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Abstract. The rising demand for deploying convolutional neural net-
works (CNNs) to mobile applications has promoted the booming of
compact networks. Two parallel mainstream techniques include network
compression and lightweight architecture design. Despite these two tech-
niques can theoretically work together, the naive combination results
in dramatic accuracy degradation. In this paper, we present Binarized
MobileNet-Sp for mobile applications, by compression-architecture co-
design. We first reveal the connection between MobileNets and low-rank
decomposition, showing that decomposition-based architecture is not
quantization friendly. Then, by adopting the view of sparsity, we propose
the Binarized MobileNet-Sp, which significantly enhances the robustness
to binarization. Experiments on ImageNet show that the proposed Bina-
rized MobileNet-Sp achieves 61.2% top-1 accuracy, outperforming the
naive binarization method by about 10% higher top-1 accuracy. Com-
pared to the Bi-Real net which achieves 56.4% top-1 accuracy on the
more heavy-weight and redundant ResNet-18 (which has comparable
baseline accuracy with MobileNet in full-precision representation), the
Binarized MobileNet-Sp achieves much higher accuracy with a signifi-
cant reduction in computing complexity.
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1 Introduction

Convolutional Neural Networks (CNNs) have been leading new state-of-the-arts
in almost every computer vision tasks. One reason is the development of more
advanced network architectures, like ResNet, DenseNet, etc. However, these net-
works are designed for higher accuracy, without optimizing the storage and com-
putational complexity. In many real-world applications, storage consumption
and latency are crucial, which on the other hand, pose great challenges to the
deployment of these networks. Under this circumstance, reducing the complexity
of CNNs becomes a hot topic in the computer vision field.

Z. Zuo and Z. Li—Equal contribution.

c© Springer Nature Switzerland AG 2021
Y. Peng et al. (Eds.): ICIG 2021, LNCS 12888, pp. 688–699, 2021.
https://doi.org/10.1007/978-3-030-87355-4_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87355-4_57&domain=pdf
https://doi.org/10.1007/978-3-030-87355-4_57


Towards Binarized MobileNet via Structured Sparsity 689

To minimize the complexity of CNNs, two main directions are investigated by
the community. The first straightforward way is to compress the learned models.
Representative approaches include low-rank decomposition, sparsity, quantiza-
tion, etc. Another parallel direction is to design efficient networks from scratch.
Approaches like SqueezeNet, MobileNet, ShuffleNet fall into this direction. The-
oretically, the two approaches mentioned above can work together to produce
more efficient networks. However, lightweight networks tend to have limited
redundancies, thus expressing more sensitivity to network compression. Previous
compression methods are mainly evaluated on AlexNet, VGG and ResNet-18,
which have the common characteristic of large bulk of convolutions. But the com-
pressed models may still have higher complexity than the uncompressed efficient
networks. For example, the deep compression reduced the size of AlexNet by 35×
from 240 MB to 6.9 MB, which is still much larger than SqueezeNet of 4.8 MB.
From this point of view, the compression makes more sense when combined with
lightweight networks.

In this paper, we initiate the problem of compressing lightweight architectures
for extremely efficient networks, and present Binarized MobileNet-Sp. We first
reveal the connection between MobileNets and low-rank decomposition, showing
that decomposition-based architecture is not quantization friendly. Then from
the viewpoint of sparsity, the Binarized MobileNet-Sp is proposed, which signif-
icantly enhances the robustness to binarization. Experiments on ImageNet show
that the proposed Binarized MobileNet-Sp achieves 61.2% top-1 accuracy, out-
performing the naive binarization method by about 10% higher top-1 accuracy.
Compared to the Bi-Real net which achieves 56.4% top-1 accuracy on the more
heavy-weight and redundant ResNet-18 (which has comparable baseline accu-
racy with MobileNet in full-precision representation), the Binarized MobileNet-
Sp achieves much higher accuracy with significantly reduced complexity. Our
contributions are summarized as follows:

1. We initiate the problem of compressing lightweight architectures for extremely
efficient networks.

2. We reveal the connection between MobileNets and low-rank decomposition,
and propose a binarization robust module from the view of sparsity.

3. The proposed Binarized MobileNet-Sp dramatically outperforms traditional
binarization method, achieving the new state-of-the-art on extremely efficient
networks.

2 Related Work

Convolutional neural networks often suffer from significant redundancy in
parameter size and computation [3]. Consequently, a bulk of works have emerged,
including but not limited to low-rank decomposition, sparsity, quantization and
lightweight architecture design.

Low-Rank Decomposition: The motivation behind low-rank decomposition is
to find an approximate tensor Ŵ that is close to W but facilitates more efficient
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computation. [4] is one of the first methods to exploit low-rank decomposition of
filters by applying truncated SVD along different dimensions. By decomposing
the spatial dimension w×h into w×1 and 1×h, [11] achieved 4.5× speedup. [24]
proposed a non-linear response reconstruction based method and [13] adopted
CP decomposition to decompose a layer into five layers with 4.5× speedup for
the second layer of AlexNet. Tucker decomposition was also studied in [12].

Sparsity: Pruning can remove unimportant parameters to expand the sparsity
of models significantly. [6] proposed to prune the deep CNNs in an unstruc-
tured way without drops in accuracy. [5] proposed a dynamic network surgery
framework which can recover the incorrectly pruned connections. [17] proposed a
filter-level sparsity method which utilizing the next layer’s feature map to guide
filter pruning in the current layer. By adding structured sparsity regularizer, [23]
proposed to reduced trivial filters, channels or even layers.

Quantization: As full-precision parameters are not required to achieve high
performance, low-bit quantization has recently received increasing interest. [25]
proposed incremental quantization to reduced weight precision to 2–5 bits with-
out accuracy loss. [2,14] constrained the weights to binary(e.g. −1 or +1) or
ternary(e.g. −1, 0 or +1) values to obtain acceleration in inference. Recently,
several works focused on quantizing both weights and activations while minimiz-
ing performance degradation. [1] introduced Binarized Neural Networks (BNNs)
with binary weights and activations, and [20] improved BNN by introducing scale
factors with accuracy improvement. Multi-bit networks [15,26] are also proposed
to decompose a single convolution layer into multiple binary convolution opera-
tions to achieve higher accuracy.

Lightweight Architecture Design: Some works focus on building and train-
ing lightweight networks from scratch. ResNet [7] proposed the bottleneck struc-
ture and SqueezeNet [10] replacing 3 × 3 convolutions with 1 × 1 convolutions.
Based on depthwise separable convolution and linear bottlenecks, MobileNet [9]
and Mobilenet V2 [21] build a lightweight model with streamlined architecture.
Besides, several lightweight network [8,22] have been proposed and obtain a new
state-of-the-art trade-off between accuracy and efficiency.

3 Depthwise Separable Convolution and Its Binarization

A convolutional layer maps a three-dimensional tensor X ∈ R
Cin×H×W to Y ∈

R
Cout×H×W by a four-dimensional weight tensor W ∈ R

Cout×Cin×K×K , where
Cin and Cout are the numbers of input and output channels, H and W represent
the spatial height and width of the input as well as the output feature maps, K
denotes the kernel height and width of the weight tensor. The computational cost
of standard convolution is Cout×Cin×K×K×H×W , which corresponds to the
kernel size times by the spatial size of the input/output feature maps. To reduce
the computations, efficient representations of kernel W are designed, among
which network binarization, as well as the depthwise separable convolution of
MobileNets are two representative directions.
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3.1 Network Binarization

In binarized neural networks, all weights and activations are constrained to be
either +1 or −1. Specifically, we get the binarized version of weights and activa-
tions through a sign function,

xb = Sign(xr) =
{

+1 , if xr ≥ 0
−1 , otherwise

where xr denotes the real weights or activations. Compared to the real-valued
CNN model, binarized weights obtain up to 32× memory saving. Besides, most
multiply-accumulate operations could be converted into 1-bit popcnt − xnor
operations in the inference stage with binarized activations, which reduces com-
putation requirement significantly. However, previous binarization methods are
mainly evaluated on the networks which possess many redundancies such as
AlexNet, VGG and ResNet. To further improve model efficiency, it’s necessary
to combine binary techniques with lightweight networks.

3.2 Standard Binarization of MobileNet

Table 1. Operations and parameters of
depthwise and pointwise convolution.

MAdds Params

DW 17M 45K

DW percentage 3.1% 1.4%

PW 538M 3140K

PW percentage 96.4% 98.6%

Table 2. Baselines of MobileNet with its
standard binarization accuracy.

Model Top-1 Top-5

MobileNet 70.6% –

Reproduced 70.1% 89.1%

Binary all layers 0.1% 0.5%

Binary 1 × 1 49.4% 73.3%

MobileNet is a class of streamlined and compact CNN models constructed
through full utilization of depthwise separable convolutions. Briefly speaking,
each depthwise separable convolution consists of two layers, i.e., depthwise con-
volution layer (DW) of which the number of convolution groups is equal to the
number of input channels, and pointwise convolution layer (PW) with kernel size
1 × 1. The depthwise convolution and pointwise convolution realize intra-channel
and inter-channel feature fusion, separately. Figure 1 illustrates the comparison
between regular convolution and depthwise separable convolution.

Fig. 1. Illustration of regular convolution (a) and depthwise separable convolution (b).
The depthwise convolution realizes the spatial feature fusion, while pointwise convolu-
tion is responsible for the cross channel feature fusion.
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Theoretically, the standard network binarization method could be naturally
applied to MobileNet architecture. However, as shown in Table 2, the preliminary
evaluation of direct binarization of MobileNets indicates that the network could
not learn anything. We argue that this is caused by the weak representational
power of binarized depthwise convolution. As illustrated in the previous section,
all spatial information interactions are achieved by the depthwise convolutions,
which only occupy a very small proportion of the overall computations and
parameters. Table 1 gives the numbers as well as the percentages of multiply-
addition operations and parameters for depthwise convolutions and pointwise
convolutions, respectively. From Table 1, it is worth noting that the depthwise
convolutions only take 3.1% of the computations and 1.4% of the parameters.
This small proportion of resources must cover all the spatial information inter-
action, which will go underfitting when combined with binarization.

On the other hand, the small proportion of depthwise convolutions means
that we could ignore these layers during the binarization, to achieve a better
trade-off between the computation and storage gain and model accuracy degra-
dation. Thus we propose to only binarize the input feature maps and weights
of 1 × 1 convolutions. Table 2 shows the accuracy of full-precision MobileNet,
as well as network binarization results. Only binarizing the 1 × 1 convolutions
could achieve reasonable accuracy compared with binarizing all layers.

From the last rowofTable 2we can see that the direct binarization ofMobileNet
results in more than 20% top-1 accuracy loss, which means more advanced bina-
rization technique for MobileNet-like networks are needed. In the next section, we
propose a compression-architecture co-design method to improve the binarization
performance of MobileNet.

4 Binarized MobileNet-Sp

In this section, we introduce our method for Binarized MobileNet-Sp in detail
and step by step. We notice that the depthwise separable convolution can be con-
sidered as a kind of low-rank decomposition of the original 3 × 3 convolutional
layer regardless of the intermediate batch norm and non-linear activation lay-
ers. Empirically, this kind of cascade decomposition method is not quantization
friendly. Intuitively, it results from the information bottleneck effect along with
the narrower single layer which makes it difficult to propagate gradient infor-
mation, especially in binarization configuration. Inspired by this point of view,
we consider altering to approximate the computation-heavy layer through spar-
sity connections. Going along with way, we propose our Binarized MobileNet-Sp
which maintains the compact architecture of the original MobileNet while mak-
ing it easier to binarize.

4.1 Low-Rank Decomposition Perspective of Separable Convolution

To better understand the low-rank decomposition characteristic behind depth-
wise separable convolution module, we consider a standard convolution with



Towards Binarized MobileNet via Structured Sparsity 693

parameter W ∈ R
Cout×Cin×K×K . In other words, W has Cout 3D filters, each fil-

ter is consists of Cin 2D kernels. We reveal that all kernels correspond to the i-th
input channel lies in a rank-1 subspace. More specifically, let Wdw ∈ R

Cin×K×K

and Wpw ∈ R
Cout×Cin×1×1 represent the parameter tensor for depthwise and

pointwise convolutional layers. Considering the kernels correspond to the i-th
input channel, we have

W (o, i, :, :) ≈ Wpw(o, i) ∗ Wdw(i, :, :), o ∈ [1, Cout], (1)

which indicates that the Cout elements (2D kernels) corresponds to the i-th input
channel lie in a rank-1 subspace with basis Wdw(i, :, :). Figure 2 shows an example
of the low-rank decomposition view of the depthwise separable convolution.

The low-rank architecture makes MobileNets quite efficient compared to
other networks like VGG. However, when combined with network binarization
techniques, the intrinsic low-rank characteristic of the depthwise separable block
may cause an information bottleneck effect especially in the backpropagation
phase, where gradient approximation is needed due to the binarization of weights
and input features. More specifically, even without binarizing depthwise convo-
lutions, the small portion of the full-precision depthwise convolutions could not
recover the information lost during the feature binarization step of 1 × 1 con-
volutions. Consequently, directly binarized MobileNet would converge to a poor
local minimum.

Fig. 2. Illustration of the low-rank perspective of depthwise separable convolution. All
kernels of the regular filters (Regular) correspond to the i-th input channel lie in a
rank-1 subspace, spaned by the i-th kernel of depthwise convolution (DW).

Fig. 3. Illustration of the proposed sparse connected convolutional filters. Each sparse
convolution consists of a cross-spatial plane (yellow) and a cross-channel pillar (green)
(Color figure online).

4.2 From Low-Rank to Sparse Connection

Through the above analysis, we know the cascade decomposition of standard
convolution into depthwise separable convolution is not quantization friendly.
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Instead, we consider altering to approximate the computation-heavy layer
through sparse connections. Like in the low-rank approximation of the MobileNet
building block, the sparse connection building block also needs to consider cross-
spatial and cross-channel information fusion simultaneously. We take this prop-
erty to the extreme, and propose the minimal sparse connected convolution, the
process is shown in Fig. 3(a). Figure 3(b) lists some sparse convolutions, each
of them has a cross-spatial plane and a cross-channel pillar, allowing both spa-
tial and channel information fusion. Note that to make the sparse convolutional
layer have a full perception of the input feature maps, the sparse convolutional
filters have different sparse patterns, i.e., the cross-spatial planes are placed onto
different positions of the cross-channel pillar.

Fig. 4. Illustration of the building block for Binarized MobileNet-Sp.

Note that the sparse convolutional filter can be reformulated into the addi-
tion of two filters, i.e., the spatial filter (the plane) and the channel filter (the
pillar). By collecting spatial parts and channel parts of all filters together, the
sparse convolution can be reformulated into depthwise convolution and point-
wise convolution, however, in a paralleled way instead of the cascade way of
traditional MobileNet. Through this transformation, we get our ultimate build-
ing block for Binarized MobileNet as shown in Fig. 4. To distinguish from the
traditional MobileNet, we denote our improved architecture as MobileNet-Sp,
while the traditional counterpart as MobileNet-L, where “Sp” and “L” indicate
the concept of sparse connection and low-rank decomposition respectively.

The sparse connection induced MobileNet-Sp and the traditional low-rank
induced by MobileNet-L have several connections. (1) Both architectures use
the depthwise convolution and pointwise convolution, however, the difference
is that the MobileNet-L stacks these two layers while MobileNet-Sp utilizes a
parallel pattern. Thus the computation and parameter size are almost the same
for these two architectures. (2) When taking a global view of the whole network
architectures, the MobileNet-Sp can be viewed as two twisted MobileNet-L mod-
els, with interactions across the intermediate layers.

From the above analysis, we find that like MobileNet-L, 1 × 1 convolution
layers consume most computation and storage resources, thus we only binarize
the pointwise convolution branch. More importantly, this form of network with
the multi-branch structure that originates from sparsity connections could be
more friendly to binarization. To be specific, the gradient backpropagation pro-
cess benefits from the reserved full-precision computation and memory-efficient
branch of depthwise convolution, which will be verified by detailed experiments
in the following section.



Towards Binarized MobileNet via Structured Sparsity 695

5 Experiments

In this section, we thoroughly evaluate the performance of the proposed
MobileNet binarization method on the ILSVRC12 ImageNet classification bench-
mark, as well as the properties of Binarized MobileNet-Sp through several abla-
tion studies.

Table 3. Accuracy comparison between
MobileNet-Sp and MobileNet-L.

Model Top-1 Top-5

MobileNet (Reference) 70.6% –

MobileNet-L 70.1% 89.1%

MobileNet-Sp 69.1% 88.6%

MobileNet-LS 70.4% 89.5%

Table 4. Accuracy comparison between
binarized MobileNet-Sp and MobileNet-L.

Model Top-1 Top-5

MobileNet (Reference) 70.6% –

Binarized MobileNet-L 49.4% 73.3%

Binarized MobileNet-Sp 58.6% 80.9%

5.1 MobileNet-Sp vs MobileNet-L

This section compares the sparse connection based MobileNet-Sp and low-rank
based MobileNet-L on the ImageNet classification task in detail. For the sake of
fairness, all models for comparison are trained for 100 epochs with polynomial
learning rate decay. Our results, as well as the reference MobileNet baseline,
are shown in Table 3. From the results, it can be concluded that the sparse
connection based MobileNet-Sp yields poorer performance than MobileNet-L,
with about 1% top-1 accuracy gap. At the same time, to further compare the
parallel module and the cascade module, we also report the accuracy when both
the parallel and cascaded depthwise convolutions are incorporated, denoted by
MobileNet-LS. The results indicate that the cascade depthwise convolution has
a more powerful feature aggregation ability than parallel depthwise convolution
used by MobileNet-Sp, under the circumstance of full-precision representations.

Next, we evaluate the binarization results of MobileNet-Sp and MobileNet-L.
In both architectures, the depthwise convolutions, as well as the first convolution
and the last fully-connected layer are not binarized. The results are shown in the
last two rows of Table 4. Under the binarization setting, the behavior of these
two architectures is quite different from the full-precision setting. The Binarized
MobileNet-L model has a 20.7% accuracy drop than the full-precision. In con-
trast, the Binarized MobileNet-Sp only drops 11.5%, outperforming Binarized
MobileNet-L by 9.2% top-1 accuracy, which proves our suppose.

Lightweight networks like MobileNet tend to need more training iterations to
well converge. When coupled with binarization operations, it may need even more
iterations. As shown in Table 5, When the training epochs doubled, i.e., from 100
epochs to 200 epochs, the top-1 accuracy improves 1.3%. There will be another
1.3% improvement when the training epochs reach 450. From the results, we can
see that the binarized MobileNet-Sp can benefit from more training iterations.
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Table 5. Accuracy results of Binarized
MobileNet-Sp under different epochs.

Model Epochs Top-1 Top-5

Binarized
MobileNet-Sp

100 58.6% 80.9%

Binarized
MobileNet-Sp

200 59.9% 81.8%

Binarized
MobileNet-Sp

450 61.2% 82.9%

Table 6. Accuracy results of different
feature expanding options.

Model Expand Top-1 Top-5

Binarized
MobileNet-Sp

Copy 57.9% 80.1%

Binarized
MobileNet-Sp

CReLU 58.5% 80.6%

Binarized
MobileNet-Sp

2× DW 58.6% 80.9%

5.2 Feature Expanding Options

The MobileNet architecture increases channels by 2× at each time when fea-
ture maps are reduced, which can be easily accomplished by the 1 × 1 con-
volutions. However, in our sparse connection induced MobileNet-Sp, the 1 × 1
convolutions need to have the same number of channels as depthwise convolu-
tions, also the same as the number of input channels. To deal with the channel
expanding problem, we propose three expanding patterns. (1) Copy: means to
duplicate the output feature maps of the depthwise convolutions. In this pat-
tern, no extra information and computation are produced. (2) CReLU: means
to utilize CReLU activation function to replace ReLU function for depthwise
convolutions, producing in 2× number of channels. This pattern also introduces
no extra computation and parameters, however, it can utilize the negative side
of features which are ignored by ReLU function. (3) 2× DW: means to concate-
nate the feature maps of two distinct depthwise convolutions. In this setting, the
computation and parameters are also doubled.

Table 6 illustrates the comparison results for the above three feature expand-
ing options. It can be concluded that the naive copy pattern achieves lower
performance than the other settings. The reason is that the simple copy could
not introduce extra information. In contrast, the CReLU pattern achieves much
better results, outperforming a simple copy pattern by 0.6% top-1 accuracy.
Moreover, the 2× DW pattern brings another 0.1% top-1 improvement than
using CReLU. Considering that there is only several (5 for MobileNet) expand-
ing layers, we choose the 2× DW pattern for the following experiments.

5.3 The Effect of Feature Width and Layer Depth

The choice of layer depth and the width for each layer is a trade-off between
accuracy and computing performance. Generally speaking, increasing depth and
width can boost the accuracy, at the cost of increased computation and param-
eters. This section evaluates the trade-off performance of layer depth and width
about the proposed binarized MobileNet-Sp architecture. The results are shown
in Table 7.



Towards Binarized MobileNet via Structured Sparsity 697

From Table 7 it can be concluded that increasing width and depth can dra-
matically improve the accuracy. Another finding is that the results of doubling
width or doubling depth are similar, both reach 64.8% top-1 accuracy. However,
using 2× depth, the multiply-addition operations are about half of 2× width.
Thus increasing depth is more efficient than increasing width.

Table 7. Accuracy of Binarized
MobileNet-Sp for different width (W)
and depth (D).

Model W/D Top-1 Top-5

Binarized
MobileNet-Sp

0.5/1 51.4% 74.6%

Binarized
MobileNet-Sp

0.75/1 57.4% 79.7%

Binarized
MobileNet-Sp

1.0/1 61.2% 82.9%

Binarized
MobileNet-Sp

2.0/1 64.8% 85.4%

Binarized
MobileNet-Sp

1.0/2 64.8% 85.6%

Binarized
MobileNet-Sp

0.7/2 61.9% 83.6%

Table 8. Accuracy and FLOPs compar-
ison with other state-of-the-art binary
methods.

Networks Top-1 Top-5 FLOPs

XNOR-
AlexNet [20]

44.2% 69.2% 138M

XNOR-
ResNet18 [20]

51.2% 73.2% 167M

Bi-Real Net18
[16]

56.4% 79.5% 163M

MoBiNet [18] 54.4% 77.5% 52M

Binary
MobileNet [19]

60.9% 82.6% 154M

Our Method 61.2% 82.9% 52M

5.4 Comparison with State-of-the-Art Methods

In this section, to evaluate our method, we compare our Binarized MobileNet-
Sp with several recent methods. Our baseline uses 2 × DW for feature expand-
ing and is trained for 450 epochs. As shown in the Table 8, compared with
Bi-RealNet18 [16], our method improves the accuracy by 4.8% with 3× lower
FLOPs. MoBiNet [18] and [19] are recent methods for binary MobileNet. Our
method outperforms the MoBiNet by 6.8% with comparable speedup ratio and
is more efficient than [19] with 3× lower FLOPs.

6 Conclusion

In this paper, we present Binarized MobileNet-Sp for mobile applications,
by compression-architecture co-design. We first reveal the connection between
MobileNets and low-rank decomposition, showing that decomposition-based
architecture is not quantization friendly. Then, by adopting the view of sparsity,
we propose the Binarized MobileNet-Sp, which significantly enhances the robust-
ness to binarization. Experiments on ImageNet show that the proposed Binarized
MobileNet-Sp achieves 61.2% top-1 accuracy, outperforming the naive binariza-
tion method by about 10% higher top-1 accuracy. Compared to the Bi-Real
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net which achieves 56.4% top-1 accuracy on the more heavy-weight and redun-
dant ResNet-18 (which has comparable baseline accuracy with MobileNet in
full-precision representation), the Binarized MobileNet-Sp achieves much higher
accuracy with a significant reduction in computing complexity.
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