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Abstract— The real-time segmentation of surgical instru-
ments plays a crucial role in robot-assisted surgery. However,
it is still a challenging task to implement deep learning models
to do real-time segmentation for surgical instruments due
to their high computational costs and slow inference speed.
In this paper, we propose an attention-guided lightweight
network (LWANet), which can segment surgical instruments
in real-time. LWANet adopts encoder-decoder architecture,
where the encoder is the lightweight network MobileNetV2,
and the decoder consists of depthwise separable convolution,
attention fusion block, and transposed convolution. Depthwise
separable convolution is used as the basic unit to construct the
decoder, which can reduce the model size and computational
costs. Attention fusion block captures global contexts and
encodes semantic dependencies between channels to emphasize
target regions, contributing to locating the surgical instrument.
Transposed convolution is performed to upsample feature maps
for acquiring refined edges. LWANet can segment surgical
instruments in real-time while takes little computational costs.
Based on 960×544 inputs, its inference speed can reach 39
fps with only 3.39 GFLOPs. Also, it has a small model size
and the number of parameters is only 2.06 M. The proposed
network is evaluated on two datasets. It achieves state-of-the-
art performance 94.10% mean IOU on Cata7 and obtains a
new record on EndoVis 2017 with a 4.10% increase on mean
IOU.

I. INTRODUCTION

In recent years, significant progress has been witnessed in
robot-assisted surgery and computer-assisted surgery. Real-
time semantic segmentation of surgical robotic instruments
is one of the key technologies for surgical robot control. It
can accurately locate robotic instruments and estimate their
pose, which is crucial for surgical robot navigation [1]. Also,
the segmentation results can be used to predict dangerous
operation and reduce the risk of the surgery, contributing
to achieving robotic autonomous operation. Furthermore,
semantic segmentation of surgical instruments can provide
a variety of automated solutions for post-operative work,
such as objective skills assessment, surgical report genera-
tion, and surgical workflow optimization [2], [3], [4]. These
applications can improve the safety of surgery and reduce the
workload of doctors, which is significant for clinical work.
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Fig. 1. Challenges in semantic segmentation for surgical instruments.
Different types of surgical instruments are marked by different colors.

Recently, a series of methods have been proposed for the
semantic segmentation of surgical instruments. The hybrid
CNN-RNN method [5] introduced Recurrent Neural Network
to capture global contexts and expand receptive fields. RAS-
Net [6] adopted an attention mechanism to emphasize the
target regions and improve the feature representation. An-
other work [7] fused convolutional neural network prediction
and the kinematic pose information to improve segmentation
accuracy. However, those work mainly focused on fusing dif-
ferent forms of information for higher segmentation accuracy
while failed to consider the inference speed, limiting their
applications in real-time control of surgical robots.

Different from common segmentation tasks, semantic seg-
mentation of surgical instruments faces more challenges. To
provide a good view, strong lighting conditions are required
during the surgery, leading to severe specular reflections on
surgical instruments. Specular reflection makes the surgical
instrument white and changes its visual features such as color
and texture. The network cannot identify surgical instruments
by these changed features, making segmentation more dif-
ficult. Besides, shadows often appear in the field of view
due to changes in illumination angle, movement of surgical
instruments, and occlusion of human tissues. As shown in
Fig. 1, surgical instruments and background tend to darken
in shadows. This issue not only changes the visual features of
the surgical instrument but also makes it difficult to distin-
guish between surgical instruments and background. Also,
sometimes only a part of the surgical instrument appears
in the image due to movements and views, causing serious
class imbalance. These issues make localization and semantic
segmentation for surgical instruments more challenging.

To address these issues, an attention-guided lightweight
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network (LWANet) is proposed to segment surgical instru-
ments in real-time. It adopts encoder-decoder architecture
to get high-resolution masks, which can provide more de-
tailed location information for robot control. A lightweight
network, MobileNetV2 [8], is adopted as the encoder. It
owns fast inference speed and has powerful feature extraction
capabilities. Besides, we design a lightweight attention de-
coder to recover the location details. Depthwise separable
convolution [9] is used as a basic unit to construct the
decoder. It factorizes a standard convolution into two parts
to reduce the computational costs and model size. To better
recover location details, transposed convolution is used to
perform upsampling in the decoder.

Attention fusion block is designed to fuse high-level and
low-level features. It introduces global average pooling to
capture global contexts and encodes semantic dependencies
between channels. Since different channels correspond to
the various semantic response, this block can distinguish
target regions and background by semantic dependencies
between channels. By emphasizing the specific channels, it
can focus on target regions and accurately locate surgical
instruments, contributing to solving the specular reflection
and shadow issues as well as improving the segmentation
accuracy. Furthermore, attention fusion block only takes little
computational costs, contributing to improving inference
speed.

The contributions of our work are as follows:
1) An attention-guided lightweight network is proposed

to segment surgical instruments in real-time. It has a small
model size and takes little computational costs. The inference
speed can reach 39fps with only 3.39 GFLOPs on 960×544
inputs. Thus, it can be applied to real-time control of the
surgical robot and real-time computer-assisted surgery.

2) Attention fusion block is designed to model semantic
dependencies between channels and emphasize the target
regions, which contributes to localization and semantic seg-
mentation for surgical instruments.

3) The proposed network achieves state-of-the-art perfor-
mance 94.10% mean IOU on Cata7 and obtains a new record
on EndoVis 2017 with a 4.10% increase on mean IOU.

II. RELATED WORK

A. Semantic Segmentation of Surgical Instruments

In previous work, various methods have been proposed
to segment surgical instruments [6], [10]. The Hybrid RNN-
CNN method introduced the recurrent neural network in Full
Convolutional Network (FCN) to capture global contexts,
contributing to expanding the receptive field of convolution
operations [5]. RASNet [6] adopted an attention mechanism
to emphasize the target region and improve the feature
representation. Qin et al. [7] fused the convolutional neural
network predictions and the kinematic pose information to
improve segmentation accuracy. Luis et al. [11] presented
a network based on FCN and optic flow to solve problems

such as occlusion and deformation of surgical instruments.
Another work [12] used the residual network with dilat-
ed convolutions to segment surgical instruments. However,
most of these work mainly focused on the improvement
of segmentation accuracy while failed to segment surgical
instruments in real-time.

B. Light-Weight Network

Due to the limitations of computing resources, the ap-
plication of deep learning models in robot control remains
a challenge. To make the neural network easier to apply,
a series of lightweight networks is proposed. Light-Weight
RefineNet modifies [13] the decoder of RefineNet [14] to re-
duce the number of parameters and floating-point operations.
MobileNet [9] introduced depthwise separable convolution
instead of the traditional convolution to reduce the model
size and computational costs. MobileNetV2 [8] proposed
the inverted residual structure to improve the ability of a
gradient to propagate and save memory. The network used
in [15] consisted of mobilenetv2 and the decoder of Light-
Weight RefineNet, which is used for semantic segmentation.
Besides, there are lightweight networks applied in other tasks
such as Shufflenet [16], ShuffleNetV2 [17], SqueezeNet [18]
and Xception [19]. They are fast and memory-efficient.

C. Attention Module

In recent years, attention mechanisms have been widely
used in the field of computer vision [20], [21]. It can help the
network focus on key regions by mimicking human attention
mechanisms. Squeeze-and-excitation block [22] squeezed
global context into a vector to model the semantic depen-
dencies between channels. Non-local block [23] extracted the
global context to expand the receptive field. Dual Attention
Network [21] consisted of channel attention module and po-
sition attention module, modeling the semantic dependencies
between positions and channels. These attention modules
can be flexibly inserted into FCNs to improve their feature
representation.

III. METHODOLOGY

A. Overview

Due to the limitation of computing resources, the applica-
tion of deep learning models in robots is very difficult. To ad-
dress this issue, we propose the attention-guided lightweight
network (LWANet) to segment robotic instruments in real-
time. It adopts encoder-decoder architecture to acquire high-
resolution masks and provide detailed location information.
The architecture of LWANet is shown in Fig. 2. To reduce
computational costs, a lightweight network, MobileNetV2,
is used as an encoder to extract semantic features. It is
based on the inverted residual block, which is fast and
memory efficient. The last two layers of mobilenetv2 are
dropped, including the average pooling layer and the fully
connected layer. They are not suitable for semantic segmen-
tation task. The output scale of the MobilenetV2 is 1/32
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(a) Attention-guided Lightweight Network (LWANet)

(b) Attention Fusion Block (AFB) (c) Depthwise Separable Convolution (DSC)
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Fig. 2. The architecture of Attention-guided Lightweight Network and its components. (a) Attention-guided Lightweight Network: it adopts the encoder-
decoder architecture. (b) Attention Fusion Block (c) Depthwise Separable Convolution

of the original image. Upsampling is bound to increase the
computational cost of the network. Therefore, a lightweight
attention decoder is designed to recover position details. It
only takes little computational costs, contributing to real-
time segmentation for surgical instruments. The output scale
of LWANet is 1/4 of the original image. The lightweight
attention decoder will be introduced in detail next.

B. Lightweight Attention Decoder

The lightweight attention decoder consists of depthwise
separable convolution [9], attention fusion block, and trans-
posed convolution. The depthwise separable convolution is
used as the basic unit of the decoder, contributing to re-
ducing computational costs. Attention fusion block captures
global contexts and encodes semantic dependencies between
channels to focus on target regions. Besides, transposed
convolution is adopted to perform upsampling.

1) Depthwise Separable Convolution: Depthwise separa-
ble convolution is adopted as the basic unit of the decoder,
replacing the standard convolution. Depthwise separable con-
volution factorizes a standard convolution into a depthwise
convolution and a pointwise convolution, breaking the in-
teraction between the size of the kernel and the channels
of output [9]. In this way, it can reduce the computational
cost. Its architecture is shown in Fig. 2(c). We consider
a case that a convolution takes a d1 × m × n feature
map as input and produces a d2 × m × n feature map,

where d1 and d2 is the number of feature map channels.
When the kernel size is k × k, the computational cost of
standard convolution is k × k × d1 × d2 × m × n. The
computational cost of depthwise separable convolution is
k × k × d1×m× n+ d1× d2×m× n [9].

k × k × d1×m× n+ d1× d2×m× n

k × k × d1× d2×m× n
=

1

d2
+

1

k2
(1)

By using the depthwise separable convolution, the com-
putational cost is reduced by 1

d2 +
1
k2 times [9]. Usually, d2

is so large that 1/d2 can be ignored. When the kernel size
is 3×3, the computational cost is reduced by about 9 times.

2) Attention Fusion Block: Attention fusion block(AFB)
is introduced to fuse the high-level feature map and low-
level feature map. Since different channels correspond to
various semantic responses, a channel attention mechanism
called squeeze-and-excitation mechanism [22] is introduced
to encode semantic dependencies between channels. This
attention mechanism is performed on low-level and high-
level features separately to extract different-level attentive
features, which is shown in Fig. 2(b). In this way, we
can not only emphasize target location details in low-level
feature maps but also capture the global context and semantic
information in high-level feature maps to improve feature
representation.

Global average pooling is essential to capture global
contexts and encode semantic dependencies [20], [21]. It
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squeezes global contexts into an attentive vector to encode
semantic dependencies between channels. Then, the attentive
vector is transformed by convolutions to further capture
semantic dependencies. The generation of the attentive vector
is shown in Eq.(2). The output x̂ is generated by Eq.(4).

Ac = δ2 [Wβ · δ1 [Wα · g(x) + bα] + bβ ] (2)

where x refers to input feature map. g refers to the global
average pooling. δ1 refers to ReLU function and δ2 refers to
Sigmoid function. Wα,Wβ are parameters of 1×1 convolu-
tion. bα, bβ are biases.

g(xk) =
1

w × h

h∑
i=1

w∑
j=1

xk(i, j) (3)

where k = 1, 2, ..., d and x = [x1, x2, ..., xd].

x̂ = Ac ⊗ x (4)

where ⊗ denotes broadcast element-wise multiplication.
Finally, two attentive feature maps are merged by addition.

Addition can reduce parameters of convolution compared
with concatenation, contributing to reducing computational
costs.

3) Transposed Convolution: The decoder recovers the
position details and obtains high-resolution feature maps by
upsampling. However, upsampling often results in blurred
edges and reduces image quality. To address this issue,
transposed convolution is introduced to perform upsampling.
It can learn the weights to suit various objects, helping
preserve edge information. In this way, we can acquire
refined edges and improve segmentation accuracy.

C. Transfer Learning

Surgical videos or images are difficult to obtain. Also,
the annotation for the surgical instrument takes a lot of
time and costs. Thus, a transfer learning strategy is adopted
to overcome this difficulty. We use samples from other
tasks to improve the segmentation accuracy for surgical
instruments. In our network, the encoder MobileNetV2 [9]
is pre-trained on the ImageNet. Images in the ImageNet
are all from life scenes. By pre-training, the network can
learn low-level features such as boundary, color, and texture
of objects. These features can also be applied in surgical
scenes. In this way, the encoder has a better ability to extract
low-level features. Then the network is trained on surgical
instrument datasets to capture high-level semantic features
of instruments. This strategy improves network performance
and accelerates network convergence.

D. Loss Function

The class imbalance issue is more severe in the surgical in-
strument segmentation task than other common segmentation
tasks. To address this issue, we adopt focal loss [24] to train
our network. It reduces the weight of easy samples, making

the model more focused on hard samples during training.
Focal loss is shown in Eq. (5).

FL(pt) = −(1− pt)
γ log(pt) (5)

where γ is used to adjust the weight of examples. γ ≥ 0.

IV. EXPERIMENTS AND RESULTS

The proposed LWANet is evaluated on two datasets,
including Cata7 [10] and EndoVis 2017 [1] datasets.

A. Dataset

Cata7 dataset is a cataract surgical instrument dataset for
the semantic segmentation of surgical instruments, which is
constructed by us. It contains 2500 frames with a resolution
of 1920×1080, consisting of 1800 frames for training and
700 frames for test. These images are split from 7 cataract
surgery videos at 30fps. The images in the training set and
the test set are from different video sequences. There are 10
types of surgical instruments in cata7.

EndoVis 2017 dataset is from the MICCAI Endovis Chal-
lenge 2017. This dataset is based on endoscopic surgery,
acquired by a Vinci Xi robot. It contains 3000 images with
a resolution of 1280×1024, which contains 1800 images
for training and 1200 images for test. There are 7 types of
surgical instruments in EndoVis 2017.

B. Implementation

Our network is implemented in PyTorch. All experiments
are performed on an Nvidia Titan X which has 12 G memory.
Adam is used as an optimizer, which takes default parameters
of PyTorch. The batch size is 16 in training. To prevent
overfitting, we use a strategy to adjust the learning rate. For
every 30 iterations, the learning rate is multiplied by 0.8.
After a series of experiments, the parameter γ of focal loss
is set to 6. All the networks are trained based on the above
strategies. Only the initial learning rate is different. The Dice
coefficient and Intersection-Over-Union(IOU) are selected as
evaluation metrics.

Data augmentation is performed to increase the diversity
of samples, contributing to improving network performance.
The augmented samples are generated by random rotation,
shifting, and flipping.

C. Cata7

To verify the excellent performance of the network, a
series of experiments are performed based on Cata7. The
images in Cata7 are resized to 960×544 due to the limi-
tations of computing resources. The initial learning rate is
0.0002. 800 images are generated by data augmentation. All
experimental results are shown in Table I. The inference time
is calculated including data transfer from CPU to GPU and
back and averaged across 667 inferences.

As shown in Table I, our network achieves state-of-the-
art performance 96.91% mean Dice and 94.10% mean IOU.
Among other methods, MobileV2-RefineNet [15] achieves
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TABLE I
PERFORMANCE COMPARISON OF A SERIES OF NETWORKS

Method Encoder Decoder mDice(%) mIOU(%) Parameters GFLOPs Time(ms) FPS
U-Net [25] - - 86.83 78.21 7.85M 106.18 50.00 20.00

TernausNet [26] VGG11 - 96.24 92.98 25.36M 219.01 78.92 12.67
LinkNet [27] ResNet50 - 95.62 91.86 31.27M 74.45 44.50 22.47

LW-RefineNet [13] ResNet50 LW-Refine 96.16 92.74 27.33M 63.34 46.89 21.33
MobileV2-RefineNet [15] MobileNetV2 LW-Refine 96.33 93.07 3.01M 16.62 39.63 25.23

LWANet without AFB MobileNetV2 LW-Decoder 95.80 92.18 2.03M 3.38 - -
LWANet(Ours) MobileNetV2 LWA-Decoder 96.91 94.10 2.06M 3.39 25.32 39.49

TABLE II
COMPARISON OF THE COMPUTATIONAL COST BETWEEN LWANET AND

OTHER METHODS

Method GFLOPs Encoder Decoder
GFLOPs Percen. GFLOPs Percen.

U-Net [25] 106.18 28.85 27.17% 77.33 72.83%
TernausNet [26] 219.01 81.42 37.18% 137.59 62.82%

LinkNet [27] 74.45 42.88 57.60% 31.57 42.40%
LW-RefineNet [13] 63.34 42.88 67.70% 20.46 32.30%

Mobile-RefineNet [15] 16.62 3.11 18.71% 13.51 81.29%
LWANet(Ours) 3.39 3.11 91.74% 0.28 8.26%

the best performance. Compared with it, the mean Dice
and mean IOU are increased by 0.58% and by 1.03%, re-
spectively. Besides, the encoder of MobileV2-RefineNet [15]
is the same as our network while the decoder is different.
This indicates that the proposed lightweight attention decoder
(LWA-Decoder) has excellent performance.

The model size of LWANet is small. It only has 2.06M
parameters. Lightweight RefineNet [13] and MobileV2-
RefineNet [15] are existing state-of-the-art lightweight net-
works for semantic segmentation. The model size of them is
27.33M and 3.01M, respectively. Compared with MobileV2-
RefineNet [15], the model size of LWANet is reduced by
approximately 31.56%. Also, the model size of lightweight
Refinenet [13] is 13.27 times that of LWANet.

Furthermore, LWANet can segment surgical instruments
in real-time. As shown in Table I, our LWANet can process
an image within 26ms. The inference speed is approximately
39 fps. The frame rate of the original surgical video is 30 fps
which is much lower than the inference speed of LWANet.
Therefore, the network can segment surgical instruments
in real-time based on 960×544 inputs. Under the same
conditions, the inference speed of MobileV2-RefineNet [15]
is approximately 25 fps. Meanwhile, the inference speed
of Lightweight RefineNet [13] is approximately 21 fps. In
contrast, the inference speed of LWANet has increased by
14 fps and 18 fps, respectively.

We also evaluate the computational cost of LWANet.
Floating-point operations per second (FLOPs) is used as
the evaluation metric. As shown in Table II, the FLOPs
of LWANet is 3.39G, of which encoder accounts for a
large proportion of 91.74%. The FLOPs of the decoder only
accounts for 8.26% of the total. The FLOPs of MobileV2-

(b) LWANet (c) Mbv2-RefineNet(a) Image (d) Ground Truth

Fig. 3. Visualization results of LWANet on Cata7. Different types of
surgical instruments are marked by different colors.

TABLE IV
ABLATION EXPERIMENTS FOR TRANSFER LEARNING

Method Pre-trained mDice(%) mIOU(%)
LWANet No 91.64 86.20
LWANet Yes 96.91 94.10

RefineNet [15] is 16.62G, which is 4.9 times of LWANet.
Besides, the FLOPs of its encoder only accounts for 18.71%
while the decoder accounts for 81.29% of the total. The
encoders of these two networks are the same. Thus, it can
be found that the lightweight attention decoder designed by
us has lower computational costs and better performance.
Also, the FLOPs of Light-Weight RefineNet [13] is 63.34G,
which is 18.68 times of LWANet. These results show that the
computational cost of LWANet and LWA-Decoder are low.

Attention fusion block(AFB) is adopted to help the net-
work focus on key regions. Ablation experiments for AFB
are performed to verify its performance. The results are
shown in Table I. LWANet without AFB achieves 95.80%
mean Dice and 92.18% mean IOU. LWANet with AFB
achieves 96.91% mean Dice and 94.10% mean IOU. Via
employing AFB, mean Dice has increased by 1.11% and
mean IOU has increased by 1.92%. These results show that
AFB contributes to improving segmentation accuracy.

Transfer learning strategy can improve network perfor-
mance and accelerate network convergence. Some experi-
ments are set to verify the validity of this strategy, which
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TABLE III
SEGMENTATION RESULTS ON ENDOVIS 2017 DATASET.NCT, UB AND UA ARE THE UNIVERSITY ABBREVIATION OF THE PARTICIPATING TEAM [1].

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 mIOU
TernausNet 0.177 0.766 0.611 0.871 0.649 0.593 0.305 0.833 0.357 0.609 0.542

ToolNet 0.073 0.481 0.496 0.204 0.301 0.246 0.071 0.109 0.272 0.583 0.337
SegNet 0.138 0.013 0.537 0.223 0.017 0.462 0.102 0.028 0.315 0.791 0.371
NCT 0.056 0.499 0.926 0.551 0.442 0.109 0.393 0.441 0.247 0.552 0.409
UB 0.111 0.722 0.864 0.68 0.443 0.371 0.416 0.384 0.106 0.709 0.453
UA 0.068 0.244 0.765 0.677 0.001 0.400 0.000 0.357 0.040 0.715 0.346

Ours 0.096 0.758 0.889 0.898 0.761 0.627 0.454 0.875 0.230 0.763 0.583

TABLE V
COMPARISON OF INFERENCE SPEED AND COMPUTATIONAL COST

Input Size Method GFLOPs Tims(ms) FPS
640×512 LWANet 2.12 23.90 41.85
448×352 LWANet 1.02 21.97 45.52
320×56 LWANet 0.53 18.88 52.97

is shown in Table IV. The network without pre-training has
only achieved 91.64% mean Dice and 86.20% mean IOU.
By employing the transfer learning strategy, mean Dice has
increased by 5.27% and mean IOU has increased by 7.90%.

To give a more intuitive result, we visualize the segmen-
tation results. The visualization results are shown in Fig. 3.
There are misclassifications in the results of MobileV2-
RefineNet [15]. Meanwhile, the results of LWANet are the
same as the ground truth, which is because attention fusion
block helps our network focus on key regions. Also, due to
the use of focal loss, our network can effectively solve the
class imbalance problem.

D. EndoVis 2017

LWANet is also evaluated on the Endovis 2017 dataset [1].
The images in EndoVis 2017 is resized to 640×544 due to
the limitation of computing resources. The initial learning
rate is 0.0002. The batch size is 16. The test set consists of
10 video sequences. Each sequence contains specific surgical
instruments. The test performance results are reported in
Table III. TernausNet [26], ToolNet [28] and SegNet [29] are
evaluated on EndoVis2017. The test results of other methods
are from the MICCAI EndoVis challenge 2017 [1].

LWANet achieves 58.30% mean IOU, which outperforms
other methods. It achieves the best results in 5 video se-
quences and takes the second place in 3 video sequences.
The best of the existing methods is TernausNet [26]. Ter-
nausNet [26] achieves 54.20% mean IOU and achieves the
best results in 3 video sequences. Compared with it, the
performance of our network improves by 4.10% mean IOU.

Our network can segment surgical instruments in real-
time. Comparison of inference speed and computational costs
based on different input sizes is shown in Table V. The
inference time is calculated including data transfer from CPU
to GPU and back. It averaged across 600 inferences. The
inference speed of LWANet can reach about 42 fps when the

Fig. 4. Visualization results of LWANet on EndoVis 2017. From top
to bottom: image, prediction and ground truth. Different types of surgical
instruments are marked by different colors.

size of the input image is 640*512, which is much faster than
the frame rate of surgical videos. As the input size decreases,
the inference speed increases and the computational cost
decreases.

To give a more intuitive result, the segmentation results
are visualized in Fig. 4. Despite problems such as specular
reflections and shadows, our network still can segment
surgical instruments well. The results above prove that our
network achieves state-of-the-art performance.

V. CONCLUSIONS

In this paper, we propose an attention-guided lightweight
network named LWANet for real-time segmentation of sur-
gical instruments. It can segment surgical instruments in a
real-time while takes very low computational costs. Besides,
experiments prove that our network achieves state-of-the-
art performance on Cata7 and EndoVis 2017 datasets. This
model can be used for surgical robot control and computer-
assisted surgery, which is significant for clinical work.
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