades, and is of theoretical, as well as practi-
cal, significance. Current theories and developments in learning 
control are discussed. Following a brief introduction of the state 
as well as new progress on learning control, we give a detail re-
view on the models and algorithms of the control policies devel-
oped recently which proved to be advantageous over previous 
approaches through experimental results. The related results and 
properties are presented. Then, several potentially developmen-
tal topics that are valuable to be further investigated are sug-
gested. Finally, the conclusion remark is proposed. 
 
 Index Terms - Learning control, dynamic motor primitive, 
learn by imitation, locally weighted regress, locally weighted pro-
jection regress. 
 

I.  INTRODUCTION 

With the advent of anthropomorphic and humanoid ro-
bots, a large number of new challenges have been posed to the 
field of robotics and intelligent systems. Along with it, some 
intelligent control strategies have been developed recently 
which involve different application background. Neural net-
work is provided with the learning capacity, that is, it is en-
abled to adjust the weight for every neuron. Such learning 
capacity is acquired by simulating functions of human brain. 
Moreover, fuzzy control, another intelligent control method, 
has achieved considerable development. This controlling 
method, built on the basis of fuzzy set, shows satisfying con-
trol effect by the means of simulating human beings’ thinking. 
In addition, the fuzzy neural control based on the combination 
of neural network and fuzzy control has a wide application in 
industry production. But these control strategies are not 
adapted to the demands of the developments of robots, for 
failing to coordinate with frequent contacts of robots with an 
unknown environment. Besides, an important limitation to the 
application of robots to tasks in our daily lives is the combina-
torial explosion of numbers of situations the robot may enter, 
for there are large numbers of sub-tasks, states, and other pos-
sible environments in which the robot must be enabled to op-
erate, and possible exceptions can occur during execution.  

Currently, still many robots try to follow precomputed 
trajectories. It is even impossible to control the robots effi-
ciently. Thus, it is necessary to develop new kinds of control-
lers that can cope with changing environments and can be 
taught by unskilled human users.  

In order to address the last issue, programming by dem-
onstration (PbD) has emerged as a promising approach [1]. 
PbD covers methods by which a robot learns new skills 
through human guidance. Besides that, inspired by human 

behaviours and the structure of human brains, several ap-
proaches are established. 

Firstly, motivated by the evidence that humans often rely 
on a set of motor primitives and use imitation as well as rein-
forcement learning when learning new skills, the idea has 
been developed which uses DMP as a general approach of 
representing control policies for basic movements. 

Secondly, the fact can be concluded from actual experi-
ences that human beings have the ability of reacting quickly to 
external stimulations which could be reinforced under re-
peated training. It is generally believed that people have this 
ability because a mapping relationship exists in human brains 
[36]. The algorithm, named as Locally Weighted Regression 
(LWR), is conceived to make the robot possess the self-
learning ability and adapt to any complex environment so that 
the robot could react to external stimulations as quickly as 
human beings do. 

Finally, with the advent of high dimensional input data, 
nonlinear function approximation remains a nontrivial prob-
lem, especially in incremental and real-time formulations. 
Statistical learning algorithms which fit nonlinear function 
globally are under development recently, such as Gaussian 
Process Regression (GPR) [1], Support Vector Machine 
Learning (SVML) [2], and Variational Bayesian for Mixture 
models (VBM) [3]. But these approaches are not the most 
suitable for on-line learning in high-dimensional spaces as 
they are mainly involved in batch data analysis and are not 
efficiently adjusted for incrementally arriving data in spite of 
the solid theoretical foundation that the approaches possess in 
terms of generalization and convergence. A method, named as 
Locally Weighted Projection Regression (LWPR), is pre-
sented which could cope with high dimensional inputs effi-
ciently by using techniques of projection regression. 

In this paper, current theories and recent development in 
learning control are discussed. Detailed explanation of models 
and algorithms of the control policies are also included. Sec-
tion  introduces model and algorithm of dynamic motor 
primitive. In section , Hidden Markov Model (HMM) and 
Gaussian Mixture Regression (GMR) are presented in detail. 
How to model the control policies using GMR and HMM is 
also discussed. Learning algorithms from only local informa-
tion are provided in section Finally, possible directions 
for future research of learning control are discussed. 

II.  MODEL AND ALGORITHM OF DYNAMIC MOTOR PRIMITIVE  

It is reasonable make the assumption that movement gen-
eration is highly modular in terms of motor primitives (i.e. 
unit of movement). The motor primitives are modelled as so-
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lutions of respectively a dynamical system with a globally 
attractive fixed point and an oscillator. A formulation of the 
primitives with autonomous nonlinear differential equations is 
called DMP, whose time evolution creates smooth kinematics 
control policies.  

The recent developed motor primitives based on dynamic 
systems has allowed both imitation and reinforcement learning 
to acquire new behaviours fast and reliable [2], [5], [6] ,[11]. 
Previous applications include a variety of different basic mo-
tor skills such as tennis swings [2], [5], baseball batting [7], 
[8], drumming [9], biped locomotion [10] and even in tasks 
with potential industrial application [12]. Moreover, a new 
method was presented to represent a demonstrated motion as 
an autonomous (time independent) non-linear first order ordi-
nary differential equation (ODE) [24]. 

The basic idea in the original work is that motor primi-
tives can be parted into two components, i.e., a canonical sys-
tem and a transformed system for every degree of freedom k 
[3] with a one-way, parameterized connection such that one 
system drives the other (See Fig. 1).  

Canonical system: ��=h(z). The canonical system could 
be initialized by a first-order system as well as a second-order 
system. It acts as an adjustable clock or phase of the move-
ment with state. The canonical system h drives the second 
component, the transformed systems. Transformation system: 
�� =g(x,z,w), for all considered degrees of freedom (DOFs) i, 
where z denotes the state of the canonical system   

 
Fig. 1. Schematic illustration of an MP 

 
and w the internal parameters for transforming the output of 
the canonical system [13]. Also, the variables of internal focus 
x is determined by the differential equations. 

The transition from one movement segment to another 
could be state-triggered or time-indexed, in that way all trajec-
tories (for each joint) could be generated through a unique set 
of differential equations. Therefore complex movements are 
generated through the superimposition and sequencing of 
simpler motor primitives generated by rhythmic and discrete 
unit generators. 

A. Dynamical Systems for Trajectory Formation 
Under the assumption of existence of two basic types of 

motor primitives, i.e., discrete [2-6] and rhythmic movements 
[3], [5], [11], we take the rhythmic movements as an example 
to explain the representation of DMP. In this section, it is sup-
posed that the following rhythmic system has a stable limit 
cycle in terms of polar coordinates (�, r).  

Transformation System: 
 

[ ( ) ]z z mz y y z� � �� � ��                              (1) 
f  y z� � ��                                                  (2) 

 

Canonical System: 
 

1�� ��                                                         (3) 
0( )r r r� 	� � ��                                          (4) 

 

The nonlinear function f is defined as follows: 
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where 2exp{ [mod( ,2 ) v [ cos] , sin ]},i i i
Tr rh c
� �� � �� �� � , �z,, 

�z are time constants, � is a temporal scaling factor, a nd y, ý 
correspond to the desired position and velocity generated by 
the policy as a movement plane. Additionally, the monotonic 
global convergence to g can be guaranteed with a proper 
choice of �z and �z and ym is the anchor point for the oscilla-
tory trajectory. 

B. Learning From Demonstration 
The mixture of primitives learns a desired trajectory from 

the demonstration by adjusting the set of weights, �i. Given a 
desired trajectory ydemo from the demonstration of a teacher, it 
is required that at the time when the final target is reached, the 
time dynamics (v, x) reaches (g, 0). Assuming the goal g is 
known, locally weighted regression is used to adjust the 
weights on line which minimizes the locally weighted error 

2( )t t t
i i des it

J u u
� �� , where des demou y z� �� , and for each 

kernel function t
i� , t t

i iu v�� .A novel reinforcement learning 
algorithm, called policy learning by weighting exploration 
with the returns (PoWER), is presented [11] [13] ; experimen-
tal results has proved it to be advantageous over the algo-
rithms in [14]. 

C. Modification 
An improved modification of the original dynamic of the 

original DMP is presented in [1], which generalize move-
ments to new targets without singularities and large accelera-
tions. Then, the formalism is further extended to obstacle 
avoidance by adding an additional term to the differential 
equations which makes the robot steer around an obstacle. 

D. DMP with Perceptual Coupling [13] 
On the basis of the original DMP mentioned above, an 

external variable was taken into account which only affects 
the transformation system. This method allows continuous 
modification of the current state of the system by another 
variable. In this case, a modified dynamical system is defined 
as: 
 

z=h(z)� �                                                         (6) 
ˆx=g(x, y, y, z, v)� �                                           (7) 
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y=g(y,z,w)� �                                                   (8) 
 

where y denotes the state of the external variable, y the ex-
pected state of the external variable and y� its derivative. The 
concrete forms of functions h , g and ĝ are presented in [13]. 

E. Properties 
1) The trajectory converges to the goal point and auto-

matically adapt to perturbations. 
2)  By setting �, the duration of a movement could be 

modified without changing the movement trajectory. 
3) The trajectories which have similar parameters �i are 

bracketed together, in that way all the trajectories could be 
classified. 

III.  LEARN BY IMITATION 

Most approaches to trajectory modelling estimate a time-
dependent model, by either exploiting variants along with the 
concept of spline decomposition [16]-[18] or through statisti-
cal encoding of the time-space dependencies [19], [20]. Al-
though such modelling methods are precise in the description 
of the actual trajectory, they have some problems in handling 
time variation which makes the methods sensitive to both 
temporal and spatial perturbations. 

As an alternative, dynamical systems have been recently 
advocated as a powerful means of modelling robot motions 
[21]-[23], which considered modelling the intrinsic dynamics 
of motion. 

A. Models 
1) Hidden Markov Model (HMM): HMM use a mixture 

of multivariate Gaussians to describe the distribution of the 
data. HMM encapsulate the transitions probabilities between 
the Gaussians [25] [26]. 

Let {�, A, B} be, respectively, the initial state distribu-
tion, the transition probabilities between the states, and the 
multivariate output data distributions [27] [28]. The parame-
ters {�, A} are learned using Baum-Welch algorithm [27], 
which is a variant of EM algorithm [29] and set B={�k, 
�k}k=1 , where {�k, �k}k=1  are the state distributions. 

Once trained, the HMMs can be used to recognize 
gestures. In the experiments, this is used to decide whether a 
new demonstration belongs to the same task. The forward –
algorithm was used to measure the similarity between a new 
gesture and the ones encoded in the model. 

2)Gaussian Mixture Regression (GMR): GMR does not 
model the regression function directly, but models a joint 
probability density function of the data, then derives the 
regression function from the density model.  

A data set of N data points of D dimensions is encoded in 
a Gaussian Mixture Model (GMM) [25], [26], input vectors 
and output vectors are denoted as 1{ }I N

t t� � , 1{ }O N
t t� �  and �=[�I, 

�O]. The probability � that a data point belongs to GMM is 
defined by 
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where 	k are prior probabilities and N(�k, �k) are Gaussian 
distributions defined by centers �k and covariance matrices�k. 
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For a given input variable �I and a given Gaussian 
distribution k, the expected distribution of �O is defined by 
 

ˆ ˆ( , ) ~ ( , )O I
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1 1( ) ( )ˆ ˆ,  ( )O OI I I I O OI I IO
k k k k kk kk k k	 � 	� � �� �� � ���� � � � �  

 

The expected distribution of �O, when �I is known, can be 
estimated as: 
 

1
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More details please refer to [30]. 

B. Control Strategy Design 
Fig. 2 gives an overview of the input-output flow through 

the complete model, three processes are included in the 
model: probabilistic data encoding, determining the task 
constraints, optimal trajectory generation. 

ˆ ˆ, x�� �
, x�� �

� xW ,W
', 'x�

', 'x�

 
 

Fig. 2. Information flow across the complete system 
 

1) Trajectory-based Control [25], [26], [30], [31]: Let �̂�  
and x̂� be respectively the desired joint angle velocities and the 
generalized end-effector velocities in Cartesian space, and 
let �� and x� be the candidate velocities for reproducing the 
motion. The cost function H is defined as follows which 
measures the variation of constraints and of dependencies 
across the variables over time. An optimal controller can be 
obtained by solving the constrained optimization problem 
 

ˆ ˆ ˆ ˆmin  ( ) ( ) ( ) ( ), . . T T xH W x x W x x s t x J�� � � � �� � � � � � �� � � � �� � � � �   
 

where J is the Jacobian matrix at posture 
t, W and W
  are semi-definite positive diagonal matrices serving as 

coefficient indicating the respective influence. 
Using Lagrange multipliers, a solution can be obtained: 

ˆˆ( )( )x xW J W J J W x W� �� �� �� � �� ��                   (12) 
 

where J � denotes the Moore-Penrose pseudo-inverse of the 
Jacobian matrix. An alternative representation of the above 
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equation was presented in [32] that have been proved to be 
advantageous from an implementation perspective. The joint 
angle trajectories are finally found by using the relation 

( ) ( 1)t t� � �� � � � . 
More details for efficient implementation, such as the 

reduction of dimensionality, the selection of the optimal 
number of GMM components K can be obtained in [26]. 

2) Tracking-based Control [33]-[35]: A desired velocity 
is estimated through GMR. Given the current position, a 
velocity command is estimated iteratively to control the 
system. That is, the current position x is the input vector, the 
same parameter as �I referred in GMR and, the desired 
velocity x̂� is the output vector, the same parameter as �O 
referred in GMR. 
 

1
1

ˆ ( )[ ( ) ( )]K I O OI I I I
i i i i ii

x h � 	 � 	�
�
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where, ( )I
ih � represents the HMM forward variable, ( )I

ih �  

is initialized by 1 1, 1
( ) ( ; , ) / [ ( ;KI O O O O

i t i i i ii
h N N� 
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 �

�
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, )]O O
i i	 � [20], [21] and corresponds to the probability of 

observing the partial sequence 
1 2

{ , , ,O O� � �  }O
t� and of being 

in state i at time t. 
Similarly, a target position is retrieved from the estimate 

of dynamics of motion. Given the current velocity, a position 
command is estimated iteratively to control the system. The 
current velocity x� is the input vector while the desired 
velocity x̂ is the output vector. 
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The acceleration command is determined by: 
 

ˆ ˆ( ) ( )v px x x x x� �� � � ��� � �                                    (15) 
 

where � v and � pare gain parameters similar to damping and 
stiffness factors. Particular forms of the velocity gain � v and 
the position gain � p are defined in [33], [34]. 

C. Properties 
1) Trajectory-based Control: The approach presents an 

architecture of solving the problem for extracting the 
constraints of given tasks in a programming by demonstration 
framework and the problem of generalizing the acquired 
knowledge to various contexts. Under the constraints which 
are essential for reproducing the demonstration, the trajectory 
is obtained which optimizes the cost function composed of 
imitation metric and the constraints. The approach can be 
extended to different robot architecture which is advantageous 
over the previous approaches. 

2). Tracking-based Control: The techniques that have 
been proposed over the years suffer from explicit time 
dependency which makes them sensitive to both temporal and 
spatial perturbations. Using HMM allowed us to get rid of the 
explicit time dependency, by encapsulating precedence 
information within the statistical representation. 

IV.  LEARN FROM ONLY LOCAL INFORMATION 

A. Locally Weighted Regression  
LWR was first proposed as an approach combining the 

simplicity of linear least squares regression with the flexibility 
of nonlinear regression [42], which was then applied to robot 
control [43], [44]. 

LWR can be applied in a much broader context. Global 
learning methods can often be improved by localizing them 
using locally weighted training criteria [45], [46]. Up to now, 
the application of LWR includes learning the forward model 
which is necessary in studying the task-space control [40], 
table tennis robot controlling [41], tracking of blood pressures 
from childhood to adulthood [47] and so on. 

1)  Memory-based Learning: Actually, locally linear 
model have been brought into wide use, as they accomplish a 
favourable compromise between computational complexity 
and quality of result. 
 

0,ŷ x b x ,  x (x ,1)T T T T
k k k kb �� � � �� �                (16) 

 

where �k denotes the parameters of the locally linear model 
with k training points and x� a compact form of the center-
subtracted, augmented input vector to simplify the notation.  
Algorithm can be implemented as follows [37],[38]  
Step 1--Initially, experiences are simply stored in the memory. 
Step 2--To answer any particular query, a weighted linear 
regression is performed. Some parameters which are referred 
as “fit parameters” in the following are identified to calculate 
a distance metric and the weighting function, and stabilize the 
solution. 
Step 3--Using cross validation, the fit parameters could be 
updated. 

2) Incremental Learning: The receptive field-based 
learning system (RFWR) generates locally linear models in 
each receptive field and blends them for prediction. Given a 
query, the average � of outputs of all activating models at the 
query is used as the prediction of the query. Without loss of 
generality, the k-th receptive field which is activated under the 
presented query is considered in this section. 
 

1 1
ˆ ˆ( ) / ( )K K

k k kk k
y w y w

� �
� � �                               (17) 

1exp[ (x c ) D (x c )], D
2

T T
k k k k k k kM M� � � � � �  

 

The positive definite distance metric Dk determines the size 
and shape of the receptive field. Mk is an upper triangular 
matrix which ensures that Dk is a positive definite. In (17), �k 
is the prediction using the linear model in k-th receptive field, 
c  is the center of k-th receptive field.  

The learning algorithm of RFWR determines the 
parameters c , Mk and �k for each receptive field 
independently, i.e., without any information about the other 
receptive fields. RFWR adds and prunes receptive fields as 
needed, such that the number of receptive fields, K, will 
automatically adjust to the learning problem [4]. 
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Given a training point (x, y)� , the learning process is de-
fined as follows: 

Step 1--Incremental updating of �: 
 

1 1p xen n n T
k k x cv� � �� �� � �                        (18) 

 

where 1 1 p xx pp (p )
/ x p x

n T n
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x� � �

� � �
�
� �

� �
 , e (y x)

Tn
cv k�� � �  

The equation includes a forgetting factor 
 in order to 
gradually cancel the contributions from previous data points. 

Step 2--Incremental updating of M: Define locally 
weighted leave-one-out cross validation error as follows: 
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The notation �i denotes the prediction of i-th data point which 
is calculated from the learning system. To minimize the cross 
validation by adjusting M by gradient descent with learning 
rate �: 
 

1 ( / )n nM M J M�� � � � � �                    (20) 
 

Step 3-- Adding and Pruning Receptive Fields: A new 
receptive field is created if a training sample (x, y)� does not 
activate any of the existing receptive field by more than a 
threshold wgen. The parameters of the new receptive field are 
set to a manually chosen default value. 

A receptive field is pruned if it overlaps too much with 
another receptive field. This effect is detected by a training 
sample activating two receptive fields simultaneously more 
than wprune. The receptive field with the larger determinant of 
the distance metric D is pruned. 

B. Locally Weighted Projection Regression (LWPR) 
Under the assumption that data is characterized by 

locally low dimensional distributions [51], LWPR copes with 
high dimensional inputs efficiently. Currently, more and more 
researchers focus on solving various practical problems 
encountered in the physical world by using LWPR. LWPR 
has been applied in visual servoing which is used in learning 
the control of the low-cost robotic arm [62], [63]. And the 
suitability of LWPR to solve two problems: the prediction of 
littoral drift and that of scour downstream of a flip bucket 
spillway is assessed [59]. 

Locally weighted projection regression is a new algo-
rithm for incremental nonlinear function approximation in 
high dimensional spaces with redundant and irrelevant input 
dimensions. LWPR copes with high dimensional inputs by 
using techniques of projection regression (PR) [52-56]. A 
variety of linear dimensionality reduction techniques are pre-
sented in related literature for the purpose of nonlinear func-
tion approximation, such as locally weighted factor analysis 
[52], principal component regression [53], partial least 
squares[54], [55] and so on. And sigmoidal neural networks 
can also be conceived as a method of projection regression 

[56]. In addition, (Vijayakumar and D’Souza) presented a 
novel projection regression technique, named covariant pro-
jection regression (LWCPR) [51] which has been proved that 
it accomplished excellent regression results with relatively 
few projections.  

1) Models: With the assumption that the data generating 
model for the regression problem has the standard form y = 
f(x) +�, (where  is a n-dimensional input vector, the 
noise term � has mean zero, E{�}=0 and the output is one- 
dimensional). 

The prediction � for a query point x is built from the 
normalized weighted sum of the individual prediction �k of all 
receptive fields, i.e., as shown in Eq. (17). 

All input vectors are summarized in the rows of the 
matrix X=[x1,x2  x ]T, the corresponding outputs are the 
elements of the vector y. P is the number of training data and 
N is the dimensionality of the input data. All the PR 
techniques considered here project the input data X onto k 
orthogonal directions [51], [57], along which they carry out 
univariate linear regressions. 

2) The Complete LWPR Algorithm [51], [59], [60]: The 
approach of gradient descent updating of D is the same as step 
2 and adding and pruning receptive fields is the same as step 3 
of incremental learning. The initial number of projections is 
set to R=2.The algorithm determines whether R should be 
increased by recursively keeping track of the mean-squared 
error as a function of the number of projections included in a 
local model. If the MSE at the next projection does not 
decrease more than a certain percentage of the previous, i.e., 
MSEi+1/MSEi>  the algorithm will stop adding 
new projections locally. More details for the algorithm please 
refer to [58], [59], [60]. 

C. Properties 
LWPR can operate in very high dimensional space 

successfully and efficiently. If the input data is locally 
statistically independent and is approximately locally linear, 
LWPLS will find an optimal linear approximation for the data 
with a single projection. The major drawback of LWPR in its 
current form is the need for gradient descent to optimize the 
local distance metrics in each local model, and the manual 
tuning of a forgetting factor as required in the learning 
algorithms 

LWR avoids the difficult problem of finding an 
appropriate structure for a global model. This approach is 
suitable for real time on line robot learning because of the fast 
incremental learning and the avoidance of negative 
interference between old and new training data. However, 
practical implementations require dealing with various 
difficult problems, such as inadequate amounts of training 
data, filtering of noise, and so on [38]. As a disadvantage to 
the incremental learning algorithm described above, an ever 
increasing number of receptive fields will be required to 
represent the approximated function. 

V.  DISCUSSIONS  
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A. Analysis 

HMM approach shares many characteristics with the 
DMP approach However, compared with DMP, HMM allows 
to be provided with partial demonstrations, which is a very 
important characteristics for the teaching interaction. DMP 
and HMM are both of time-independency approaches; DMP 
gets rid of the explicit time dependency by modelling the 
intrinsic dynamic of motion using two sets of differential 
equations, while HMM encapsulates the time variable within 
the statistical representation. However, the HMM method has 
the disadvantage that its stability relies on the proper choice of 
the gains in (15). In GMR, time is considered as an explicit 
variable to encode the motion. And it is possible to extract the 
constraints of given tasks automatically using GMR. 
However, although GMR can describe the trajectory precisely, 
it is sensitive to various external perturbations. In addition, 
LWR approximates a function from samples of the function’s 
inputs and outputs avoiding the difficult problem of finding an 
appropriate structure for a global model, but many 
experiences are needed and its performance is not guaranteed. 

B. Development Tendency  
In recent years, learning control has made a great deal of 

progress in both research and application fields. But a 
complete theory system is not estimated that can guide design 
practice of controller. The learning control polices mentioned 
in this paper have diverse backgrounds and applications, thus 
can be developed in different directions. 

Firstly, DMP could be applied to a full-body humanoid 
robot in the future, so that different robots could be developed 
to complete various functions needed in human life.  

Secondly, as to imitation learning using HMM and GMR, 
future works could focus on extending the proposed approach 
to motion with more complex dynamics and to controllers that 
can adapt robustly to various external perturbations. In 
addition, such approaches should be developed to allow users 
to provide partial demonstrations to the robot. And the control 
of the legs of robots also calls for more attention which is very 
important for keeping balance and accomplishing particular 
tasks for the whole robots. 

Finally, although LWR & LWPR have been widely 
applied to the robot controlling, it seems necessary to develop 
new data management algorithms, including principled ways 
to forget or coalesce old data, and compactly represent high 
dimensional data clouds and so on.  

But also, some methods could be combined to get better 
performance in the future, such as DMP or HMM could be 
combined with LWPR which is useful to deal with high-
dimensional inputs and HMM can also be used to tune the 
parameters of LWPR automatically which are manually tuned 
in previous methods. 

VI.  CONCLUSIONS 

We survey some ongoing and past activities in robot 
learning to assess where the field stands and where it is going. 
Three types of control policies developed recently are dis-

cussed which have been proved to be effective in experiments 
as well as the modification for some specific tasks. What’s 
more, detailed models and learning algorithms are also pre-
sented. Finally, properties of the control strategies mentioned 
in the paper and possible future research directions for learn-
ing control are given.  
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