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ABSTRACT
Visual Question Answering (VQA) involves complex rela-
tions of two modalities, including the relations between words
and between image regions. Thus, encoding these relations is
important to accurate VQA. In this paper, we propose two
modules to encode the two types of relations respectively.
The language relation encoding module is proposed to encode
multi-scale relations between words via a novel masked self-
attention. The visual relation encoding module is proposed
to encode the relations between image regions. It computes
the response at a position as a weighted sum of the features
at other positions in the feature maps. Extensive experiments
demonstrate the effectiveness of each modules. Our model
achieves state-of-the-art performance on the VQA 1.0 dataset.

Index Terms— Visual question answering, Relations, At-
tention

1. INTRODUCTION

Recently, Visual Question Answering (VQA) has gained in-
creasing attention as an interdisciplinary subject across com-
puter vision and natural language processing. It aims at an-
swering a natural language question about a given image.

In a question, each word correlates with some other
words, and the same word may convey different meaning
in different context. To understand the textual content of the
question, it is necessary to encode the dependency relation-
ships between words. Some earlier works [1, 2] used word
embedding to represent the question, which do not consider
the relations between words. These methods achieved low
accuracy on the VQA dataset. Currently, recurrent neural net-
works (RNN) [3, 4] are commonly used to encode long-range
relations, but is hard to parallelize and not time-efficient due
to the sequential nature of recurrent models. Very recently,
some works [5, 6] have introduced self-attention mechanism
instead of RNN for relation encoding, achieving state-of-
the-art performance on several NLP tasks. In contrast to
RNN, self-attention mechanism has more flexibility in mod-
eling long-range relations, and its computation can be easily
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Fig. 1. (a) Visual relation encoding. It encodes the relations
between image regions. (b) Language relation encoding. It
encodes multi-scale relations between words.

and significantly accelerated by existing parallel computing
schemes. In [5, 6], the proposed methods take into account
the relations between all words (we call global relation), but
neglect the local relation. We think that local relation may be
more suitable in VQA, since a few key words are enough to
obtain the correct answer.

In a typical image encoding process, convolutional neu-
ral networks (CNN) is employed, and then the grid features
with a fixed splitting pattern on feature maps are extracted in-
dividually, while the relations between image regions are not
considered. Usually, many VQA questions involve multiple
objects in an image, and accurate answering such questions
not only needs to recognize the objects, but also needs to cap-
ture the relations between them. For the example shown in
Fig.1, the question is “where is the girl looking”. The model
first needs to recognize the girl and food on plate, and then
correlates the two objects. Besides, in the case when some
image regions contain different object parts, the local view
may lead to incorrect recognition, or produce ambiguity due
to similar appearance. Thus, the model needs some correlated
cues from other parts of the object in adjacent image regions
or other objects belonging to the same category in distant im-
age regions, to enrich semantic information and clarify local
confusion. Thus, encoding relations between image regions is
important for image understanding and further beneficial for
accurate question answering.

Motivated by the above observations, we propose two
modules to encode language and visual relations, respec-
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Fig. 2. Overview of the proposed VQA model. We highlight
our main contributions in green.
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Fig. 3. Masked self-attention. sij is computed by Eq. 3.
The mask is defined in Eq. 2. On the bottom right shows an
example of the mask with N = 7 and scale=3.

tively. To encode the relations between words, we propose
a language relation encoding module (see the black dashed
box in Fig.2). The module has multiple branches, each of
which is composed of a masked self-attention, a fusion gate
and an attentive pooling. The masked self-attention is the
core component, which introduces a mask with a given scale
to restrict the relation range of each word. Different branches
use the masks with different scales to capture multi-scale re-
lations including global and local relations, which gets rid of
the limitation of the methods in [5, 6]. To encode the relations
between image regions, we propose a visual relation encoding
module derived from self-attention mechanism. The module
updates the features at each position using a weighted sum of
the most related k feature vectors in the image feature maps.
In other words, for each image region, the module models the
relations between it and k related regions. In fact, the above
two methods are connected and all use attention mechanisms
to perform relation encoding.

Our main contributions are as follows: (1) We propose
two novel modules to encode relations between words and
between image regions, respectively. This is the first time to
explore the relations between words and between image re-
gions in a unified framework for the VQA task. (2) Extensive
experiments show the effectiveness of the proposed relation

encoding modules. Our approach achieves new state-of-the-
art results on the VQA 1.0 dataset.

2. PROPOSED APPROACH

Our proposed VQA model is illustrated in Fig. 2. We will
elaborate each module separately below.

2.1. Language Relation Encoding

The proposed language relation encoding module has multi-
ple parallel branches, each of which consists of one masked
self-attention, one fusion gate and one attentive pooling (see
Fig.2). The outputs of all branches are concatenated as the
final question representation. For clarity, we present the for-
ward process of one branch, and ignore the subscript (i) that
denotes the i-th branch.

The masked self-attention is illustrated in Fig. 3. A ques-
tion consisting of N words is first converted into a sequence
of GloVe [7] vectors w = {wi}Ni=1 ∈ Rdw×N . To recover
temporal order information that is lost in self-attention mech-
anism, we encode position information for each word. Specif-
ically, we concatenate the embedding of each word with its
position, which is denoted as:

wp = {wp
i}Ni=1 = {[wi, i]}Ni=1 (1)

where wp ∈ R(dw+1)×N is the word embeddings with posi-
tion information encoded.

We take the i-th word as the query, and describe how to en-
code language relations. First, we calculate similarity scores
between the i-th word and all words by Eq. 3, denoted as
si = {sij}Nj=1 ∈ RN . We consider the relations between the
query and a few adjacent words (i.e. local relation). Thus,
a mask ms

i = {ms
ij}Nj=1 ∈ RN , where the superscript s de-

notes the scale, is introduced to restrict the relation range. The
mask is defined as

ms
ij =

{
0, i− s−1

2 6 j 6 i+ s−1
2

−∞, otherwise
(2)

ms
i is added to the similarity scores si, and then a softmax

function transforms the scores to a probability distribution
αi = {αij}Nj=1 ∈ RN (Eq. 5). Due to the property of
the softmax operation, the value 0 in the mask denotes re-
served positions and −∞ stands for unconsidered positions.
Finally, the relation-encoded representation of the i-th word
is obtained by Eq. 6.

sij =Wp ReLU(Upw
p
i + Vpw

p
j) (3)

si = {sij}Nj=1 (4)

αi = softmax(si +m
s
i ) (5)

wc
i =

∑N
j=1αijwj (6)

whereWp ∈ R1× dw
2 ,Up ∈ R

dw
2 ×(dw+1) and Vp ∈ R

dw
2 ×(dw+1)

are learned weight matrices. wc = {wc
i}Ni=1 ∈ Rdw×N is

the output of masked self-attention.
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Then, we use a fusion gate to merge the input and the
output of the masked self-attention dynamically. The fused
representations of all words are computed by:

g = sigmoid(Wfw
c + Ufw) (7)

wf = g �wc + (1− g)�w (8)

where Wf ∈ Rdw×dw , Uf ∈ Rdw×dw are learned weights,
� represents element-wise product. In the end, we use an
attentive pooling to compress the sequence wf as a vector:

h =Ws ReLU(Usw
f ) (9)

a = softmax(h) (10)

ws =
∑N

i=1aiw
f
i (11)

where Ws ∈ R1× dw
2 and Us ∈ R

dw
2 ×dw are learned weights,

a = {a1, ..., aN} ∈ RN is attention weights, ws ∈ Rdw

is the output of one branch. We use the concatenation of the
outputs of all branches as the final question representation q ∈
Rndw (n is the number of branches).

2.2. Visual Relation Encoding

The visual relation encoding module computes the response
at a position as a weighted sum of the most related k feature
vectors in the input feature maps. Given the visual features
v = {v1, ...,vK} ∈ Rdv×K , for the feature vector vi that
corresponds to the i-th position in the feature maps, we first
compute the relevance scores of vi and the feature vectors at
all positions, ri = {ri1, ..., riK}, where rij is the relevance
score of vi and vj , and is calculated by

rij = (Wrvi)
>(Urvj) (12)

where Wr, Ur ∈ R
dv
8 ×dv are learned weight matrices.

We select the most relevant k feature vectors from v for
relation encoding based on the relevance scores, obtaining
vk = {vl1 , ...,vlk} ∈ Rdv×k. l = {l1, ..., lk} denotes the
indexes of the top k entries in ri. We also obtain the corre-
sponding k relevance scores rki = {ril1 , ..., rilk} ∈ Rk. The
final response at the i-th position ṽi is calculated as follows.

We first normalize rki using softmax (Eq.13) and linearly
transform vk using the weight matric Wv , then perform a
weighted sum of the transformed feature vectors based on the
normalized relevance scores (Eq.14). Finally, we multiply the
response oi by a scale parameter and add back the original
feature vector (Eq.15). Formally,

αk
i = softmax(rki ) (13)

oi =
∑k

j=1α
k
ilj (Wvvlj ) (14)

ṽi = λoi + vi (15)

where ṽi is the final response at the i-th position, Wv ∈
Rdv×dv is learned weight matrix, λ is initialized as 0.

The visual relation encoding module is able to encode the
dependency relationships between image regions, thus pro-
ducing more expressive image representation. Its output is
denoted as ṽ = {ṽ1, ..., ṽK} ∈ Rdv×K .

2.3. Attention Mechanisms & Answer Prediction

Given q and ṽ, we perform visual attention mechanism to
obtain aggregated representation of the image:

sIi =W Ifa([ṽi ; q]) (16)

αI = softmax(sI) (17)

v̂ =
∑K

i=1α
I
i ṽi (18)

where fa(·) denotes the gated tanh function [8] with param-
eters a. It is used to project the concatenated vector to 512-
dimensional space. W I ∈ R1×512 is learnable weights, sI

is the scores of image regions, αI is attention weights, and
v̂ ∈ Rdv is the attended image representation.

We then project v̂ and q to the same dimensional space
(512 dimensions) using two gated tanh functions [8] with dif-
ferent parameters, respectively. The projected features are
fused via element-wise product. Similar to [9, 10, 11], we
treat VQA as a classification problem. The fused multi-modal
features are fed into the classifier composed of 2-layer MLP
with ReLU non-linearity function between the layers and a
final softmax function, outputing a class probability vector.
Cross-entropy loss is adopted as the objective function.

3. EXPERIMENTS

3.1. Setup

We use the VQA 1.0 [2] dataset for our experiments. VQA
1.0 is built from 204,721 MSCOCO [12] images with human
annotated questions and answers. The dataset is divided into
three splits: train (248,349 questions), val (121,512 ques-
tions) and test (244,302 questions). Following the previous
works [9, 13, 14], we employ ResNet-152 [15] to produce im-
age features of size 14×14×2048 (i.e. dv = 2048,K = 196),
which are used for all experiments. When comparing with
state-of-the-art methods, we also use bottom-up attention [8]
features with size 36 × 2048 for fair comparison. The word
embedding is of 300 dimension. As in [9], we choose the
most frequent 3,000 answers in the trainval sets as the candi-
date answers. The model is trained using the AMSGrad [16]
optimizer with an initial learning rate of 7×10−4. We use the
evaluation protocol of [2] in all the experiments.

3.2. Ablation Studies

We first investigate the influence of the number of branches
and the scale (i.e. the relation range of each word) in the
language relation encoding. The results are shown in Table
1. The baseline model has no the language relation encod-
ing module, and averages the embeddings of all words as
the question representation. We can see that the language
relation encoding module largely improves the performance
over the baseline. The accuracy improves as the number of
branches increases. This is because more branches capture
richer multi-scale relations, thus improving the understanding
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# Branch Baseline 1 1 1 1 2 3
(scale=3) (scale=7) (scale=13) (scale=all) (scale=7,13) (scale=7,13,all)

Accuracy 61.0 62.2 62.3 62.4 62.2 62.7 62.9

Table 1. The comparison of different number of branches and scales in language relation encoding module on VQA 1.0 val set.

Fig. 4. Comparison of different values of k in visual relation
encoding on the VQA 1.0 val set.

Model Accuracy
Our model 62.9
Our model w/o position information 62.6
Our model w/o masked self-attention 61.8
Our model w/o fusion gate 62.5
Our model w/o attentive pooling 62.5
Our model w/o visual relation encoding 62.0

Table 2. Ablation studies on VQA 1.0 val set. The table is
divided into three parts. The first part shows the result of our
full model. The second and last part are the ablation studies
of language relation encoding and visual relation encoding,
respectively.

of question. When using one branch, we can see that consid-
ering global relations (i.e. scale=all) doesn’t obtain the op-
timal result, which indicates that local relations play a more
important role than global relations in question encoding.

We then investigate the influence of the values of k in
visual relation encoding. As shown in Fig.4, starting from
k = 20, the performance improves as the value of k increases,
then reaches the peak at k = 100, and finally drops as the
value of k increases. This phenomenon can be explained that
when using a small k, some related image regions may be left
out in relation encoding; when using a large k, irrelevant re-
gions may be considered in relation encoding, the both cases
will result in inaccurate relation modeling.

Finally, we conduct ablation studies to validate the effec-
tiveness of each component. The results are shown in Table 2.
Encoding position information (Eq.1) for each word improves
the performance by 0.3%. Masked self-attention produces the
largest performance gain (1.1%), which shows the importance
of encoding the relations between words in VQA. Fusion gate
results in 0.4% improvement. The attentive pooling in the end
of each branch is used to compress the sequence as a vector.

Model Test-dev Test-std
All Other No. Y/N All

QGHC [17] 65.9 57.1 38.1 83.5 65.9
VKMN [18] 66.0 57.0 37.9 83.7 66.1
MFH [19] 66.8 57.4 39.7 85.0 66.9
DCN [20] 66.9 57.3 42.4 84.6 67.0

DA-NTN [21] 67.9 58.6 41.9 85.8 68.1
CoR [22] 68.4 59.1 44.1 85.7 68.5

Ours 67.2 57.5 40.6 85.6 67.4
Ours + BU 69.1 59.5 44.1 86.8 69.3

Table 3. Comparison with the state-of-the-arts on the VQA
1.0. All the reported results are obtained with a single model.
BU: using bottom-up attention [8] features.

We remove the component and use average pooling to obtain
a vector. The result shows that attentive pooling performs bet-
ter than average pooling, as average pooling attaches equal
importance to each word, while attentive pooling can focus
on key words. Visual relation encoding achieves 0.9% accu-
racy improvement, which shows the importance of encoding
the relations between image regions in VQA.

3.3. Comparison with State-of-the-arts

Table 3 shows the performance of our algorithm and state-
of-the-art methods on VQA 1.0. With bottom-up attention
[8] features, our approach outperforms other state-of-the-art
methods in all question categories and overall accuracy. Com-
pared with the most recent state-of-the-art model CoR [22],
our model achieves new state-of-the-art results of 69.1% and
69.3% on test-dev and test-std sets, respectively.

4. CONCLUSIONS

In this paper, we propose two novel modules to encode lan-
guage and visual relations, respectively. The language rela-
tion encoding module captures multi-scale relations between
words via masked self-attention mechanisms. The visual re-
lation encoding module encodes the relations between image
regions. Extensive experiments validate the importance of
relation encoding. Our model achieves new state-of-the-art
performance on the VQA 1.0 dataset. The proposed relations
encoding modules are applicable to a wide range of tasks
involving multi-modal data.
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