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Constructing Constraint Force Field in
Musculoskeletal Robot by Co-optimizing Muscle
Arrangements and Constant Activations

Shanlin Zhong, Junjie Zhou, and Wei Wu

Abstract—Robots with high-precision motion and operation
ability are of great application significance. By referring to the
biomechanical structure and neural control mechanism of human
motion system, the research of musculoskeletal robot system with
rigid-flexible coupling characteristics is one of the important
ways to improve the operation flexibility and control robustness
of robot. Inspired by the equilibrium point hypothesis proposed
in neuroscience, this paper proposes a co-optimization algorithm
of muscle arrangement and activation to construct constraint
force field in the workspace of musculoskeletal robot. When the
muscle arrangement is rough due to the insufficient precision of
the mechanical structure, the musculoskeletal robot can maintain
accurate motion with the help of constraint force field by adopting
the optimized constant activation. Experiments are carried out
on a musculoskeletal robot model with human-mimetic muscle
to demonstrate the effectiveness of the proposed algorithm in
movement accuracy, noise robustness and generalization. This
work may be of great significance for the further introduction
of constraint force field into hardware system of musculoskeletal
robot.

Index Terms—Musculoskeletal robot, Constraint Force Field,
High precision, Control Schemes of robot

I. INTRODUCTION

EPLACING human beings by robots to carry out task in

extreme environments, such as space and polar region, has
become the focus of research in the field of robotics. In these
extreme environments, the robot is faced with problems such
as extreme temperature deviation, strong noise disturbance and
fragile operation objects, which put forward high requirements
for robot in robustness and accuracy. Although the robotic
system has made great progress in intelligence, it still has
many shortcomings in dealing with unstructured environment,
dynamic situation and high-precision task.

As a long-term reference for the development of robots,
the structure and mechanism of human body has provided
plenty of inspiration for the design and improvement of robotic
system. Although the absolute precision of the sensing and
control of human is not high, it can make full use of the
information which is fused across different brain regions and
flexibility of its own structure to achieve high-precision, high-
reliability and high-intelligence behavior. Therefore, referring
to the information processing mode of human brain and the
mechanism of human motion system will provide an important
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scientific basis for the research and development of a new
generation of robots.

However, it is not easy to integrate the structure and
mechanism of human in intelligence and dexterous operation
into the robot system, due to the essential differences between
the existing robot system and human in the morphological
structure, control mechanism and functional characteristics.
Many research teams have carried out plenty of preliminary
exploratory research works. Embodied Cognition in a Compli-
antly Engineered Robot (ECCE Robot) is a series of highly
anthropomorphic musculoskeletal robot developed with Human
Brain Project funding [1]. Although the appearance of ECCE
robot is very different from that of human beings, it has a
highly similar human structures such as artificial skeleton,
spine, scapular joint and tendon, which enable it to complete
some human-like movements initially. Jouhou System Kougaku
Laboratory (JSK Laboratory) at the University of Tokyo
has been developing a series of bio-inspired musculoskeletal
humanoid robots since 2000, including Kenta [2], Kojiro [3],
and Kengoro [4]. In order to simulate human more accurately,
they had optimized the arrangement of joints, and proposed
a new kind of water cooling technology to make the drive
motor of system maintain high output power continuously, so
as to complete complex body movements such as push-ups
and sit-ups.

In terms of control algorithm, researchers also proposed
effective control methods to solve the control problems of
humanoid robot system caused by the increase of joint
complexity and the number of actuators by referring to the
control mechanism of human motion system. Inspired by the
hierarchical control architecture composed of the human brain,
brainstem and spinal cord neural circuits, the research team
of ECCE robot proposed a hierarchical software architecture
to solve the computing and control problems caused by the
large number of actuators and sensors of humanoid robots [1],
[5]. Inspired by the mechanism of human body interaction
innervating neural circuit, Kawaharazuka et al. proposed an
Antagonist Inhibition Control (AIC) algorithm for humanoid
musculoskeletal robot Kengoro to realize large-scale limb
movement [6]. Chen et al. proposed a neural control framework
based on the mechanism of muscle synergy in human body
to solve the problem of motion control in highly redundant
musculoskeletal system [7]. Aiming at the practical needs of
humanoid robot to maintain stable and robust motion control
under external interference, a cerebellar like control network is
proposed by Capolei et al. to deal with the complex nonlinear



characteristics of humanoid robot, which enables the robot
to have dynamic adaptability in uncertain environment with
disturbance [8].

This paper mainly focuses on the control algorithm inspired
by biological mechanism for musculoskeletal robot. A force
field with convergence property will be leveraged to assist
musculoskeletal robot to complete accurate movements. Related
biological theories, such as equilibrium point hypothesis, have
been widely verified in the researches of neuroscience. In the
research work of neuroscience, the research of convergence
field originated from the research of the spinal nervous system
of frogs. Neuroscientists applied constant micro-electric stimu-
lation to specific neurons in frog spinal cord, and measured
the direction and amplitude of the force generated by muscle
system at different locations in a plane. Then they found that
muscle forces can form a regular force field with a equilibrium
point in the working space, which is called Convergent Force
Field [9]. It has been demonstrated that the Convergent Force
Field is significant for realizing voluntary movements of
organisms [10], [11].

Inspired by the concept of Convergent Force Field in neuro-
science, a recent study introduce a concept called Constraint
Force Field for controlling the movement of musculoskeletal
system [12]. The constraint force field is helpful for realizing
high-precision movements of musculoskeletal robots with
limited control accuracy. It can be constructed at the target
positions by optimizing the arrangement of muscles. When the
target position is the center of the constraint force field and
the starting position is in its range, the robot can complete
precise and robust movement with constant control signals,
which is benificial for reducing the requirement of sensing
feedback during the motion control of the robot. However, the
optimal muscle arrangement for constructing constraint force
field in [12] requires the hardware device for adjusting position
of muscle attachment points has high precision, but existing
mechanical equipment is difficult to meet its requirements.
When the adjustment accuracy of the muscle attachment point
is insufficient, the equilibrium center of the constraint field will
drift away from the target position, resulting in the decrease
of accuracy.

In this paper, aiming at the problem that the motion
accuracy of the system decreases due to the insufficient
accuracy of mechanical structure, we propose a method of
co-optimization of structure and muscle activation signal. By
using the optimized constant activation signal, a constraint
force field can be constructed in the musculoskeletal robot
system to help the system achieve accurate motion, under the
condition that the muscle arrangement is rough due to the
insufficient precision of the mechanical structure.

The rest of this paper will be organized as follows. Section
IT will first establish the dynamics model of musculoskeletal
system with variable structure and activation. Section III
will introduce the co-optimization algorithm of structure and
activation to construct the constraint force field. Section I'V will
illustrate the experiment results to demonstrate the effectiveness
of the proposed method. Section V is the summary and
conclusion of this paper.

II. DYNAMICS MODEL OF MUSCULOSKELETAL SYSTEM

Muscle is the core actuator for human to realize different
movements. It can receive motor command from brain and
spinal cord to generate driving force for movement of the
skeletal system by contraction. According to the research results
of physiology [13], muscle fiber is the basic structural units
of muscle. Muscle fiber is mainly composed of two kinds of
proteins, namely contractile protein and non-contractile protein.
The contractile protein, such as actin and myosin, can contract
in response to the nerve activation signals to produce the active
force for body movement. The non-contractile protein, such as
connectin, not only plays an important role in supporting the
fibrous structure of the muscle, but also generates tension and
stores elastic potential energy when the muscle is stretched,
thus improving the energy efficiency of the body movement.

In order to investigate the biomechanical characteristic of
muscle, researchers have constructed many biological plausible
mathematical model of muscle based on the work in physiology
[14]-[16]. Hill-type model [14], [17] is one of the classical
models that has been widely used in fields such as medical,
biomechanics and sports science due to its advantages in
biological similarity and computational convenience. This
model employs a contraction element CE to mimic the
contractile protein of muscle fiber, and a passive elastic element
PE to mimic the non-contractile protein. In this paper, the
dynamics model of musculoskeletal system is established by
applying Hill-type model as actuators.

We first introduce the modeling process of musculoskeletal
system with variable arrangement. The musculoskeletal model
is shown in Figure 1. The arrangement of muscles in the
system is depends on the attachment positions of muscles
on the skeleton. Suppose there are N muscles in the mus-
culoskeletal system. A muscle is attached to the skeleton
via attachment points. In the reference coordinates of the
skeleton, we use s;; to represent the coordinate value of the
jth attachment point of muscle ¢ on the skeleton. Then we
denote S = {511, ..., S1Pys s Si,1y s SiP;s -, SNPy | @S the
coordinate set of all attachment points, where P; is the total
number of attachment points of muscle i.

Muscle fiber length can be calculated according to the
coordinate set of muscle arrangement. The length of muscle
fiber is an important parameter that affecting muscle force.
When the muscle fiber is at the optimal length, the muscle can
produce the maximum isometric force. In consideration of the
variation of the muscle arrangement, the length of muscle fiber
can be calculated by the following equation [12]:

Py
L(S) = \/(5?3 = SiGen) T (5 = Sie) D
j=1

where s;; represents the coordinate value of s;; in the world
frame of the musculoskeletal system, which can be reckoned
by the kinematic relationship between joints.

According to the Hill-type model, the force generated by a
muscle is composed of active force F and passive force F?,

which can be formulated as follow:

F™(S,a)=F*+ F” = f%(S)-a+ f(S). (2



Fig. 1. The model of the musculoskeletal robot, whose muscle arrangements
and activation is variable for constructing the constraint force field.

In this equation, @ is a muscle activation vector, which
contains dimensionless quantity between O and 1 that cor-
responding to the activation of each muscle. f%(S) =
diag(fo(11(8S)), ..., f&(In(8S)) is a diagonal matrix composed
of active muscle force, whose element is given by an expo-
nential function to mimic the characteristics of active muscle
fiber force [12], [17]:

FEU(8) = f7 - exp(=2(1i(S) — 1)*) (©)

where f¢ is the maximum isometric force of muscle 4, and [;(S)
is the normalized muscle fiber length by its optimal fiber length
12 [12]. The values of f? and [ are aquired by biomechanical
experiments [18]. f7(S) = [fF(11(9)), ..., f&(In(S)]T is a
vector composed of passive muscle force, whose element is
given by a piecewise function to mimic the tension of muscle
fiber [12], [17]:

fo [+ B0 () > 1 ey
fP1:(8)) =
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“

where kP and (]’ are constants that represent the exponential

shape factor and the passive muscle strain factor respectively.

The rotational torques that drive the movement of muscu-
loskeletal system are calculated from the muscle forces and
their moment arms. It is important to note that the moment
arm of muscle is related to the arrangement of muscles and
the angle of joints. Based on the algorithm to calculate the
moment arm of muscle provided in [19], we define r;;(.S, ¢;)
as the moment arm of muscle ¢ to joint j when the joint angle
is g;. Thus the torque vector generated by muscles can be

solved by the following equation:
T(Svaaq) = R(qu) ! Fm(saa)

ElirS.a)FT(Sa) \ o

SN rui(S, ) FT(S, a)

where R(S, q) is matrix of moment arm which is composed
of r;;(S,q;). H is the total number of joints. So, the dynamic
equation of musculoskeletal system, with respect to the variable
S and a, can be formulated as follows:

T(S,a,q) = M(q)g+Cc(q,q)q+b(q) +G(q) + 7 (6)

where ¢ is angular velocity of joint and g is acceleration.
M(q), C.(q,q), b(q), G(q) and T are the mass matrix of
skeleton model, the Coriolis force matrix, the damping term, the
gravity vector and the friction torque of the joints, respectively.

III. CONSTRUCTING CONSTRAINT FORCE FIELD WITH
OPTIMIZED ACTIVATION

The significance of force field with convergent characteristics
for complex motion has been verified in neuroscience. The
study of force field in muscle system originated from the
research of the spinal nervous system of frogs. Neuroscientists
has found that the terminal force of limb can form a regular
equilibrium force field in the working space by measuring
the direction and amplitude of the force at different positions
in the space when applying a constant micro-electric current
to a specific neuron cluster in the spinal cord [9]. Although
there are only a few such force fields in the range of body
movement, they are closely related to the diversity and rapidity
of movement of organisms [10], [20], [21].

Inspired by work about force field in neuroscience, previous
work [12] have introduced the concept of constraint force field
into robotic system. Different from the convergent force field
found in organisms, [12] proposed an optimization algorithm
to optimize the muscle arrangement so as to construct constrain
force field with equilibrium point at different desired position of
robotic work space, which expands the application possibility
of convergent force field in robotic system effectively. With the
help of constraint force field, the musculoskeletal robot is able
to reach the desired position accurately using constant control
signal, which dramatically reduces the reliance on sensors
during the movement.

However, there are some deficiencies in the work of [12].
From the view of practical application, the optimal structure
obtained from the optimization algorithm in [12] requires
high precision of hardware adjustment in muscle arrangement
position. When the adjustment accuracy of muscle arrangement
is low, the equilibrium center of the constraint force field will
drift away from the target position, resulting in the reduction of
motion accuracy of the system. Therefore, in this paper, based
on the previous research work [12], we propose that under the
condition of rough implementation of optimal structure, the
constant activation signal can be optimized to compensate for
the drift from the equilibrium center to the target point, so that
the equilibrium center can coincide with the target point again.
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Fig. 2. The schematic diagram of the algorithm with two steps of optimization.

This improvement, on the one hand, is beneficial to adjust the
muscle distribution by using the hardware system with low
precision, and on the other hand, it can keep the advantage of
the constraint force field to achieve precise motion by using
the constant control signal.

The representation of force field will be introduced first, since
it is the basis of the optimization algorithm for constructing the
constraint force field. In neuroscience experiments, the force
vectors of force field were measured by a force transducer
which was attached to the extremity of the subject frog.
Similarly, in a robotic system, when the torques of each joint
are known, the equivalent terminal force of the system can be
calculated by using the kinematic relationship between rigid
bodies. Therefore, based on equation (5), we can derive the
equivalent terminal force of the musculoskeletal system under
the actuation of muscle forces:

E;(S,p,a) = K(p)T(S,a,4(p))

H_lKlj Tj S,G,,A
di= @)( 4(p)) o

S Ky (p)73(S. a, 4(p))

where K (p) = J(§(p))~7T is the inverse matrix of transpose
Jacobian matrix and K;(p) is its element. §(p) represents
the joint vector of position p which is solved by inverse
kinematics. 7;(S, a,§(p)) is the resultant torque generated
by all muscles for joint j. When the target position p, is
determined by the movement task, it can be omitted in (7). So,
a constraint force field with p, as the equilibrium center can
be constructed by optimizing the muscle arrangement S and
the constant activation a. As introduced in [12], with fixed
constant activation a, the optimal muscle arrangement .S,,,; can
be reckoned by solving a constrained optimization problem:

I%H&:dyEA&&FEA&&)
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where A; and )\ are hyperparameters. [S, S| is the adjustable
range of muscle arrangement. O is the number of position in

e-neighborhood of the target position p,. ¢;(p;, p;) is the unit
centripetal vector of neighborhood point p;, and f,(S,p;,a)
is the unit vector of the equivalent terminal force at the
neighborhood point p,;. They can be abbreviated as ¢; and
f; respectively. ©(c;, f;) is vetorial angle between ¢; and f,.
In equation (8), £(-) is the penalty function to help con-
structing a force filed with convergent characteristics, which is
defined as a hyperbolic cosine function as follows [12]:

Elplen ) = Meosn( TNy

This penalty term is helpful to ensure the convergence of
the constraint force field since it requires that the equivalent
terminal force at the neighborhood point has a force component
pointing to the target position p, [12].

The optimal structure S,,; of the constrained optimization
problem (8) solved by interior point method usually contains
multiple decimal places. For example, in previous work [12],
the precision of optimal muscle arrangement reaches 10~ 3mm.
When the adjustment precision is rough, such as 1mm, the
motion accuracy will decrease. It means that a high adjustment
accuracy of muscle arrangement is required, which brings in
tremendous difficulty for practical implementation.

In this paper, in order to solve the problem of motion
accuracy caused by rough structural adjustment, an optimization
algorithm for constant muscle activation is proposed. Based on
the optimal structure, when the structure adjustment accuracy
is insufficient, this method will optimize the constant muscle
activation to make the equilibrium center of the constraint
force field coincide with the target position again, so that
the musculoskeletal system can accurately move to the target
position with the new constant activation signal.

We assume that the integer part of optimal structure S is
the adjustment precision. Let [S,,,;] represent the rough muscle
arrangement. Similar to the equation (8), the optimization
problem for constant muscle activation can be defined as
follows:

®

min Z, <A1 - Ef([Sopt), @) Ef([Sope] @)

o
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i=1

st. A<a<A (10)

where [A, A] = [0, 1] is the value range of muscle activation
[17], [18]. Let A,y represent the optimal constant activation.
By optimizing the muscle activation, this method can effectively
overcome the problem caused by the insufficient structural ad-
justment accuracy. Meanwhile, it retains the key characteristics
of the constraint force field, that is, the system can move to the
target point accurately under the new constant activation signal,
thus reducing the requirement for precise sensing feedback of
the control signal. The schematic diagram of the whole process
can be found in Figure 2.

IV. EXPERIMENTS

In order to evaluate the effectiveness of the constraint
force field formed by optimizing the muscle activations, a



TABLE I
OPTIMAL MUSCLE ARRANGEMENTS

Dy Supt (mm) Aopt
S11 512 521 522 531 532 S41 543 ‘ ai a2 a3 a4
(-259) 56 139 131 168 36 238 O 145 | 0.9557 0.9445 0.0217 0.6665
(5,33) 121 84 8 209 20 207 33 34 | 09845 0.1017 0.0649 0.849
(-9.43) 182 168 157 208 203 48 3 216 1 0.89 0.8795 0
TABLE I TABLE III

EVALUATION INDEX OF MOVEMENT ACCURACY

Min PE  Max PE  Mean PE  Std PE

Py (mm) (mm) (mm) (mm)
(-25,9) 0.0013 0.0232 0.0133 6.7e-4
(5,33) 0.0024 0.0121 0.0063 3.4e-4
(-9,43) 0.0046 0.035 0.0173 8.4e-4

two-link robot with 4 Hill-type muscle units is applied in
our experiments, including Pectoralis Major (PECM), Deltoid
(DELT), Biceps (BIC) and Triceps (TRI). Every muscle has
bionic properties by setting parameters from biomechnical
experiments [12], [18]. The musculoskeletal model is shown
in Figure 1. s;; represents the coordinate of the jth attachment

point of muscle i, whose value range is set as [S, S| = [0, 300].

An additional point is added in TRI to prevent penetration of
bone, where s4o = 4 and ¢ = 2/37. The link length is set as
L, = Ly, =300 mm, and their mass is 1kg. For the dynamical
parameters of the system, the damping coefficient is set as 500
and the joint friction is set as 0.001.

The parameters used in the optimization algorithm of (10)
are the same as that in (8). The hyper-parameters A1, Ao and
As are set as 10, 1000 and 0.2 respectively. The number of
position O in e-neighborhood of the target position is set as
8 while the radius of the neighborhood € is 0.5. 10,000 steps

of simulation are conducted with the step size is set as 0.001.

When solving the optimization problem of (8), the constant
activation a is fixed in 1.

In the following part, we will discuss the feature of constraint
force field with optimized activation by evaluating the motion
performance in movement accuracy, noise robustness and
generalization to new target. To illustrate the experiment results
better, a 2x 2 cm rectangle with the target position as the center
is drawn. For each force field, we randomly select 100 positions
as starting point to validate the motion performance of the
system.

(1) Movement Accuracy. The most attractive feature of the
constraint force field is that the musculoskeletal system can
reach the desired position with high precision using constant
activations, so that the reliance on sensors in control procedure
can be released. In this work, this property is well retained
because the optimized activation keep constant during the whole
control procedure.

In the case of low structural accuracy (millimeter level), the
constraint force field formed by optimizing the constant muscle

EVALUATION INDEX OF NOISE ROBUSTNESS

Noise Rati Min PE  Max PE  Mean PE  Std PE
Amplitude aho (mm) (mm) (mm) (mm)
¢=0.1 10% 0.005 0.091 0.037 0.028
¢=0.2 20% 0.021 0.155 0.067 0.042
¢=0.3 30% 0.016 0.203 0.099 0.061

activations is depicted in Figure 3(al). We define the position
error between the target point and the end-effector position
of the robot at the end of the movement as Positioning Error
(PE), which is adopted to evaluate the movement accuracy. The
standard deviations (Std) of PE are recorded. The optimization
and experiment results are listed in Table I and Table II,
respectively.

Compared with the results from previous work [12] in
Figure 3(al), the equilibrium center of the constraint force
field coincides with the target position again via optimizing
the constant activations, so that the musculoskeletal system is
able to reach the target point with high precision. As shown
in Figure 3(a2)-(a3), 10 groups of trajectories starting from
randomly selected positions in different constraint force field
are illustrated. These results represent that optimizing activation
can compensate the lack of precision in structure adjustment,
keeping the characteristics of constraint force field in helping
robotic system to achieve high precision movement.

(2) Noise Robustness. In order to compensate for the
problem caused by the lack of precision in structure adjustment,
the constraint force field is constructed by optimizing the
constant muscle activation in this paper. So, when the optimized
muscle activation signal is influenced by a random noise,
whether the system can maintain robustness and accurate
motion in the constraint field becomes a key factor that needs
to be taken into consideration.In this part, we will verify the
influence of control signal noise on the constraint force field
through experiments.

We use the constraint force field whose equilibrium center
is p, = (—25,9) as example to illustrate the experimental
results. During the movement tasks that starting from the
same position, random noises obeying uniform distribution
are added to activation of each muscle respectively, which can
be formulated as follows [12]:

abp(t) = aby, + ¢ U(=1,1) (11)

where a’ ,(t) represents the activation of muscle i at time step

opt



(a) Movement Accuracy
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Fig. 3. The experiment results to demonstrate the effectiveness of the proposed
Generalization.

t, and al,,, € Aoy is the optimal activation of muscle i. ¢ is
the maximum amplitude of the noise. For each noise amplitude,
100 motion experiments are conducted. The statistic results is
provided in Table III and the movement trajectory is illustrated
in Figure 3(b1)-(b4), whose ¢ = 0,0.1,0.2,0.3 respectively.

According to the experimental results, the constraint force
field becomes more sensitive to the disturbance of the activation
compared with the results in [12]. When the amplitude of noise
to the optimal constant activations increases, the movement
trajectory of the system becomes unsmooth, but the motion
trend is maintained and the mean value of PE is increasing
slightly. Therefore, the constraint force field is robust to the
noise disturbance of the control signal to some extent.

(3) Generalization. The construction of a constraint force
field only by optimizing the muscle arrangement may result
in additional time consumption for the actual control of the
hardware system. In musculoskeletal model, each muscle
actuator has two attachment point on the skeleton, some
complex situation may contains much more attachment point
in one muscle in order to provide force for multiple joint [18],
[22]. Therefore, the dimension of the optimization variables
are often more than twice the number of muscle actuators.

algorithm. (al)-(a4) Movement accuracy. (bl)-(b4) Noise robustness. (c1)-(c4)

In addition, the delay caused by the adjustment of muscle
arrangement structure makes it difficult for the system to ensure
rapid response.

In this paper, by optimizing the constant muscle activations,
we can construct a new constraint force field in a certain
range of the previous target position, with the optimal structure
keep fixed. As shown in Figure 3(c1)-(c4), under the condition
that the optimal structure S, of target position (—25,9) is
kept fixed, when a new movement task with target position
at (—23.5,7.5), (—24,10), (—25.5,8.5) or (—26,10), we can
construct the constraint force field whose equilibrium point is
the new target position by optimizing the constant activation. 10
groups of trajectories are displayed and the reaching accuracy
is 0.0067 £ 0.0022mm.

The experimental results demonstrate that when the move-
ment target is modified to a neighborhood point of the original
target position, we can construct a constraint force field at
the new target by optimizing the constant muscle activation
without changing the optimal structure again, so that the
musculoskeletal system can move to the new target accurately.
This feature simplifies the steps of hardware adjustment,
which is of great significance to the online construction of



constraint force field and is beneficial for effectively completing
continuous motion of robot system.

However, we also found that there are some limitations
of this method. Only in a certain range around the original
target position can the constraint force field be constructed by
optimizing the activation signal. For a new position that far
from the original target position, it is still necessary to optimize
the structure to form the constraint force field first, and it is
difficult to obtain the constraint force field by optimizing the
activation signal directly. The reason for this phenomenon
may be related to the influence of muscle fiber length on
system dynamics and the limited range of muscle activation.
In the future research work, we will carry out more in-depth
exploration on this issue.

V. CONCLUSION

Based on the equilibrium point hypothesis proposed in
neuroscience and the concept of constraint force field proposed
in previous research [12], this paper mainly focuses on how
to construct a constraint force field when the precision of
the mechanical structure is insufficient. We propose a co-
optimization algorithm of muscle arrangement and activation.
This algorithm will optimize the constant muscle activation to
make the equilibrium center of the constraint force field coincid-
ing with the target position again, so that the musculoskeletal
system can move to the target position with high precision.
Experiments results have demonstrated the effectiveness of the
proposed algorithm in movement accuracy, noise robustness
and generalization. In the future, we will further explore the
online construction method of constraint force field, so that it
can be helpful for applications of hardware system.
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