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a b s t r a c t 

Combinatorial optimization (CO) has been a hot research topic because of its theoretic and practical im- 

portance. As a classic CO problem, deep hashing aims to find an optimal code for each data from fi- 

nite discrete possibilities, while the discrete nature brings a big challenge to the optimization process. 

Previous methods usually mitigate this challenge by binary approximation, substituting binary codes for 

real-values via activation functions or regularizations. However, such approximation leads to uncertainty 

between real-values and binary ones, degrading retrieval performance. In this paper, we propose a novel 

Deep Momentum Uncertainty Hashing (DMUH). It explicitly estimates the uncertainty during training 

and leverages the uncertainty information to guide the approximation process. Specifically, we model bit- 

level uncertainty via measuring the discrepancy between the output of a hashing network and that of a 

momentum-updated network. The discrepancy of each bit indicates the uncertainty of the hashing net- 

work to the approximate output of that bit. Meanwhile, the mean discrepancy of all bits in a hashing 

code can be regarded as image-level uncertainty . It embodies the uncertainty of the hashing network to 

the corresponding input image. The hashing bit and image with higher uncertainty are paid more atten- 

tion during optimization. To the best of our knowledge, this is the first work to study the uncertainty 

in hashing bits. Extensive experiments are conducted on four datasets to verify the superiority of our 

method, including CIFAR-10, NUS-WIDE, MS-COCO, and a million-scale dataset Clothing1M. Our method 

achieves the best performance on all of the datasets and surpasses existing state-of-the-art methods by 

a large margin. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Combinatorial optimization (CO) has a great impact on business 

nd society, ranging from locomotive dispatching to aerospace in- 

ustry [1,2] . Due to the limitation in tractability and scalability of 

raditional solvers, many researchers recently turn their attention 

o machine learning (ML) for better solutions [3,4] . Deep hashing 

s a typical task that combines CO and ML, aiming to find an op- 

imal code for each data from finite discrete possibilities via deep 

eural networks, so that similar data have shorter Hamming dis- 

ance and dissimilar data have longer Hamming distance [5,6] . 
∗ Corresponding author at: National Laboratory of Pattern Recognition, CASIA, 
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E-mail addresses: chaoyou.fu@nlpr.ia.ac.cn (C. Fu), 

angguoli1990@mail.tsinghua.edu.cn (G. Wang), alfredxiangwu@gmail.com (X. 

u), qian01.zhang@horizon.ai (Q. Zhang), rhe@nlpr.ia.ac.cn (R. He). 
1 This work was done during an internship at Horizon Robotics. 

t

s

i

a

t

i

w

ttps://doi.org/10.1016/j.patcog.2021.108264 

031-3203/© 2021 Elsevier Ltd. All rights reserved. 
With the explosive growth of data in practical applications, 

ashing has received sustained attention due to its advantages 

n low storage cost and fast computation speed [7,8] . Traditional 

ashing methods are based on the elaborately designed hand- 

rafted features [9–11] . The binary codes are learned from data 

istributions [12] or obtained by random projection [13] . In re- 

ent years, as the thriving of deep neural networks, deep hash- 

ng that combines hashing with deep neural networks further im- 

roves retrieval performance [14,15] . Generally, the last layer of 

 neural network is leveraged to output binary hashing codes 

16] . Early works adopt a two-stage framework, where the fea- 

ure learning of the neural network and the hashing coding are 

eparate. Subsequent works, e.g. deep pairwise-supervised hash- 

ng (DPSH) [17] , perform feature learning and hashing coding in 

n end-to-end framework, which has shown better performance 

han the two-stage one. For all of the deep hashing methods, an 

ntractable problem is that the binary hashing codes are discrete, 

hich impedes the back-propagation of gradient in the neural net- 
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Fig. 1. Top : the approximate real-values of two bits at different training epochs. It is obvious that bit-1 changes more sharply than bit-2, which denotes that the hashing 

network has higher bit-level uncertainty to the former. Bottom : the mean bit-level uncertainty of all bits in a hashing code is regarded as image-level uncertainty , whose 

value is shown in the upper left corner of each image. The images with low uncertainty ( < 0.1) usually have clear objects and simple backgrounds (left), while the images 

with high uncertainty ( > 0.7) contain nebulous objects and complex scenarios (right). 
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main contributions of this work are as follows: 
ork [18,19] . The discrete optimization of the binary hashing codes 

emains a great challenge. 

Previous methods usually adopt binary approximation to tackle 

he above challenge. That is, the binary codes are replaced by con- 

inuous real-values, which are enforced to be binary via non-linear 

ctivation functions [18] . Nevertheless, the output of the activation 

unction, such as Sigmoid or Tanh , is easy to be saturated. This in-

vitably slows down or even limits the training process [20] . In or- 

er to avoid the saturating problem, some recent methods desert 

he non-linear activation function and impose a regularization on 

he output to enforce the real-value of each bit to be close to a bi-

ary one (+1 or −1) [17] . However, these methods equally approx- 

mate all bits, while ignore their differences. As shown in Fig. 1 

Top), we discover that the approximate output of each bit has a 

nique change trend. It is observed that the output of bit-1 has 

ore drastic changes than the output of bit-2 during training. That 

s to say, the hashing network has higher uncertainty to the ap- 

roximate output of bit-1 than that of bit-2. We call such uncer- 

ainty for each bit as bit-level uncertainty . Furthermore, if all bits 

f a hashing code generally have high uncertainty, it indicates that 

he hashing network has high uncertainty to the corresponding in- 

ut image. We define the mean bit-level uncertainty of all bits in 

 hashing code as the image-level uncertainty . As can be seen from 

ig. 1 (Bottom), the images with high image-level uncertainty usu- 

lly contain more complex scenarios, belonging to hard examples 

21] . 
2 
In order to explicitly estimate the bit-level uncertainty, i.e. the 

hange trends of the hashing bits, it is required to compare cur- 

ent output values with previous ones. A straightforward strategy 

s to store the outputs of all training images in each optimization 

tep and then compare the current outputs with them. Unfortu- 

ately, this strategy is unfeasible because of the requirement of 

uge storage memory when training on large-scale datasets. Re- 

ently, in order to tackle the memory problem in unsupervised 

nd semi-supervised learning, some works [22,23] develop an ex- 

ra momentum-updated network that averages model weights dur- 

ng training. The momentum-updated network is an ensemble of 

revious networks in different optimization steps, outputting en- 

emble results [23] . Inspired by this, in our method, a momentum- 

pdated network is introduced to obtain previous outputs approxi- 

ately. We further compare the outputs between the hashing net- 

ork and the momentum-updated network, and regard the dis- 

repancy as the bit-level uncertainty. According to the magnitude 

f the uncertainty, we set different regularization weights for dif- 

erent hashing bits. Besides, by averaging the uncertainty of all bits 

n a hashing code, we obtain the image-level uncertainty of the 

orresponding input image. The image with higher uncertainty is 

aid more attention during the optimization of Hamming distance. 

he effectiveness of our method is demonstrated on four challeng- 

ng datasets, including CIFAR-10 [24] , NUS-WIDE [25] , MS-COCO 

26] , and a million-scale dataset Clothing1M [27] . In summary, the 
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• We are the first to explore the uncertainty of hashing bits dur- 

ing approximate optimization. Depending on the magnitude of 

uncertainty, the corresponding hashing bits and input images 

receive different attention. 
• We propose to explicitly model bit-level and image-level uncer- 

tainty, resorting to the output discrepancy between the hashing 

network and the momentum-updated network. 
• Extensive experiments on the CIFAR-10, the NUS-WIDE, the 

MS-COCO, and the large-scale Clothing1M datasets demonstrate 

that our method significantly improves retrieval performance 

when compared with state-of-the-art methods. 

. Related work 

.1. Learning of combinatorial optimization 

A growing body of research is dedicated to integrating CO and 

L, since the latter can make effective decisions for the former 

ith low computational costs [4] . Vinyals et al. [3] develops a 

ointer Net that is equipped with neural attention, which has the 

bility to find an approximate solution for the Travelling Sales- 

an Problem (TSP). Huang et al. [28] proposes a novel FastColor- 

et that adopts deep reinforcement learning to color large graphs. 

ang et al. [4 , 29 , 30] focus on leveraging graph embedding net-

orks for robust graph matching [31,32] . Zaheer et al. [33] devel- 

ps a DeepSets architecture for node sets and also provides corre- 

ponding permutation invariant functions. With respect to resource 

anagement in wireless networks, [34] presents a LORM frame- 

ork that uses imitation learning to find the best pruning policy. 

n contrast to the foregoing methods, this paper studies deep hash- 

ng that aims to learn the optimal binary code for each data via 

eep neural networks. Meanwhile, this paper also explores the un- 

ertainty in the optimization process, which is expected to provide 

ew insights for other combinatorial problems. 

.2. Hashing retrieval 

Hashing aims to project data from high-dimensional pixel space 

nto the low-dimensional binary Hamming space [35,36] . It has 

rawn substantial attention of researchers due to the low time 

nd space complexity. Current hashing methods can be grouped 

nto two categories, including data-independent hashing methods 

nd data-dependent hashing methods. For the data-independent 

ashing methods, the binary hashing codes are generated by ran- 

om projection or manually constructed without using any train- 

ng data. Locality sensitive hashing (LSH) [13,37] is a representa- 

ive method. Since the data-independent hashing methods usually 

equire long code length to guarantee retrieval performance, more 

fficient data-dependent hashing methods that learn hashing codes 

rom training data have gained more attention in recent years [38] . 

The data-dependent hashing methods can be further divided 

nto two types, i.e. unsupervised methods and supervised methods, 

ccording to whether using the similarity labels [39–41] . Iterative 

uantization hashing (ITQ) [12] is a representative unsupervised 

ashing method, which retrieves neighbors by exploring the metric 

tructure in the data. Although unsupervised learning avoids the 

nnotation demand of the training data, exploiting available su- 

ervisory information usually implies better performance. Column- 

ampling based discrete supervised hashing (COSDISH) [42] is a 

epresentative supervised hashing method based on hand-crafted 

eatures, which achieves impressive results. 

Benefiting from the powerful representation ability of deep 

eural networks, hashing has made further progress in the last 

ew years [43] . Sun et al. [44] is the first one to introduce cross-

odal hashing with hierarchical labels to settle real-world prob- 

ems and also contributes a large-scale dataset. Li et al. [45] , Yan 
3 
t al. [46] propose to leverage full label information to assist in 

he learning of multimodal hashing, and present a discrete opti- 

ization algorithm to learn binary codes. Deng et al. [47] develops 

 generative adversarial framework for unsupervised hashing and 

ntroduces a semantic similarity matrix to guide hashing coding. 

eng et al. [48] digs similarity correlations between cross-modal 

ata via a triplet sampling strategy, and elaborately designs an 

bjective function to learn discriminative hashing codes. Li et al. 

49] builds two subnetworks to learn potential semantic correla- 

ions in cross-modal data and hashing codes, respectively. Li et al. 

50] disentangles cross-modal instances into modality-related and 

odality-unrelated components, and uses the former to boost the 

eliability of the hashing network. Li et al. [51] jointly studies the 

eakly-supervised semantic information and data structures for ef- 

ective hashing retrieval. Jin et al. [52] performs image-text and 

ideo-text retrieval via 2-D and 3-D CNNs respectively, in which 

oth inter-modality and intra-modality information are considered. 

o understand massive social images, [53] introduces a Deep Col- 

aborative Embedding (DCE) network to learn common representa- 

ions of images and tags. 

.3. Uncertainty in deep learning 

Here, uncertainty means the uncertainty of the deep neural 

etwork to the current outputs. For traditional deep learning, the 

etwork only outputs a deterministic result. However, in many 

cenarios, such as autonomous driving, we would like to simul- 

aneously obtain the uncertainty of the network to that output. 

his will facilitate reliability assessment and risk-based decision 

54,55] . Therefore, uncertainty has received much attention in re- 

ent years [56–58] . Gal and Ghahramani [59] develops an approx- 

mate Bayesian inference framework to represent model uncer- 

ainty, which denotes the uncertainty existed in model parameters. 

endall and Gal [60] proposes to estimate model uncertainty and 

ata uncertainty (existed in the training data) in a unified frame- 

ork. Wu et al. [61] utilizes uncertainty to learn a confidence map 

hat facilitates 3D deformable modeling. Chang et al. [54] explores 

he uncertainty in face images with different qualities, significantly 

oosting recognition performance. 

In summary, there are three common uncertainty estima- 

ion strategies. The first one estimates uncertainty based on the 

hanges of the outputs of the network [59] . For example, for the 

ame input data, there will be multiple outputs by performing 

ultiple different dropouts on the network during the inference 

hase. In this case, the variance of these outputs reflects the un- 

ertainty. The second one integrates uncertainty into the objec- 

ive function and directly outputs the uncertainty via the network 

60,61] . The third one estimates uncertainty at the feature level 

54] . For example, the feature is represented as a Gaussian distri- 

ution that is composed of learnable mean and variance, and the 

ariance indicates the uncertainty. It is obvious that our method 

elongs to the first category. 

. Preliminaries 

.1. Notation 

The notations employed in our method are listed in Table 1 . 

oncretely, uppercase letters such as B are used to denote matri- 

es, and B i j is used to denote the (i, j) th element of B . B � indicates

he transpose of the matrix B . Lowercase letters like b denote vec- 

ors. || b|| 2 is the Euclidean norm of the vector b. a � b denotes the

roduct of vectors a and b. sign( ·) means the element-wise sign 

unction, which returns +1 and −1 when the element is positive 

nd negative, respectively. 
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Table 1 

Meaning of the notations employed in our 

method. 

Notation Meaning 

B matrix 

B i j (i, j) th element of matrix B 

B � transpose of matrix B 

b vector 

|| b|| 2 Euclidean norm of vector b

a � b product of vectors a and b

sign( ·) element-wise sign function 
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Fig. 2. Framework of our method that consists of a hashing network φh (·, θh ) and 

a momentum-updated network φm (·, θm ) . The weights θh are updated via back- 

propagation of gradient, while the weights θm are updated by averaging θh . Given 

an input image x i , besides outputting the approximate binary value h i = φh (x i , θh ) 

as previous works, our method also outputs the uncertainty u i . It derives from the 

discrepancy between h i and m i = φm (x i , θm ) . 
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.2. Problem definition 

Suppose there are a total of n images X = { x i } n i =1 
, where x i 

eans the i th image. For deep supervised hashing, the pairwise 

imilarity between two images is also available. The similarity ma- 

rix is denoted as S with S i j ∈ { 0 , 1 } , where S i j = 1 means x i and x j 
re similar and S i j = 0 means x i and x j are dissimilar. 

The purpose of deep supervised hashing is to learn a func- 

ion that maps the data from high-dimensional pixel space to low- 

imensional binary Hamming space. That is, for each image x i , we 

an obtain a binary hashing code b i ∈ {−1 , +1 } c , where c means

hat the hashing code has c bits. Meanwhile, the semantic similar- 

ty should be consistent before and after mapping. For example, if 

 i j = 1 , there should be as short Hamming distance as possible be-

ween b i and b j . Otherwise if S i j = 0 , b i and b j should have long

amming distance. Hamming distance between two binary codes 

s defined as: 

is H (b i , b j ) = 

1 

2 

(c − b � i b j ) . (1) 

s can be seen from the above definition, we need to find the op- 

imal binary code for each data from all discrete 2 c possibilities, 

hich is a classic combinatorial optimization problem. 

. Method 

In this section, we present the proposed DMUH in details, 

hich integrates both bit-level and image-level uncertainty into 

he learning process of hashing codes. In the following parts of 

his section, we first introduce the overall framework of DMUH. 

hen, we revisit the traditional hashing learning algorithm and 

oint out its potential problem. Subsequently, a novel uncertainty 

stimation approach is proposed. On this basis, we finally derive 

he uncertainty-aware hashing learning method and analyze its ad- 

antages over previous methods. 

.1. Overall framework 

As depicted in Fig. 2 , the framework of DMUH contains two 

etworks: a hashing network φh (·, θh ) and a momentum-updated 

etwork φm 

(·, θm 

) , where θh and θm 

are the weights of the two 

etworks, respectively. Moreover, the two networks have a same 

rchitecture: a backbone for feature learning as well as a fully- 

onnected layer for approximate binary coding. The difference lies 

n that the weights θh are updated via back-propagation of gradi- 

nt, while the weights θm 

are updated by averaging θh . 

Given an input image x i , the two networks output approx- 

mate binary values h i = φh (x i , θh ) and m i = φm 

(x i , θm 

) , respec-

ively. Since φm 

(·, θm 

) can be seen as an ensemble of φh (·, θh ) [23] ,

e can approximatively calculate the change of h i over previous 

alues by comparing the discrepancy between h i and m i . As men- 

ioned in Section 1 , such change is regarded as the uncertainty of 

he hashing network to the current output value. For each bit, the 

arger the difference between h and m , the more uncertainty the 
i i 

4 
ashing network to that bit. By this means, we can get the bit-level 

ncertainty. For instance, as shown in Fig. 2 , it is obvious that the 

ashing network is more uncertain about the output of the third 

it. In addition, by averaging the uncertainty values of all bits in 

 hashing code, we can obtain the image-level uncertainty. It rep- 

esents the uncertainty of the hashing network to the correspond- 

ng input image. After obtaining the bit-level and the image-level 

ncertainty, we will set different attention for different bits and 

mages during training. The detailed optimization process is intro- 

uced in the following parts. 

.2. Hashing learning revisit 

Given the binary hashing codes B , the likelihood of the pairwise 

imilarity S is formulated as [17,62] : 

p(S i j | B ) = 

{
σ (�i j ) , s i j = 1 

1 − σ (�i j ) , s i j = 0 

(2) 

here �i j = 

1 
2 b 

� 
i 

b j and σ (�i j ) = 

1 

1+ e −�i j 
. Considering the negative 

og-likelihood of the pairwise similarity S, hashing codes b i and b j 
an be optimized by Li et al. [17] : 

 = − log p(S| B ) = −
∑ 

S i j 

(S i j �i j − log (1 + e �i j )) . (3) 

ombining with Eq. (1) , we can find that minimizing Eq. (3) will 

ake similar image pairs have shorter Hamming distance, and dis- 

imilar image pairs have longer Hamming distance. Given that the 

iscrete binary hashing codes are not differentiable, a usual solu- 

ion is to replace the discrete binary codes with continuous real- 

alues. Subsequently, a regularization term is imposed to enforce 

he real-values to be close to binary ones [17] : 

 = −
∑ 

S i j 

(S i j �i j − log (1 + e �i j )) + β
∑ 

i 

|| h i − b i || 2 2 , (4)

here h i = φh (x i , θh ) are continuous real-values, �i j = 

1 
2 h 

� 
i 

h j , b i =
ign (h i ) , and β is a hyper-parameter. 

Discussion Obviously, Eq. (4) can be used to learn hashing codes, 

here the first term optimizes the distance in Hamming space and 

he second term constrains the real-values to approximate binary 
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odes. However, Eq. (4) treats all hashing bits and input images 

qually, without considering their differences. As shown in Fig. 1 , 

he hashing network has different uncertainty to the hashing bits 

nd the input images. Therefore, we argue that each hashing bit 

nd each input image should be treated separately according to the 

agnitude of the uncertainty, rather than being treated equally. 

.3. Uncertainty estimation 

During the training process of the hashing network, the output 

eal-value of each hashing bit constantly changes to minimize the 

bjective function Eq. (4) . Intuitively, if the real-value of one bit 

hanges a lot during the optimization, it indicates that the hashing 

etwork has high uncertainty to that bit. In order to measure this 

hange, a straightforward approach is to store the output of each 

it in each optimization step, and then compare the current output 

ith the previous ones. However, it is unfeasible because of the 

equirement of huge storage memory when training on large-scale 

atasets. 

Inspired by the recently proposed momentum model in un- 

upervised and semi-supervised learning [22,23] , we introduce a 

omentum-updated network φm 

(·, θm 

) to help to estimate the un- 

ertainty. Different from the hashing network φh (·, θh ) that up- 

ates its weights θh via gradient back-propagation, φm 

(·, θm 

) up- 

ates θm 

by averaging θh : 

m 

= αθm 

+ (1 − α) θh , (5) 

here α ∈ [0 , 1) is a momentum coefficient hyper-parameter, 

hose value controls the smoothness of θm 

. A larger α will re- 

ult in smoother θm 

. Such an optimization manner can be seen 

s assembling the hashing networks in different optimization steps 

o the momentum-updated network [23] . Therefore, comparing the 

utput of the hashing network and that of the momentum-updated 

etwork, we can approximately obtain the change of each bit dur- 

ng training. We regard this change as the bit-level uncertainty. 

hat is, if a bit changes a lot, it means that the hashing network 

as high uncertainty to the current approximate value. Formally, 

he uncertainty is defined as: 

 i = | h i − m i | , (6) 

here | · | is an element-wise absolute value operation. u i is a vec- 

or and each element represents the bit-level uncertainty of the 

orresponding hashing bit. After getting the bit-level uncertainty, 

y counting the average uncertainty of all bits in a hashing code, 

e can further obtain the image-level uncertainty of the input im- 

ge corresponding to that hashing code: 

¯
 i = 

1 

c 

c ∑ 

k =1 

(u 

k 
i ) , (7) 

here the image-level uncertainty ū i is a single value instead of a 

ector. 

Discussion Fig. 1 (Top) presents the approximate real-values of 

wo bits at different training epochs. It is obvious that the two bits 

ave different change trends. After 40 epochs, bit-1 still changes 

harply, while bit-2 changes slightly. In addition, the calculated 

ncertainty values through Eq. (6) of the two bits are 0.073 and 

.005, respectively. We can see that the magnitude of the uncer- 

ainty is consistent with the change degree of the approximate 

eal-value. That is, bit-1 has larger uncertainty and correspondingly 

as more drastic value change. Therefore, it is reasonable to lever- 

ge the discrepancy between the output of the hashing network 

nd that of the momentum-updated network to represent the un- 

ertainty. Finally, Fig. 1 (Bottom) displays the images with differ- 

nt image-level uncertainty. We can find that the images with low 

ncertainty ( ̄u i < 0 . 1 ) usually have clear objects and single back- 

rounds, while the images with high uncertainty ( ̄u > 0 . 7 ) contain
i 

5 
ebulous objects and complex scenes. For instance, it is difficult to 

ecognize the frog from the first image in the bottom right corner. 

hese phenomena reveal the relationship between the image-level 

ncertainty and the input images. 

.4. Uncertainty-aware hashing learning 

After getting the bit-level uncertainty u i , we leverage it to guide 

he optimization of the regularization. Rather than treating each 

it equally as Eq. (4) , we set different weights for different bits 

ccording to the magnitude of the uncertainty, yielding a new op- 

imization objective: 

 = −
∑ 

S i j 

(S i j �i j − log (1 + e �i j )) + β
∑ 

i 

e u i || h i − b i || 2 2 , (8)

here e u i is multiplied as a weight on the regularization term. The 

ashing bit with higher uncertainty is given a larger weight during 

egularization. In addition, the image-level uncertainty allows us 

o set different weights for different input images. We apply larger 

eights to the images with higher uncertainty in the optimization 

f Hamming distance. Considering both the uncertainty ū i and ū j 
f images x i and x j , Eq. (8) is reformulated as: 

 = −
∑ 

S i j 

e ū i + ̄u j (S i j �i j − log (1 + e �i j )) + β
∑ 

i 

e u i || h i − b i || 2 2 . (9)

t is obvious that Eq. (9) separately treats different input images 

the first term) and hashing bits (the second term) under the guid- 

nce of the image-level uncertainty and the bit-level uncertainty, 

espectively. On this basis, we further involve the uncertainty into 

he optimization objective: 

 = −∑ 

S i j 
e ū i + ̄u j (S i j �i j − log (1 + e �i j )) 

+ β
∑ 

i e 
u i || h i − b i || 2 2 + γ

∑ 

i u i , 
(10) 

here γ is a trade-off parameter. The whole optimization process 

or the hashing network and the momentum-updated network is 

ummarized in Algorithm 1 . 

lgorithm 1 Optimization Algorithm. 

nput : 

raining set X , semantic similarity S 

utput : 

he weights of the hashing network θh and those of the 

omentum-updated network θm 

EPEAT 

• Randomly sample a batch of training data with pairwise simi- 

larity; 

• Compute the outputs of the hashing network and those of the 

momentum-updated network; 

• Compute bit-level uncertainty and image-level uncertainty ac- 

cording to Eq.~(6) and Eq.~(7), respectively; 

• Update θh according to Eq.~(10) with standard gradient back- 

propagation; 

• Update θm 

according to Eq.~(5); 

NTIL a fixed number of iterations 

Discussion What are the advantages of the uncertainty-aware 

ashing learning? To begin with, according to the observations in 

ig. 1 , hard examples can be discovered automatically based on the 

agnitude of the image-level uncertainty. Benefiting from this, the 

rst term of Eq. (10) can focus on the optimization of the hard ex- 

mples. The effectiveness of such a hard example based optimiza- 

ion has been fully proved in previous works [21] . Furthermore, the 

econd term of Eq. (10) assists in stabilizing the outputs of the bits 

hat change frequently, which may accelerate the convergence of 

he hashing network. Finally, the third term of Eq. (10) minimizes 



C. Fu, G. Wang, X. Wu et al. Pattern Recognition 122 (2022) 108264 

t

t

u

i

t

5

a

d

a

f

r

a

m

s

5

a

m

a

p

t

1

‘

r

q

c

u

o

w

‘

p

s

A

w

8

‘

t

q

1

1

t

i

o

‘

‘

5  

i

s

e

C

fi

A

w

t

t  

r  

r  

Q

M

P

w

C

s  

t

W

p

F

r

he discrepancy between the outputs of the hashing network and 

hose of the momentum-updated network. Since the momentum- 

pdated network is actually an ensemble of the hashing networks 

n different optimization steps, the third term of Eq. (10) will help 

o improve the retrieval performance of the hashing network [23] . 

. Experiments 

In this section, we systematically analyze the proposed DMUH 

nd compare it against state-of-the-art methods on four popular 

atasets, including CIFAR-10 [24] , Clothing1M [27] , NUS-WIDE [25] , 

nd MS-COCO [26] . The remainder of this section is organized as 

ollows. We start with introducing the used datasets and the cor- 

esponding protocols. Then, experimental details of our method 

re reported. Subsequently, insightful experimental analyses of our 

ethod are provided. Finally, comprehensive comparisons with 

tate-of-the-art methods are given. 

.1. Datasets and protocols 

A total of four widely used datasets are employed to evalu- 

te the proposed method, including two single-label (each image 

erely belongs to one class) datasets CIFAR-10 and Clothing1M, 

s well as two multi-label (each image belongs to one or multi- 

le classes) datasets NUS-WIDE and MS-COCO. 

CIFAR-10 It consists of 60,0 0 0 color images in 32 ×32 resolu- 

ion from 10 classes with 6,0 0 0 images per class. The labeled 

0 classes include ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, 

frog’, ‘horse’, ‘ship’, and ‘truck’. Following the protocol in [17] , we 

andomly sample 1,0 0 0 images with 10 0 images per class as the 

uery set, and randomly select 5,0 0 0 images with 500 images per 

lass from the rest images as the training set. Other images are 

sed as the database set. 

Clothing1M It is a million-level large-scale dataset with a total 

f 1,037,497 images that are collected from the online shopping 

ebsite. The clarified classes are various clothes, such as ‘jacket’, 

t-shirt’, ‘shawl’, ‘downcoat’, ‘hoodie’, and ‘sweater’. Following the 

rotocol in [18] , 7,0 0 0 images are randomly sampled as the query 

et and 14,0 0 0 images are randomly selected as the training set. 

bout a million images are utilized as the database set. 

NUS-WIDE It contains 269,648 images collected from the Flickr 

ebsite. Each image is annotated with one or multiple labels from 
ig. 3. Loss and MAP curves during training on the CIFAR-10 dataset. Furthermore, the

espectively. 

6 
1 classes, including ‘water’, ‘clouds’, ‘ocean’, ‘road’, ‘buildings’, 

toy’, ‘window’, ‘zebra’, ‘sun’, ‘street’, and so on. Following the pro- 

ocol in [17] , only 195,834 images belonging to the 21 most fre- 

uent classes are leveraged in our experiments. 2,100 images with 

00 images per class are randomly sampled as the query set and 

0,500 images with 500 images per class are randomly selected as 

he training set. Other images are leveraged as the database set. 

MS-COCO It has 82,783 training images and 40,504 validation 

mages that are collected from the website. Each image belongs to 

ne or multiple labels from 91 classes, including ‘car’, ‘cat’, ‘plate’, 

oven’, ‘pizza’, ‘clock’, ‘bird’, ‘boat’, ‘airplane’, ‘cake’, ‘laptop’, ‘book’, 

cup’, ‘suitcase’, ‘apple’, and so on. Following the protocol in [63] , 

,0 0 0 images are randomly sampled as the query set and 10,0 0 0

mages are randomly selected as the training set. Other images are 

et as the database set. 

Evaluation Methodology Following the setting of [64] , Mean Av- 

rage Precision (MAP) is adopted to evaluate retrieval performance. 

oncretely, given a query image x q , average precision (AP) is de- 

ned as [18] : 

P (x q ) = 

1 

R k 

∑ 

k 

P (k ) I 1 (k ) , (11) 

here R k denotes the number of all relevant images. P (k ) denotes 

he precision at the cut-off k in the returned image list after re- 

rieval. I 1 (k ) is an indicator function, which is equal to 1 if the k th

eturned images is similar with x q and is equal to 0 when the k th

eturned images is dissimilar with x q . MAP is the mean AP of all

 = { 1 , . . . , q } queries: 

AP = 

1 

Q 

∑ 

q 

AP (x q ) . (12) 

articularly, for the NUS-WIDE dataset, the MAP is calculated 

ithin the top 5,0 0 0 returned neighbors. For the single-label 

IFAR-10 and Clothing1M datasets, two images are treated as a 

imilar pair ( S i j = 1 ) when they come from a same class, otherwise

hey are considered as a dissimilar pair. For the multi-label NUS- 

IDE and MS-COCO datasets, two images are regarded as a similar 

air if they share at least one common label. 
 MAP values of our method and Regu in the testing phase are 0.815 and 0.739, 
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Table 2 

Architecture of the hashing network and 

the momentum-updated network. K/S/P 

denotes kernel size/stride/padding. 

LAYER K/S/P/Pool OUTPUT 

conv1 11/4/0/2 64 × 27 ×27 

conv2 5/1/2/2 256 × 13 ×13 

conv3 3/1/1/0 256 × 13 ×13 

conv4 3/1/1/0 256 × 13 ×13 

conv5 3/1/1/2 256 × 6 ×6 

full6 - 4096 

full7 - 4096 

full8 - code length 
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Table 3 

Parameter analyses on CIFAR-10 dataset, including 

the trade-off parameters β and γ in Eq. (10) , and 

the momentum coefficient α in Eq. (5) . 

(a) β in Eq. (10) 

β 12 bits 24 bits 32 bits 48 bits 

30 0.764 0.808 0.815 0.819 

40 0.769 0.810 0.818 0.822 

50 0.772 0.815 0.822 0.826 

60 0.767 0.811 0.819 0.820 

70 0.765 0.809 0.817 0.816 

(b) γ in Eq. (10) 

γ 12 bits 24 bits 32 bits 48 bits 

0.2 0.760 0.806 0.817 0.817 

0.5 0.765 0.810 0.819 0.821 

1 0.772 0.815 0.822 0.826 

2 0.769 0.809 0.814 0.823 

3 0.768 0.807 0.810 0.819 

(c) α in Eq. (5) 

α 12 bits 24 bits 32 bits 48 bits 

0.5 0.766 0.807 0.813 0.821 

0.6 0.768 0.810 0.817 0.822 

0.7 0.772 0.815 0.822 0.826 

0.8 0.772 0.813 0.819 0.825 

0.9 0.769 0.810 0.815 0.819 
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.2. Experimental details 

For a fair comparison with other state-of-the-art methods, we 

mploy the CNN-F network [17] pre-trained on ImageNet as the 

ackbone of the hashing network. As shown in Table 2 , the CNN-F 

etwork consists of five convolutional layers and three fully con- 

ected layers, where the last fully connected layer is modified as 

he hashing layer with the length of hashing codes (12 bits, 24 

its, 32 bits, and 48 bits). The momentum-updated network has 

he same architecture as the hashing network. The input images 

re first resized to 256 × 256 resolution and then cropped to 

24 × 224. Stochastic Gradient Descent (SGD) is used as the op- 

imizer with 1e-4 weight decay. The initial learning rate is set to 

.05 and gradually reduced to 0.0 0 05. The batch size is set to 128.

he momentum coefficient hyper-parameter α in Eq. (5) is set to 

.7, and the hyper-parameters β and γ in Eq. (10) are set to 50 and 

, respectively. We determine the values of β and γ by balancing 

he magnitude of the corresponding loss term. All experiments are 

onducted on a single NVIDIA TITAN RTX GPU. 

.3. Evaluation of the uncertainty-aware hashing 

In this subsection, we compare our proposed method against 

he traditional regularization based method (denoted as Regu ), 

hose optimization objective is Eq. (4) . The only difference be- 

ween our method and Regu is the introduced uncertainty, includ- 

ng its estimation and usage. 

Figure 3 (a) depicts the loss curves of the two methods un- 

er different training epochs on the CIFAR-10 dataset. Figure 3 (b) 

lots the corresponding MAP curves on the training set. Observ- 

ng the results, we can see that the loss curve of our method con- 

erges after about 50 epochs. Meanwhile, the MAP curve reaches 

ts peak and remains stable. By contrast, the loss curve of Regu 

onverges much slower. In particular, the MAP curve of Regu still 

harply oscillates at the 90th epoch. The faster convergence of our 

ethod may be due to that we pay more attention on the hashing 

its with drastic value changes (benefiting from the bit-level un- 

ertainty) and the hard examples (benefiting from the image-level 

ncertainty). In addition, although the two methods finally have 

 similar MAP value in the training phase, our method obtains a 

uch better MAP result (0.815) than Regu (0.739) in the testing 

hase. This further demonstrates the great generalization ability of 

ur uncertainty based method. 

.4. Ablation study 

In this subsection, we compare our method against its three 

ariants to reveal the role of each component. Among them, w/o u i 
eans removing the optimization of uncertainty, i.e. the third term 

f Eq. (10) . In such a case, we no longer minimize the output 

iscrepancy between the hashing network and the momentum- 

pdated network. w/o e u i denotes discarding the bit-level uncer- 
7 
ainty e u i in the second term of Eq. (10) , which means that we ig-

ore the differences among hashing bits. w/o e ū i + ̄u j represents re- 

oving the image-level uncertainty in the first term of Eq. (10) . At 

his point, all training images are treated equally during training. 

Following the setting of [63] , we report Top-5K precision curves 

o measure retrieval performance on the CIFAR-10, NUS-WIDE, and 

S-COCO datasets. The comparison results are reported in Fig. 4 . 

t is observed that our method obtains the best retrieval perfor- 

ance. The improvements of our method over w/o u i suggest the 

mpact of the uncertainty minimizing, which assists in transferring 

he knowledge from the momentum-updated network to the hash- 

ng network. The gains of our method over w/o e u i demonstrate 

he effectiveness of the bit-level uncertainty. The hashing bits with 

rastic value changes are given larger weights to stabilize their 

utputs. The improvements of our method over w/o e ū i + ̄u j prove 

he validity of the image-level uncertainty. It enables the hard ex- 

mples to receive more attention during optimization and thereby 

elps to improve retrieval performance. 

Furthermore, we also give detailed parameter analyses. 

able 3 reports the parameter study of the trade-off parame- 

ers β and γ in Eq. (10) , and the momentum coefficient α in 

q. (5) . As can be seen from Table 3 (a) and (b), our method is

ot sensitive to β and γ in a large range. For example, the MAP 

alue of 24 bits only changes 0.007 when β is set from 30 to 70. 

able 3 (c) suggests that the optimal value of α is 0.7. 

.5. Comparisons with state-of-the-art methods 

In this subsection, the proposed method is evaluated against 

 total of 11 state-of-the-art hashing methods, including iterative 

uantization (ITQ) [12] , column sampling based discrete supervised 

ashing (COSDISH) [42] , supervised discrete hashing (SDH) [65] , 

ast supervised hashing (FastH) [9] , latent factor hashing (LFH) 

62] , deep supervised discrete hashing (DSDH) [66] , deep discrete 

upervised hashing (DDSH) [18] , deep pairwise-supervised hash- 

ng (DPSH) [17] , deep supervised hashing (DSH) [20] , deep hashing 

etwork (DHN) [67] , and central similarity quantization (CSQ) [68] . 

he brief introductions of these methods are as follows: 

- ITQ aims to search a rotation of zero-centered data to bridge 

the quantization discrepancy. 
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Fig. 4. Top-5K precisions on the CIFAR-10, NUS-WIDE, and MS-COCO datasets. 

Table 4 

MAP of different methods on the single-label datasets CIFAR-10 and Clothing1M. 

Method CIFAR-10 Clothing1M 

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 

DMUH 0.772 0.815 0.822 0.826 0.315 0.371 0.389 0.401 

DDSH 0.753 0.776 0.803 0.811 0.271 0.332 0.343 0.346 

DSDH 0.740 0.774 0.792 0.813 0.278 0.302 0.311 0.319 

DPSH 0.712 0.725 0.742 0.752 0.193 0.204 0.213 0.215 

DSH 0.644 0.742 0.770 0.799 0.173 0.187 0.191 0.202 

DHN 0.680 0.721 0.723 0.733 0.190 0.224 0.212 0.248 

COSDISH 0.583 0.661 0.680 0.701 0.187 0.235 0.256 0.275 

SDH 0.453 0.633 0.651 0.660 0.151 0.186 0.194 0.197 

FastH 0.597 0.663 0.684 0.702 0.173 0.206 0.216 0.244 

LFH 0.417 0.573 0.641 0.692 0.154 0.159 0.212 0.257 

ITQ 0.261 0.275 0.286 0.294 0.115 0.121 0.122 0.125 

Table 5 

MAP of different methods on the multi-label datasets NUS-WIDE and MS-COCO. For the NUS-WIDE 

dataset, the MAP is calculated within the top 5,0 0 0 returned neighbors. 

Method NUS-WIDE MS-COCO 

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 

DMUH 0.792 0.818 0.825 0.829 0.761 0.779 0.785 0.788 

DDSH 0.776 0.803 0.810 0.817 0.745 0.765 0.771 0.774 

DSDH 0.774 0.801 0.813 0.819 0.743 0.762 0.765 0.769 

DPSH 0.768 0.793 0.807 0.812 0.741 0.759 0.763 0.771 

DSH 0.712 0.731 0.740 0.748 0.696 0.717 0.715 0.722 

DHN 0.771 0.801 0.805 0.814 0.744 0.765 0.769 0.774 

COSDISH 0.642 0.740 0.784 0.796 0.689 0.692 0.731 0.758 

SDH 0.764 0.799 0.801 0.812 0.695 0.707 0.711 0.716 

FastH 0.726 0.769 0.781 0.803 0.719 0.747 0.754 0.760 

LFH 0.711 0.768 0.794 0.813 0.708 0.738 0.758 0.772 

ITQ 0.714 0.736 0.745 0.755 0.633 0.632 0.630 0.633 

h

l

s

C

a

t

- COSDISH iteratively samples columns from the similarity ma- 

trix and hashing codes are alternatively optimized without 

relaxation. 

- SDH learns hashing codes for linear classification, which is 

solved by discrete cyclic coordinate descent. 

- FastH introduces decision trees as hashing coding functions, 

where the decision trees are learned by a correlative two- 

step approach. 

- LFH proposes to leverage latent factor models to learn 

similarity-preserving binary hashing codes. 

- DSDH takes advantages of both similarity and classification 

information to learn hashing codes in a one-stream frame- 

work. 

- DDSH enhances the feedback between hashing coding and 

deep feature learning via a discrete optimization algorithm. 

- DPSH performs joint learning of hashing codes and deep fea- 

tures in an end-to-end framework. 
h

8 
- DSH relaxes binary hashing codes to be real-values and adopts 

a pairwise training strategy to optimize Hamming distance. 

- DHN employs both a pairwise cross-entropy loss and a pair- 

wise quantization loss to improve hashing quality. 

- CSQ presents a global central similarity and encourages the 

hashing codes of similar images to arrive at the correspond- 

ing centers. 

The above state-of-the-art methods consist of three types of 

ashing learning approaches. ITQ is a representative unsupervised 

earning method. COSDISH, SDH, FastH, and LFH are non-deep 

upervised learning methods. DSDH, DDSH, DPSH, DSH, DHN, and 

SQ are deep supervised learning methods. 

The comparison results of our method against the state-of-the- 

rt methods are tabulated in Tables 4–6 , from which we obtain 

hree observations. First, the unsupervised method ITQ lags be- 

ind all of the supervised methods, suggesting the great advan- 
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Table 6 

Comparisons with CSQ. Since the code length of CSQ can only be 2 n , where n ∈ (1, 2, 3, ...), we conduct experiments under 16 bits, 32 bits, 

and 64 bits that are consistent with the settings in [68] . 

Method CIFAR-10 Clothing1M NUS-WIDE MS-COCO 

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 

DMUH 0.779 0.822 0.830 0.320 0.389 0.402 0.803 0.825 0.834 0.765 0.785 0.792 

CSQ 0.501 0.533 0.572 0.302 0.308 0.317 0.755 0.783 0.791 0.670 0.681 0.707 
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age of the supervised information. Second, the performance of 

eep supervised hashing methods is generally better than that of 

he non-deep supervised hashing methods. This indicates that the 

eatures extracted by deep neural networks are better than the 

and-crafted features. Third, our method obtains the highest re- 

rieval accuracy on all of the four datasets. For example, on the 

IFAR-10 dataset, our method surpasses DDSH by 3.9% at 24 bits. 

n the NUS-WIDE dataset, we improve the best MAP values of all 

its at least 1.2%. On the MS-COCO dataset, we also get an im- 

rovement of 1.6% at 12 bits. Specially, on the large-scale Cloth- 

ng1M dataset, the MAP value is significantly improved by 3.7%, 

.9%, 4.6% , and 5.5% in terms of 12, 24, 32, and 48 bits, respec-

ively. Compared with the state-of-the-art CSQ, our method also 

resents more superior performance, obtaining at least 1.8% im- 

rovements on the four datasets. The compared deep supervised 

ashing methods adopt a similar binary approximation that treats 

ll hashing bits equally, such as DSDH uses the activation function 

anh and DPSH uses the regularization. With these in mind, we 

we the gains of our method over the competitors to the proposed 

ncertainty-aware learning approach. It applies different attention 

eights for different hashing bits and input images according to 

he magnitude of the bit-level and image-level uncertainty, respec- 

ively. 

. Conclusion 

In this paper, we have proposed an uncertainty-aware deep su- 

ervised hashing method that is named as DMUH. To begin with, 

e discover that the hashing network has different uncertainty to 

ifferent approximate hashing bits. According to this observation, 

e propose that hashing bits should be paid separate attention 

uring training, rather than being treated equally. Subsequently, 

e introduce a momentum-updated network to assist in estimat- 

ng such bit-level uncertainty. In addition, the mean bit-level un- 

ertainty of all bits in a hashing code is seen as image-level un- 

ertainty, which reflects the uncertainty of the hashing network 

o the corresponding input image. The bit-level uncertainty and 

mage-level uncertainty are leveraged to guide the regularization of 

ashing bits and facilitate the optimization of Hamming distance, 

espectively. Finally, extensive experiments on the CIFAR-10, Cloth- 

ng1M, NUS-WIDE, and MS-COCO datasets demonstrate the supe- 

iority of our proposed method over state-of-the-art counterparts, 

specially on the million-scale Clothing1M dataset. 

In general, as far as we know, we are the first to study the 

ncertainty in binary bits, which can bring some useful insights 

o deep hashing methods and other similar discrete optimization 

roblems. However, there is still room for improvement in the pro- 

osed method, which optimizes approximate continued values of 

inary bits rather than directly optimizing binary values. In the fu- 

ure, we will focus more on the discrete coding procedure. More- 

ver, we also plan to extend our method to cross-modal hashing 

ue to its wide application prospects. 
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