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ABSTRACT
One-stage object detector has been the most widely used frame-
work in modern object detection due to its excellent performance
and high efficiency. Label assignment, which is designed to discrim-
inate positive and negative samples in training process, is closely
correlated to the detection performance of one-stage detectors. Pre-
vious works commonly utilize geometric prior such as anchor box
or key point to determine positive samples. Despite its simplicity,
the heuristic strategy is rigid and it might limit the upper bound
of detection performance. By introducing extra semantic informa-
tion, prediction-aware geometric score and sample re-weighting
mechanism, we propose a novel strategy called Dynamic Label
Assignment in this paper. To validate the effectiveness and gen-
eralization of our method, we conduct extensive experiments on
the MS COCO dataset. Without bells and whistles, our best model
with ResNeXt-101 as backbone achieves state-of-the-art 46.5 AP,
surpassing other strong methods such as SAPD [30] (45.4 AP), ATSS
[25] (45.6 AP), and GFL [11] (46.0 AP) by a large marigin.

CCS CONCEPTS
• Computing methodologies→ Object detection.

KEYWORDS
deep learning, object detection, one-stage detector, label assignment

ACM Reference Format:
He Jiang, Junrui Xiao, and Qingyi Gu. 2022. DLA: Dynamic Label Assign-
ment for Accurate One-stage Object Detection. In 2022 11th International
Conference on Software and Computer Applications (ICSCA 2022), Febru-
ary 24–26, 2022, Melaka, Malaysia. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3524304.3524317

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSCA 2022, February 24–26, 2022, Melaka, Malaysia
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8577-0/22/02.
https://doi.org/10.1145/3524304.3524317

1 INTRODUCTION
Object detection, which aims to recognize the category and detect
the location of objects, has been a fundamental but challenging task
in computer vision for a long time. In recent years, with the rapid
development of convolutional neural networks (CNN), numerous
works have been proposed to improve the performance from several
aspects [1, 6, 12, 13, 15, 18]. Generally, current detectors can be
divided into two-stage [4, 18] and one-stage methods [13, 15]. Due
to the simplicity and high efficiency of one-stage methods, they
attract wider attention and have been the most popular frameworks
in modern object detection.

In the training process, the label assignment strategy plays an
important role and it is responsible for separating positive and
negative samples. Currently, most one-stage detectors merely uti-
lize geometric information such as IoU to determine the positive
samples. To be specific, they tile anchor boxes at each spatial loca-
tion with various scales and aspect ratios. These anchor boxes are
introduced as geometric priors and they are assigned as positive
or negative samples based on their IoUs with ground truth (GT).
An anchor is selected as the positive sample if its IoU with any
GT box exceeds a certain threshold. This simple strategy is heuris-
tic and it might suffer from two major limits as shown in Figure
1. First, the assignment strategy is misaligned with the NMS
procedure. Current one-stage detectors commonly utilize classifi-
cation score to rank predicted boxes in NMS procedure. However,
the label assignment strategy is only based on geometric infor-
mation, causing a certain degree of misalignment. As a result, a
box with higher classification score (anchor B) could suppress the
box (anchor A) with higher IoU score. Second, the assignment
strategy is fixed during training process. Conventional label
assignment strategy could not adaptively determine the positive
and negative samples as training processes. Therefore, the training
samples are actually fixed for each GT, which might hurt the final
performance. Although recent works [7, 10, 25, 26] try to improve
the label assignment strategy, they do not solve these two issues
directly.

In this paper, we propose Dynamic Label Assignment (DLA), a
hyper-parameter insensitive label assignment strategy to explicitly
address the problems above. To bemore specific, we design a new as-
signment metric and introduce an auxiliary task for NMS procedure.
By incorporating semantic score and proposing prediction-aware
geometric score, our DLA could dynamically assign the samples
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Figure 1: Illustration of the defects of the conventional label assignment in current one-stage detectors. They suffer from two
major limits: (1) Misalignment between assignment strategy and NMS procedure. (2) Rigid sample assignment during training
process.

for each GT during training process. We also utilize a sample re-
weighting mechanism to encourage the learning from high-quality
samples. Without bells and whistles, DLA is able to improve the
performance of one-stage object detectors significantly and our
best model achieves state-of-the-art 46.5 AP on MS COCO dataset.
The contributions of this paper are summarized as follows:

• We systematically analyze the defects of the conventional
label assignment in modern one-stage detectors.

• A novel assignment strategy called DLA is proposed to signif-
icantly boost the performance of existing one-stage models.

• Extensive experiments are conducted on MS COCO dataset
to verify the effectiveness of our proposed method.

2 RELATEDWORKS
2.1 One-stage Detector
Anchor-basedmethod. SSD [15] is the pioneer anchor-based one-
stage detector, which spreads anchor priors in multi-scale layers to
directly perform classification and regression. With the advantage
of SSD, substantial progress has been made to improve the perfor-
mance of one-stage detectors in various ways. [2, 11, 13] propose
new loss functions to address the imbalance problem of positive
and negative samples. Other works [16, 22, 27] try to enhance the
representative ability of features by extracting extra contextual
information. Despite their simplicity, all these methods need to
spread massive anchors across scales, which causes unnecessary
computational burden and memory consumption. Besides, the over-
all performance depends heavily on the design of anchor priors.
Anchor-free method. To eliminate the efforts for hand-designed
anchor priors, anchor-free [9, 20, 28, 29] one-stage methods are
proposed and they use points to represent objects. To be specific,

CornerNet [9] and ExtremeNet [29] utilizes corners and extreme
points to perform object detection in a bottom-up way respec-
tively. CenterNet [28] directly leverages the center points to regress
bounding boxes while FCOS [20] uses all points inside a GT box to
predict the distances to four boundaries. These anchor-free detec-
tors provide new views for object detection and they surpass the
anchor-based counterparts by a large margin. However, ATSS [25]
demonstrates that the essential difference between anchor-based
and anchor-free methods is the label assignment strategy. When
a proper strategy is employed, they could achieve similar perfor-
mance. Inspired by ATSS, our work focuses on the label assignment
method and it’s applicable to both anchor-based and anchor-free
frameworks.

2.2 Label Assignment Strategy
The label assignment strategy aims to determine the positive and
negative samples for detection during training process, which signif-
icantly affects the performance of the object detector. Anchor-based
detectors [13, 15] assign anchors to objects (as positive) or back-
grounds (as negative) based on their IoUs with GT boxes while
anchor-free methods [9, 20, 28, 29] utilizes key points (such as
corners or centers) to discriminate positive and negative samples.
These heuristic strategies are simple and have achieved substan-
tial success. However, they only consider the geometric prior and
are lack of flexibility. To overcome the bottleneck of rigid label as-
signment, MetaAnchor [24] predicts the distribution of anchors by
sub-network and adaptively assigns anchors. GuidedAnchor [21]
uses feature maps with semantics to predict the shape of anchors.
FreeAnchor [26] selects the best anchor based on the loss function
in order to improve the matching quality between anchors and
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targets. PAA [8] introduces the Gaussian mixture model to simulate
the probability distribution of positive and negative samples. Unlike
the previous methods, GFL [11] uses IoU score as the target of clas-
sification head to combine classification and regression predictions.
Noisy Anchor [10] designs a soft label and re-weights the anchor
to avoid the noise of the binary classification label. ATSS [25] pro-
poses to separate positive and negative samples by calculating the
statistics of IoU and remove the need for fixed thresholds. These
excellent works mentioned above have inspired the current work
and we make a further step to explore the effective label assignment
strategy for one-stage detectors.

3 METHOD
To achieve high performance in one-stage object detection, the
label assignment strategy should satisfy the following three rules.
First, both semantic and geometric information should be consid-
ered when designing a assignment metric. Second, for each ground
truth, its corresponding positive samples should be dynamically
determined based on the metric score during the training process.
Third, the score used for NMS procedure should be compatible
with the assignment metric. In this section, we will introduce our
Dynamic Label Assignment (DLA) in detail and demonstrate how
it fulfills all the requirements mentioned above.

3.1 Assignment Metric
Our assignment metric is composed of two parts, i.e., semantic score
and geometric score. For simplicity, we use a linear combination to
incorporate them jointly and introduce a trade-off parameter α to
control the importance of each part. Mathematically, the designed
assignment metric score can be formulated as

m = (1 − α) · s + α · д (1)

wherem indicates the assignment metric while s and д represents
semantic score and geometric score, respectively. For semantic
score, since there is no available prior knowledge, we directly utilize
the classification output from the detector. At the beginning of the
training process, the classification branch is initialized to predict
low scores for all the categories. Therefore, the semantic score is not
discriminative and it can’t provide useful information for selecting
high-quality samples. To deal with this issue, we initialize α to 1.0
and decrease it exponentially to a certain value α0 as the training
progresses. Thus, the parameter α becomes

α = (1.0 − α0) · e
−t/

√
T + α0 (2)

where t indicates the current training epoch and T represents the
total number of epochs. In this way, we can avoid utilizing seman-
tic score at the beginning and gradually increase its importance
in the training process. As for the geometric score, the ideal so-
lution is calculating the IoU between the predicted bounding box
and the ground truth. However, the regression output is also not
reliable when training starts. Therefore, the geometric prior such
as center prior or anchor prior is required for stable training. To
make geometric score aware of the prediction ability of the detec-
tor, we leverage semantic score s to measure how well the detector
is trained and design a mixed criteria to automatically adjust the
importance of the geometric prior. As a result, the geometric score
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Figure 2: Illustration of the auxiliary task in the detection
head.

is calculated as

д = (1 − s) · IoUpr ior + s · IoUpred (3)

where IoUpr ior represents the IoU between the anchor prior and
the ground truth while IoUpred is the IoU between the predicted
box and the ground truth. By this means, the geometric score is
dynamically determined for each prediction. At the beginning, the
semantic score s is very low so д is almost equal to IoUpr ior . When
the detector is sufficiently trained, it can produce high semantic
score and д depends more on IoUpred .

3.2 Label Assignment
Our label assignment strategy is similar to ATSS [25] and it mainly
contains two steps. First, for each ground truth, we select top k
samples whose centers are closest to its center based on L2 distance
from each pyramid level of FPN [12]. After constructing the candi-
date bag, we compute the assignment metricm for each sample in
the bag. To eliminate the need for hand-designed hyper-parameters
such as positive threshold and negtive threshold, we calculate the
statistics, i.e., meanmmean and standard deviationmstd of the as-
signment metric. The samples whose metric scores are greater than
the thresholdmmean +mstd are assigned as the positive samples.
Then, the other samples are treated as negative samples. Following
ATSS, we also limit the positive samples’ center inside the ground
truth box to stabilize the training process. If a sample is assigned
to multiple ground truths, it’s only selected for the one with the
highest metric score.

3.3 Loss Function
Unlike previous works that directly use classification score as the
ranking criteria for NMS post-processing, we introduce an auxiliary
task to learn the assignment metric score explicitly. As shown in
Figure 2, since assignment metric is a combination of semantic
score and geometric score, we utilize both classification and regres-
sion features to make predictions jointly. To be more specific, we
concatenate the features from two branches together and use a
1 × 1 convolution to reduce the channel dimension first. Then, a
3 × 3 convolution is applied to the reduced feature to predict the
assignment metric. In the test time, we leverage the metric score to
conduct NMS. In this way, the ranking criteria of NMS is aligned
with our label assignment strategy. Since we introduce an auxiliary
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Table 1: Comparisons with other state-of-the-art methods on COCO test − dev2017.

Method Backbone AP AP50 AP75 APS APM APL
RetinaNet [13] ResNet-101 39.1 59.1 42.3 21.9 42.7 50.2

FCOS w/imprv [20] ResNet-101 43.0 61.7 46.3 26.0 46.8 55.0
Noisy Anchor [10] ResNet-101 41.8 61.1 44.9 23.4 44.9 52.9

MAL [7] ResNet-101 43.6 62.8 47.1 25.0 46.0 55.8
SAPD [30] ResNet-101 43.5 63.6 46.5 24.9 46.8 54.6
ATSS [25] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6
PAA [8] ResNet-101 44.8 63.3 48.7 26.5 48.8 56.3

DLA (ours) ResNet-101 44.6 63.1 48.5 26.9 48.0 55.2

SAPD [30] ResNeXt-101-64x4d 45.4 65.6 48.9 27.3 48.7 56.8
ATSS [25] ResNeXt-101-64x4d 45.6 64.6 49.7 28.5 48.9 55.6
PAA [8] ResNeXt-101-64x4d 46.6 65.6 50.8 28.8 50.4 57.9
GFL [11] ResNeXt-101-32x4d 46.0 65.1 50.1 28.2 49.6 56.0

DLA (ours) ResNeXt-101-64x4d 46.5 65.2 50.8 28.9 49.8 58.4

task, our loss function consists of three parts and they are described
as follows.
Classification loss. The classification loss is the same as the com-
mon practices [13, 20]. For each prediction with a classification
score pi , it has a corresponding binary label li . We adopt Focal Loss
[13] to tackle the imbalance problem between positive and negative
samples and the classification loss can be written as

Lcls =
1

Npos

∑
i
FocalLoss(pi , li )

=
1

Npos
[

Npos∑
i=1

α(1 − pi )
γ logpi +

Nneд∑
i=1

(1 − α)p
γ
i log(1 − pi )]

(4)

where α and γ are the hyper-parameters introduced in [13].
Regression loss. As discussed in [10], the positive samples should
not be treated equally during the training process. To be specific,
learning from high-quality samples could benefit the detector while
those with low metric scores might hurt the detection performance
due to their noises. To facilitate the learning procedure, we re-
weight the positive samples according to their assignment metric
scores and the weight is denoted as

w =mγ = [(1 − α) · s + α · д]γ (5)

where γ is used to control the degree of re-weighting. When γ is
less than 1.0,w tends to narrow the gap between different samples.
Conversely, if γ is greater than 1.0, the contribution of high-quality
positive samples is amplified. For regression task, each positive
sample bi is associated with a ground truth box дti and we utilize
GIoU Loss [19] to perform optimization. By introducing the re-
weighting mechanism, the regression loss can be formulated as

Lr eд =
1∑Npos

i=1 wi

Npos∑
i=1

wiGIoULoss(bi ,дti ) (6)

Metric loss. The metric loss is similar to the classification loss
and it is a form of the Generalized Focal Loss [11]. Here we do
not incorporate the parameter α described in [13] to balance the
positive and negative losses. For this auxiliary task, each sample

predicts a metric score ci and its targetmi is a continuous value
ranging from 0 to 1. We directly take the original assignment metric
m as the learning target and do not apply any transformations to it.
Thus, the metric loss can be calculated as

Lmetr ic =
1

Npos
[

Npos∑
i=1

|ci −mi |
γ BCE(ci ,mi ) +

Nneд∑
i=1

c
γ
i BCE(ci , 0)]

(7)
where BCE represents the binary cross-entropy loss.

Combining the aforementioned three parts, our loss function
can be represented as

L = a · Lcls + b · Lr eд + c · Lmetr ic (8)

where a,b and c are used to balance the contribution of each part.

4 EXPERIMENTS
We conduct all the experiments on the challenging MS COCO
benchmark [14]. The MS COCO dataset consists of 80 categories
and is split into train2017, val2017, and test-dev2017. Following the
common practices [13, 20, 25], we train our models on the train2017
split without any extra data. For ablation studies, we evaluate our
method on the val2017 split. For comparisons with other state-of-
the-art methods, we report our results on the test-dev2017 split
whose labels are not publicly available. The detection performance
is measured by the standard COCO-style Average Precision (AP).

4.1 Implementation Details
We adopt the common ’Backbone-FPN-Head’ as our pipeline. The
backbone is pre-trained on the ImageNet [5] and we choose ResNet
[6] and ResNeXt [23] to conduct our experiments. Following ATSS
[25], we only tile one anchor as the geometric prior for each position.
Unless otherwise stated, we set α0 = 0.9, k = 10 and γ = 1.0. Our
DLA is applicable to both anchor-based and anchor-free detectors
and we report the results with anchor-free method by default. As
with most one-stage detectors [13, 20, 25], the input resolution is
set as 1333 × 800. As for the loss weights, we adopt a = c = 1.0 and
b = 2.0, respectively. Our codebase is based on PyTorch [17] and
MMDetection [3]. We train our models on 4 GPUs with 4 images
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Table 2: Ablation study on trade-off parameter α .

α AP AP50 AP75 APS APM APL
dy, 0.9 40.3 58.5 43.7 24.2 44.2 52.2
fix, 1.0 40.0 58.1 43.3 23.8 43.9 52.3
fix, 0.9 40.2 58.5 43.5 24.1 44.2 52.1
fix, 0.8 40.1 58.5 43.5 23.5 44.1 52.1

Table 3: Ablation study on sampling number k .

k AP AP50 AP75 APS APM APL
5 40.2 58.2 43.5 23.6 43.9 52.3
10 40.3 58.5 43.7 24.2 44.2 52.2
15 40.4 58.8 43.8 23.4 44.4 52.6
20 39.9 58.2 43.2 23.4 44.3 51.8

per GPU in a mini-batch. We take ATSS as our baseline and all the
training hyper-parameters are kept unchanged. The ‘1×′ and ‘2×′

training schedules follow the default settings in MMDetection.

4.2 Main Results
For comparisons with other state-of-the-art methods [7, 10, 13, 20],
we train our model with ‘2×′ schedule and adopt scale jitter. We
report the performance on test − dev2017 under single-model and
single-scale test. As shown in Table 1, taking ResNet-101 [6] and
ResNeXt-101 [23] as backbone, DLA achieves 44.6 AP and 46.5
AP respectively, which is superior or comparable to other strong
works. Notably, PAA [8] is trained under ‘3×′ schedule and it is
much longer than the common practices [11, 25, 30]. Without bells
and whistles, DLA could significantly increase the upper bound
of detection performance for one-stage detectors using the same
network structures.

4.3 Ablation Studies
For ablation studies, we use ResNet-50 as the backbone and train
the model with ‘1×′ schedule. All the results are reported on the
val2017 split.
Ablation study on trade-off parameter α . To evaluate the effec-
tiveness of trade-off parameter α , we vary its value and compare
the results between fixed and dynamic settings. The corresponding
results are shown in Table 2. From the second row to the fourth
row, we can see that geometric score plays a more important role
in the assignment metric and α = 0.9 yields the best performance.
Besides, we even achieve 40.0 AP when only geometric score is
considered. This is because that we incorporate the semantic score
into the formulation of д. As a result, we do not need to emphasize
the semantic score explicitly. By introducing dynamic mechanism,
our DLA achieves slightly higher performance as shown in the first
row of Table 2, which validates the effectiveness of our method.
Ablation study on sampling number k . The sampling number
k controls the size of our candidate bag for computing metric sta-
tistics and selecting high-quality positive samples. To validate the
robustness of our DLA, we conduct ablation study on k by varying
the value from 5 to 20. As shown in Table 3, when k is between 5

Table 4: Ablation study on weight parameter γ .

γ AP AP50 AP75 APS APM APL
0.0 40.1 58.4 43.3 23.4 44.0 52.1
0.5 40.2 58.5 43.7 23.5 44.1 52.0
1.0 40.3 58.5 43.7 24.2 44.2 52.2
1.5 40.0 58.1 43.5 22.8 44.1 52.4

Table 5: Generalization on different frameworks. ‘AB’ is
short for anchor-based and ‘AF’ is short for anchor-free, re-
spectively.

Method AP AP50 AP75 APS APM APL
ATSS AB [25] 39.3 57.5 42.8 24.3 43.3 51.3

DLA AB 40.0 58.5 43.2 24.8 44.1 51.7

ATSS AF [25] 39.2 57.3 42.4 22.7 43.1 51.5
DLA AF 40.3 58.5 43.7 24.2 44.2 52.2

and 15, the detection performance is very stable and it only fluc-
tuates about 0.2 AP. As k increases to 20, the overall performance
drops significantly and we only achieve 39.9 AP. Considering the
assignment procedure, we conjecture that a large sampling number
k might hurt the average quality of the candidate bag. As a result,
more low-quality candidates are selected as the positive samples,
which could distract the detector during training process. There-
fore, the sampling number k should be limited to a proper range
for stable and high performance.
Ablation study on weight parameter γ . To validate the effec-
tiveness of re-weighting samples in regression task, we conduct
experiments by adopting various values of γ . As shown in Table
4, our DLA is robust to the variance of γ , which indicates that the
main contribution of our method comes from the label assignment
strategy rather than the weight mechanism. Notably, our DLA could
achieve 41.1 AP without re-weighting samples (γ = 0.0). When
weight mechanism is applied, γ = 1.0 is a proper value to control
the degree of re-weighting and a large value of γ could deteriorate
the detection performance.
Generalization on different frameworks. Similar to ATSS [25],
our DLA is also applicable to both anchor-based and anchor-free
frameworks. As shown in Table 5, our DLA consistently outper-
forms the ATSS by a large margin under different situations, which
validates the generalization ability of our method. By introducing
semantic information and prediction-aware geometric score into
the label assignment strategy, the detection performance could be
improved significantly. In addition, the extra computational costs
are only considered during training process so the efficiency in test
time is not influenced at all.

5 CONCLUSION
In this work, we systematically analyze the intrinsic defects of
the conventional label assignment strategy in one-stage detection.
To address the problems, we propose a new method called DLA
as a substitute to the previous strategy. Specifically, we design a
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new assignment metric by incorporating semantic and geometric
information jointly. To overcome the instability at the beginning
of training process, we dynamically adjust the importance of each
part and propose prediction-aware geometric score. We also utilize
sample re-weighting mechanism to enhance the learning from high-
quality samples. With the aforementioned improvements, our DLA
achieves state-of-the-art 46.5 AP under single-model and single-
scale test, surpassing other strong methods such as ATSS and GFL.
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