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Abstract—Recently, transformer-based models has shown
promising results on miscellaneous computer vision tasks. How-
ever, its high computation cost makes it neither practical to
deploy on mobile devices, nor economic to compute on servers.
In this paper, we propose two effective quantization schemes for
reducing the memory usage and computation consumption of
vision transformers. First, we develop an approximation-based
Post-training Quantization (PTQ) approach which optimizes for
a set of quantization scaling factors that minimize quantization
errors. Moreover, we introduce a learning-based Quantization-
aware Training (QAT) approach that allows for model finetun-
ing after inserting quantization operations to restore accuracy.
Furthermore, we reveal the complementary effects of learning-
based approach and approximation-based approach in QAT and
propose an effective strategy for the initialization of quanti-
zation parameters. We evaluate our approaches on ImageNet
for different vision transformer models. Our quantization al-
gorithms outperform the previous state-of-art approaches for
both post-training quantization and quantization-aware training
benchmark. With weights and activations in vision transformer
quantized to 8-bit integers, we obtain a ×4 compression rate of
model parameters with an accuracy drop of less than 0.2% for
models of various scales.

Index Terms—quantization, compression, acceleration, trans-
former, fixed-point

I. INTRODUCTION

These years have witnessed the great success of

Transformer-based [1] [2] [3] models in natural language

processing (NLP) tasks. Recently some efforts have been made

to transfer Transformer into computer vision (CV) domain

and show promising results [4] [5] [6] [7]. However, the

Transformer-based models suffer from large number of pa-

rameters and high computation amount, which will inevitably

cause heavy memory usage and high latency during inference.

To alleviate this problem, many methods are introduced to

This work was supported in part by Jiangsu Key Research and Development
Plan (No.BE2021012-2).
* Corresponding Author

compress Transformer, like pruning [8] [9] [10] [11] , knowl-

edge distillation [12] [13] [14], and quantization [15] [16] [17]

[18] [19].

Fig. 1. Quantization pipeline of the Multi-Head Attention module.

Compared to other existing compression methods, quanti-

zation is more likely to achieve a better trade-off between

the compression rate and performance. There have been some

explorations about the quantization of BERT [1], an effective

Transformer-based model that can handle various downstream

NLP tasks after being pretrained on a large dataset and

finetuned on specific tasks. [15] quantizes the word embedding

layers and fully connected layers in BERT to 8 bits and

reports no severe performance drop on the General Language

Understanding Evaluation (GLUE) [20] dataset. But it doesn’t

quantize the multi-head attention layers which are the compu-
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tation overhead in some tasks using long sequences as input.

[16] applies quantization to all layers in the encoder and uses

a Hessian-based mixed-precision method to achieve low bits

quantization of weights.

Vision Transformer (ViT) [4] [5] of Transformer in com-

puter vision tasks, reporting results comparable to convolution

neural networks (CNN) like ResNet [21] on classification

datasets. [6], [7] extend vision transformers to various com-

puter vision tasks like instance segmentation as well as other

low-level tasks such as denoising and super-resolution and

achieve State Of The Art (SOTA). Despite its effectiveness in

computer vision, little effort has been made to the quantization

of vision transformers. Considering the scale of ImageNet

dataset is much bigger than GLUE, it will be more challenging

to search for an optimal discrete solution after introducing

quantization operations. In this work, we proposed fixed-point

quantized Vision Transformer, which quantizes all layers in

the DeiT model proposed by [5] to 8 bits, including the

patch embedding layer, the transformer layers, and the final

classification layer. The quantization pipeline of the Multi-

Head Attention, which is the essential component of ViT, is

illustrated as Fig.1. Post-training quantization takes no extra

time for finetuning, thus is fast for deployment. Nevertheless, it

suffers from a considerable performance gap compared to the

quantization-aware training approach. Therefore quantization-

aware training is favored in circumstances when abundant

deploying time is given to pursue higher performance. We use

an approximation-based approach for post-training quantiza-

tion, while a learning-based approach for quantization-aware

training. Furthermore we reveal the complementary effect of

the approximation method and the learning-based method in

improving the performance of the quantized model. We obtain

a ×4 compression rate of model parameters while maintaining

the accuracy on ImageNet [22]. Experimental results on Im-

ageNet [22] demonstrate the effectiveness of our method by

outperforming previous state-of-art quantization approaches.

For instance, we obtain an 77.79% top-1 accuracy using DeiT-

Small model on ImageNet for 8-bit post-training quantization,

surpassing the previous state-of-art PTQ approach by a margin

of 0.3%.

II. RELATED WORK

A. Vision Transformers

The Visual Transformer (ViT) introduced by [4] directly

inherits the Transformer architect from natural language pro-

cessing by dividing input images into sequential patches. It

presents promising results compared to CNN-based models.

But it is pre-trained using a private image dataset (JFT-300M

[23], 300 million images) and it requires massive comput-

ing resources to train. To address these problems, [5] uses

miscellanies training strategies to allow for effective training

on public datasets like ImageNet and doesn’t require a large

number of computation resources.

B. Quantization

Study of Quantization has a long history for CNNs. It

projects floating-point parameters in a network into discrete

formats to reduce its storage size. Meanwhile, the floating-

point matrix multiplication will be replaced with a fixed-point

one if both weights and inputs are quantized, which pro-

vides remarkable acceleration of inference speed. Quantization

methods can be classified into different categories according to

their strategies of optimizing the quantization levels. There is

approximation-based quantization [24] [25] [26] which aims

at minimizing quantization error introduced by quantization

operation, while loss-aware based quantization [27] [28] [29]

directly optimizes the quantizer to minimize the task loss.

Vector or product quantization [30] [31] clusters the full-

precision weight vectors or the outputs of matrix multiplication

to several quantization centers stored in a look-up codebook.

On the other hand, quantization methods can also be distin-

guished by their quantization pipelines, i.e., whether requiring

retraining after quantization. Post-training Quantization (PTQ)

[32] [33] [34] [35] optimize neural networks to be robust to

quantization without a complete training but using a little per-

centage of data. [36] [37] [38] further improve the pipelines to

allow for retraining without using any data at all. Quantization-

aware Training (QAT) [39] [40] [41] generally outperforms

PTQ in terms of performance at the cost of more training

time and access to training data. Operations are inserted in

the neural network computational graph that simulate the

quantization noise introduced by the quantization procedural.

Several recent papers enhance its performance by introducing

learnable quantization parameters [42] [43] [44] [45] [46]

[47]. These learning-based methods collect the gradient of

the training loss w.r.t the quantization parameters and take

a standard gradient descent optimization step.

Some work has been studied for the quantization of

Transformer-based models. Fully-quantized Transformer [18]

and Q8BERT [15] successfully applied 8-bit fixed-point quan-

tization to BERT. Lower bits quantization is also investigated

in [16] [17]. To avoid severe performance drop in low-bit

weight quantization, Q-BERT [16] and GOBO [17] utilize

mixed-precision quantization. Nevertheless, mixed-precision

quantization can be unfriendly to hardware implementation.

Although there is few work about the quantization of ViT,

recently [19] propose a post-training quantization approach

which takes into account the ranking orders of the attention

score.

III. APPROACH

In this section, we discuss our quantization scheme, includ-

ing post-training quantization (PTQ) and quantization-aware

training (QAT).

We quantize both weights and activations in ViT to allow

for inference acceleration via fixed-point matrix multiplication.

Let the full-precision weights in ViT be w, the corresponding

quantized weight is denoted as ŵ = Q(w) where Q is

the quantization operation. Similarly, the activations x in the

network are quantized to be x̂ = Q(x). After introducing
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the quantization operations, we retrain the model to restore

model’s accuracy on ImageNet [22]. Specifically, at each mini-

batch iteration, we quantize the weights w and activations x in

the model to 8-bit format ŵ and x̂. Then we do the forward

propagation with the quantized weights and activations. We

can get the gradients of the loss with respect to the quantized

weights ∂L
∂ŵ through standard backward propagation. We use

these gradients to update the latent weights, i.e. the full

precision weights: wt+1 = Update(wt, ∂L
∂ŵt , η

t), with ηt being

the learning rate at the t-th iteration.

In the following, we will first interpret how to quantize in

Section III-A and what to quantize in Section III-B and III-C.

A. Quantization Method

As shown in (1) and (2), the quantizer takes the given tensor

v as input, and outputs a scaled integer representation v̄ that

allows for fixed-point calculation, which is afterwards scaled

back to the float tensor v̂ with the same scaling factor. We

use s for scaling factor, QP and QN for the maximum and

minimum value of quantization levels, respectively.

v̄ = �clip(v/s,−QN , QP )�, (1)

v̂ = v̄ · s. (2)

clip(z, r1, r2) clamps z with values smaller than r1 to r1
and larger that r2 to r2, while �z� rounds z to the closest

integer. Providing quantization bitwidth b, unsigned integers

have QN = 0 and QP = 2b − 1 and signed integers have

QN = 2b−1 and QP = 2b−1 − 1. For our case, we use signed

integers to quantize all the weights and activations in ViT

except for the attention score matrix, which is always positive

and can be represented with unsigned integers.

At inference stage, with both weights and activations quan-

tized to integer representations w̄ and x̄, fixed-point matrix

multiplication can be utilized to implement convolutional or

fully connected layers, after which the outputs of these layers

are scaled back using the same scaling factor by a relatively

low-cost floating-point scalar-tensor multiplication.

For post-training quantization, inspired by [26], we propose

an approximation-based method to solve the optimal scaling

factor. Specifically, we formulate it as an optimization problem

as (3).

s∗ = argmin
s

‖v − v̂‖, where v̂ = v̄ · s (3)

The optimal s is supposed to minimize the main square error

(MSE) between the quantized tensors v̂ and the full precision

ones v. Here, ‖ · ‖ is the l2 norm of the given vectors.

There is no closed-form solution for s, given that v̄ itself is

dependent on s as showed in (1). A naive method would be

searching the value of s using brute-force and selecting the one

that minimizes quantization error. Here we adopt an iterative

approach to solve this optimization problem , i. e. , we fix s
and compute v̄, after which we use the updated v̄ to optimize

s. These two steps are taken iteratively until s converges. Our

approach only takes negligible time compared to the brute-

force search method.

Previous researches suggest that Transformer is more sen-

sitive to quantization in contrast with CNN. Thus PTQ is less

likely to regain the performance due to its lack of retraining.

In this case, Quantization-aware Training (QAT) can be used

to bridge the gap between the quantized model and the full

precision one.

The MSE-based method can be applied to quantization-

aware training directly, however, potential harm could be

brought to performance by the deviation of distribution of

weights and activations after finetuning, implying the scaling

factors computed before finetuning to be sub-optimal. Taking

this into consideration, we follows the procedural of LSQ [44],

a learning-based algorithm, to conduct the quantization-aware

training due to its effectiveness in convolution networks. As is

done in [44], we update the quantization scaling factor using

a scaled gradient backward propagating from the training loss.

∂v̂/∂s =

⎧⎪⎨⎪⎩
−v/s + �v/s� if −QN < v

s < QP

−QN if v/s ≤ −QN

QP if v/s ≥ QP

(4)

st+1 = Update(st, g
∂L
∂v̂

∂v̂

∂st
),where g = 1/

√
NFQP (5)

g in (5) is a gradient scaling scalar that makes sure the

converging speed of s is approximately equal with model

parameters. Most of the operations in (1) and (2) are dif-

ferentiable and can backward propagate normally except the

rounding function, for its gradient is zero across almost the

whole axis. Hence, we use the straight through estimator (STE)

[48] to approximate its gradient function, which allows for

the gradient flow from the loss to penetrate the quantization

function.

Despite LSQ [44] performs well in CNNs, a problem

emerges in our experiments on ViTs that the quantized model

is hard to converge during the retraining stage. By analyzing

the training process we attribute this to the ill initialization of

the quantization scale factors, as is similar to the conclusions

from [47]. The initialization values of scaling factors are far

from the final converged values, as shown in Fig. 2, and

it takes many iterations for the scaling factors to eventually

converge to the optimal solution, during which period the

model parameters would optimize in the wrong solution space.

To alleviate this phenomenon, we conduct an additional op-

timization procedure using the approximation-based approach

mentioned above before learning the scaling factors, i. e.

, we initialize the scaling factor using the optimal value

that minimize the mean square error (MSE) between the

quantized tensors v̂ and the full precision ones v, as (3). It

differs from the initialization method used in [47], for we

use the MSE-based approach instead of Gaussian statistics

to initialize model weights. After modifying the initialization

scheme, we obtain a considerable performance boost, and

the initialization values of the scaling factors become much

closer to the optimal values, as is seen in Fig. 2. It implies

that the approximation-based approach and the learning-based

approach could work complementarily in QAT. Initializing
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quantization parameters using approximation-based method

speeds up convergence while learnable quantization parame-

ters promise better performance of the converged model. The

details are further discussed in Section IV.

Fig. 2. Scaling factor learning curve of a typical fully-connected layer in ViT.

B. Quantize Multi-Head Attention

the l-th Transformer block in ViT can be formulated as

Yl = LayerNorm(Xl + MHA(Xl))

Xl+1 = LayerNorm(Yl + MLP(Yl)),

Xl ∈ R
n×d and Yl ∈ R

n×d are inputs of the l-th MHA layer

and MLP layer, respectively. The LayerNorm stands for the

normalization technique proposed by [49].

The major difference between Transformer-based networks

and conventional neural networks is the Multi-Head Attention

(MHA) module, which is the computation overhead when high

resolution images are given as model inputs. Here, we quan-

tize all matrix multiplications in MHA including the linear

projection and the self-attention operation, as is illustrated in

Fig. 1.

For the l-th Transformer layer, its input Xl ∈ R
n×d is the

activations from the previous layer where n and d are the

number of patches and the embedding dimension, respectively.

Wq,Wk,Wv ∈ R
d×d are the projection weights for Q, K, V

matrixes, while the latter are used to compute the self-attention

of the input patches. The scaled attention scores are computed

as

A = Softmax(QK
�/

√
d) (6)

And then output of a MHA is computed by

Yl = MHA(Xl) = AVWo = Softmax(QK
�/

√
d)VWo (7)

For weight quantization, we quantize the linear projection ma-

trixes Wq,Wk,Wv,Wo. For activation quantization, we quan-

tize Xl, Q,K, V,A, V . With weights and activations quantized

to 8-bit integers, integer multiplication can be performed to

speed up inference.

C. Quantize MLP

The MLP layer in ViT is two fully connected layers stacked

together with a nonlinear activation function, which is, in this

case, the Gaussian Error Linear Units (GELU) function. It can

be formulated as

MLP(Yl) = GELU(YlW
1 + b1)W 2 + b2. (8)

W 1 ∈ R
d×dmlp , b1 ∈ R

dmlp and W 2 ∈ R
dmlp×d, b2 ∈ R

d

respectively, where dmlp is the hidden embedding dimension

in MLP.

We quantize the weights of the two linear layers W1,W2

as well as their activations.

As is done in previous work, we don’t quantize the GELU

nonlinear activation function, the softmax operation as well

as Layer Norm, for these operations require high precision

representations, and quantizing these layers would result in

great degradation of performance.

IV. EXPERIMENT

In this section, we evaluate the performance of our quan-

tization approach on ImageNet [22], for both post-training

quantization and quantization-aware training. We compare our

approach with previous work [19] [50] [51] using reported

results in [19].

A. Implementation Details

Model structures. The original ViT [4] requires custom

datasets that are not available to the public, thus we use

DeiT proposed by [5] as our full precision baseline. We

apply quantization to both DeiT-Small and Deit-Tiny, whose

structures are illustrated as Table I.

Datasets. Same as our float baseline Deit [5], we evaluate

our quantized model on ImageNet [22], a public dataset for

visiual classification, containing 1.2 million training images

and 50K validation images with labels of 1, 000 categories.

Settings. For float baseline, we follow the hype-parameter

settings of the original DeiT [5]. And for post-training

quantization, we sample 512 images from the trainset to

optimize quantization parameters. As for quantization-

aware training, we initialize the model parameters from

the pretrained full precision model and finetune it on the

original trainset after inserting quantization operations. The

learning rate in the finetuning stage is carefully tuned for

different model structures and different quantization schemes,

of which the optimal value is around 5e-6. We don’t warm

up the learning rate and we also discard the learning rate

lower bound used in the DeiT training, because experiments

show these settings benefit the performance of the quantized

models. Any other hyper-parameters are kept unchanged. We

finetune the quantized models for 3 epochs, while the full

precision model are trained for 300 epochs.

B. Results and Analysis

Post-training quantization. The experimental results for

post-training quantization are shown in Table II. Our method

outperforms previous state-of-art RAQ [19] by 0.33% for
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TABLE I
DEIT MODEL CONFIGURATION

Model embedding heads layers params training
dimension resolution

DeiT-Tiny 192 3 12 5M 224
DeiT-Small 384 6 12 22M 224

TABLE II
TOP-1 ACCURACY ON IMAGENET FOR POST-TRAINING QUANTIZATION

Model Method W-bit A-bit Size (MB) Top-1
DeiT-Tiny Baseline 32 32 20 74.57

Ours 8 8 5 74.05
Baseline 32 32 88 79.8

Percentile [50] 8 8 22 73.98
DeiT-Small EasyQuant [51] 8 8 22 76.59

RAQ [19] 8 8 22 77.47
Ours 8 8 22 77.80

DeiT-Small , indicating the effectiveness of our method. For

DeiT-Tiny, our approach achieve a 4× compression of model

size while keeping the accucacy drop within 0.5%.

Quantization-aware training. The results are shown in

Table III. The LSQ method refers to the learning-based method

proposed by [44], which is currently the state-of-art QAT

approach in CNNs. The original authors don’t evaluate their

method on DeiT so we use our own implementations of LSQ

to report the accuracy. It can be seen in the results that

the original LSQ [44] fails to reach a persuasive accuracy.

After introducing the proposed MSE initialization in the LSQ

procedural, we observe a performance boost of 0.3% and

achieve 8-bit quantization with negligible performance degra-

dation, i. e., -0.09% and -0.16% for DeiT-Tiny and Deit-Small,

respectively. This indicates that approximation approaches

and learning-based approaches can work complementarily in

the quantization-aware training. Specifically, approximation

approaches establish basic estimation for the quantization

parameters while the learning-based approaches offer dynamic

corrections during the finetuning stage.

C. Ablation Study

In this section, we evaluate the effects of the quantization-

aware training strategies proposed in the former sections,

including the approximation-based approach using MSE, the

learning-based approach inspired by [44], and last but not

least, their combined effects in the process of QAT. The

TABLE III
TOP-1 ACCURACY ON IMAGENET FOR QUANTIZATION-AWARE TRAINING

Model Method W-bit A-bit Size (MB) Top-1
Baseline 32 32 20 74.57

DeiT-Tiny LSQ [44] 8 8 5 74.16
Ours 8 8 5 74.48

Baseline 32 32 88 79.8
DeiT-Small LSQ 8 8 22 79.20

Ours 8 8 22 79.64

results of these ablations experiments are shown in Table

IV. The MSE label stands for our proposed method of only

using MSE to optimize the quantization parameters, i. e. ,

TABLE IV
ABLATION STUDY OF THE PROPOSED QAT SCHEME

Model MSE Learned Top-1
- - 74.57

DeiT-Tiny � × 74.36
× � 74.16
� � 74.48
- - 79.8

DeiT-Small � × 79.55
× � 79.20
� � 79.64

the quantization parameters are kept fixed when we finetune

the model parameters. The Learned label refers to that we use

gradient descent directly to update the quantization parameters

without introducing any other optimization procedural. With

both labels checked, the quantization parameters are initialized

by the MSE approach and then back propagated to learn

the optimal solution. It can be seen in the results that the

learning-based approach fails to reach a satisfying accuracy.

MSE performs slightly better but still has a gap of 0.25% from

the full precision baseline for DeiT-Small. After combining

the two approaches, higher accuracy are achieved without

introducing extra computation, indicating the effectiveness of

the proposed approach.

V. CONCLUSION

In this paper, we apply both post-training quantization

and quantization-aware training to vision transformer. For

post-training quantization, we propose an approximation-based

approach to estimate the optimal quantization parameters that

minimize the quantization error measured by mean square

error. Post-training quantization saves the trouble of finetuning

and access to the original data, thus is friendly for deployment.

Nevertheless, it suffers from a considerable performance gap

compared to the quantization-aware training approach. Thus

we also propose a learning-based quantization-aware training

approach that enables end-to-end training for both the model

parameters and quantization scaling factors. Moreover, we

observe a convergence problem in this approach, and combine

it with the approximation-based approach to obtain a higher

accuracy. The effectiveness of our methods is verified on

ImageNet for various vision transformer models. We surpass

the previous state-of-art methods by a large margin in post-

training quantization as well as quantization-aware training.
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