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Recent studies have found that text can be represented in Hilbert space through a neural network driven
by quantum probability, which provides a unified representation of texts with different granularities
without losing the performance of downstream tasks. However, these quantum probability-inspired
methods only focus on intra-document semantics and lack modeling global structural information. In this
paper, we explore the potential of combining quantum probability with graph neural network, and pro-
pose a quantum probability-inspired graph neural network model to capture global structural informa-
tion of interaction between documents for document representation and classification. We build a
document interaction graph for a given corpus based on document word relation and frequency informa-
tion, then learn a graph neural network driven by quantum probability on the defined graph. First, the
proposed model represents each document node in the graph as a superposition state in a Hilbert space.
Then the proposed model further computes density matrix representations for nodes to encode docu-
ment interaction as mixed states. Finally, the model computes classification probability by performing
quantum measurement on the mixed states. Experiments on four document classification benchmarks
show that the proposed model outperforms a variety of classical neural network models and the previous
quantum probability-inspired model with much smaller parameter size. Extended analyses also demon-
strate the robustness of the proposed model with limited training data and its ability to learn semanti-
cally distinguishable document representation.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Text representation converts the discrete space of natural lan-
guage into continuous semantic space for further processing,
which plays a fundamental role in natural language processing
(NLP). Over the last few years, neural network models for text rep-
resentation have been widely adopted in a variety of areas of NLP,
e.g., text classification [1,2], machine translation [3,4], question
answering [5], sentiment analysis [6,7], and other applications.
Most of the existing neural network language models rely on word
representations like Word2Vec [8] or GloVe [9] to capture word
semantics, and focus on developing sophisticated compositional
architectures of word representations to model document seman-
tics, such as convolutional neural networks (CNNs) [1], recurrent
neural networks (RNNs) like long short-term memory (LSTM)
[10], and Transformer [11]. Recently, Hilbert Semantic Space for
text representation is proposed to model human language with a
well-designed mathematical framework of quantum probability
[12,13]. The new framework unifies different linguistic units (e.g.
sememe, word, sentence) in a single Semantic Hilbert Space and
demonstrates interpretations to explicit physical meanings with-
out losing the performance of downstream tasks, including text
classification and matching.

However, this quantum probability-inspired framework is
implemented as end-to-end neural network architecture and fol-
lows the practice of neural network language models to build com-
positional architectures on word representations, thus it may face
three challenges that need to be addressed:

� First, word representations cannot capture semantic informa-
tion effectively in some practical applications due to data spar-
sity problem. For example, some datasets, such as medical
records and industry-specific news, are often limited in size
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and containing a large number of out-of-vocabulary (OOV)
words such as professional nouns, as illustrated in Table 1.
Therefore, representations of OOV words cannot be initialized
with pre-trained word representations and have to be given
random values instead. Thus, the semantics of these words
totally relies on fine-tuning on the downstream tasks. But the
fine-tuning process may be ineffective due to the sparsity of
words in the dataset, where the average of occurrences of
OOV words is often extremely low, as shown in Table 1.

� Second, compositional architectures on word representations in
neural network models only focus on capturing intra-document
semantics, including sequential syntactic and local semantic
information [14], but ignore global structural information of
document semantic interaction, which can be called inter-
document semantics, including long-distance and non-
consecutive semantic information in a corpus.

� Third, both word representations and sophisticated composi-
tional architectures require a substantial scale of parameters
and massive computation. Particularly, word representations
often account for a dominating part of the model parameter size
[15]. Training neural network models with the oversized word
representations on the limited-scale dataset not only wastes
computing resources and power but also causes overfitting
problems.

To address these challenges, we explore the potential of com-
bining quantum probability with graph neural networks, which
have been shown effectiveness in a wide range of applications
because they pay more attention to structural information than
normal neural networks [16,17]. The significance of modeling
human language with quantum probability is confirmed by exten-
sive literature, which suggests that quantum-like phenomena exist
in human cognition [18], decision-making [19], and natural lan-
guage [20,21], but the quantum probability framework needs to
be implemented as a more effective neural network architecture,
and its combination with graph neural networks have not yet been
explored.

In this paper, we propose a quantum probability-inspired graph
neural network, named Doc2Ket, to capture global structural infor-
mation of document semantic interaction for document represen-
tation and classification. Specifically, we construct a graph to
describe the semantic interaction of documents from an entire cor-
Table 1
An illustration of the out-of-vocabulary (OOV) problem in the datasets of four text
classification benchmarks, which will be introduced in detail in the experiment
section. In all four datasets, the OOV words ratios are quite high, where the default
vocabulary is set as the union of the vocabularies of GloVe.6B and GloVe.840B
embedding [9] and K stands for thousands. At the same time, the average number of
occurrences of these OOV words in the whole dataset is extremely low (even lower
than 3 times). Furthermore, some examples show that these OOV words are often
professional nouns, which are closely related to the classification results.

Datasets OOV Words Ratio Average of Occurrences

R8 3.24 K/23.6 K
(13.7%)

2.25

R52 3.59 K/26.3 K
(13.7%)

2.29

Ohsumed 4.95 K/31.5 K
(15.7%)

2.27

20NG 46.7 K/123 K
(38.0%)

2.89

Datasets Some Examples of OOV Words

R8 ameritrust, carloadings, intermedics
R52 naturalite, equiticorp, endotronics

Ohsumed dopexamine, insulinopenic, tumourlets
20NG telecomputing, stylewriter, colostate,

symbiotics
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pus by considering documents as nodes and computing edge
weights based on document word relation and frequency informa-
tion. And then we apply a novel graph neural network model dri-
ven by quantum probability to directly learn document
representation on the defined document interaction graph, instead
of modeling documents as compositional semantics of word repre-
sentations. First, the proposed model considers each document
node as a particle, different semantic meanings (or latent concepts)
as different basis states to define a semantic representation space.
Thus, the model can represent each document node as a superpo-
sition state in the space, denoted as a ket in Dirac notation in quan-
tum mechanics. Then the model treats the contextuality of each
document node and neighboring document nodes in the interac-
tion graph as mixed systems and computes density matrix repre-
sentations of mixed states to capture inter-document semantic
information. Finally, the model performs a set of measurements
on the mixed states to generate measurement probability for each
classification category, which can be seen as classification
probability.

We conduct extensive experiments on four benchmark datasets
of the document classification task. The experiments demonstrate
that the proposed Doc2Ketmodel can not only outperform a variety
of classical neural network models but also achieve better perfor-
mance in comparison with the previous state-of-the-art quantum
probability-inspired model. In addition, we also conduct extended
analyses to demonstrate its robustness with limited training data,
efficiency in parameter size, and the ability to learn semantically
distinguishable document representation.
2. Related work

2.1. Quantum probability-inspired methods for NLP

In this paper, the proposed model is inspired by the recent mul-
tidisciplinary research across quantum probability and NLP. Quan-
tum probability refers to the mathematical foundation of quantum
mechanics, which can not only explain non-classical behaviors of
microscopic particle in physics, but also be in principle applicable
in macro-world problems that need to formalize uncertainty.
Indeed, researchers have been exploring applications of quantum
probability in psychology [22], cognition and decision making
[23–25], IR [26,27] and NLP [28,29,12].

In information retrieval (IR), the first attempt to adopt quantum
probability was to reforge various IR formal models in the
quantum-theoretic framework and provide a sound basis for devel-
oping new models to address IR problems, such as pseudo-
relevance feedback and ostensive retrieval [26]. Later, Piwowarski
et al. proposed a quantum-like IR model to represent queries as
density matrices and documents as subspaces [30]. Then, Quantum
Probability Ranking Principle (QPRP) for re-ranking top retrieved
documents was developed to implicitly capture inter-
dependencies between documents, based on the analogies
between the inter-document dependency and quantum interfer-
ence phenomena [31,32]. Recently, Bengio et al. proposed a princi-
pled Quantum Language Model (QLM), which generalizes the
traditional language model with quantum probability [27]. QLM
represents a query or document as a density matrix to compute
ranking metrics and estimates density matrix based on Maximal
Likelihood Estimation (MLE), providing a significant improvement
on realistic ad hoc retrieval tasks. Lately, Yoshua Bengio et al. fur-
ther extended QLM to learn concept embeddings for query expan-
sion inspired by quantum entropy minimization [33]. And Li et al.
proposed a Session-based Quantum Language Model (SQLM) based
on density matrix transformation to capture the dynamic informa-
tion in multi-query session search task [34].
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The successful application of the quantum probability-inspired
models in IR has led researchers to further explore their applica-
tion in NLP. In recent years, quantum probability-inspired models
for NLP have been attracting considerable attention with successful
applications in various tasks, such as sentiment analysis [35,36],
question answering [37], and other applications. Lapata et al. pro-
posed a quantum probability-inspired model [28] by defining a
dependency-based Hilbert space and adopting density matrices
to encode dependency neighborhood, for modeling context effects
in word similarity and association task. But this framework does
not have connections with the neural network design. With the
popularity of deep learning in NLP, the Neural Network-based
Quantum Language Model (NNQLM) [37] has been proposed by
integrating quantum probability into an end-to-end neural net-
work structure. NNQLM designs an end-to-end neural network
based on the density matrix to model question–answer pairs for
QA tasks. Lately, a quantum probability-driven network (QPDN)
[12,13] has been further proposed to model different levels of
semantic units, including sememes, word, document, and semantic
abstraction for natural language understanding.

However, the previous quantum probability-inspired models
focus modeling intra-document semantics by compositionality of
word embeddings. Different from them, our model focuses on
modeling inter-document semantics in the corpus by combining
the framework of quantum probability with graph neural network
architecture to directly learn document representation for classifi-
cation. Specifically, as shown in Table 2, the concepts in quantum
probability have different roles in modeling semantics between
the previous quantum probability-inspired model, QPDN [12] and
the proposed model, Doc2Ket.
2.2. Graph neural networks

Graph Neural Networks (GNNs) have received massive atten-
tion in recent years and have been applied to a wide range of
NLP tasks [16,17]. Graph Convolutional Network (GCN) that con-
volves features of neighbors, is proposed by generalizing CNN on
the grid structure to arbitrarily structured graphs [38]. More
recently, graph attention network (GAT) is proposed to aggregate
neighborhood features with masked self-attentional layers [39].
Compared to them, motivation and network structure of the pro-
posed model are different. In particular, the proposed model aggre-
gates neighborhood information to update each node
representation by computing density matrix of mixed system
inspired by quantum probability. And the proposed model imple-
ments aggregation operation as mixture, downstream classifica-
tion as measurement in a single unified framework of quantum
probability with explicit physical meaning.

Moreover, some studies have combined quantum computing
with neural networks [40] and graph neural networks [41,42],
and developed a few models with applications to different tasks,
including network analysis [43] and image recognition [44]. Differ-
ent from these works, the proposed quantum probability-inspired
graph neural network is developed from the quantum probability-
Table 2
Different roles of concepts between QPDN and Doc2Ket.

Concepts QPDN Ours: Doc2Ket

Basis states sememes semantic basis
Superposition word document semantics
Mixed system document inter-document

semantics
Measurement abstraction text classification
Measurement

probability
high-level
representation

classification probability
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driven network (QPDN) for natural language modeling [12,13],
hence it focuses on the applications to text representation and
classification.

Finally, GNNs have also been very popular in NLP tasks, includ-
ing word representations [17], machine reading comprehension
[45], document summarization [46], and text classification [47].
Compared to the previous works on text classification task, besides
differences in network architecture, the proposed model constructs
a novel document interaction graph based on TF-IDF without
requiring extra inter-document relations such as citation relation,
and treats a document as a node instead of a graph of word nodes.
3. Methodology

3.1. Document interaction graph construction

Knowledge about inter-document relationships in a given cor-
pus is useful for learning document representation for classifica-
tion. To describe the interactions between documents in the
whole corpus C ¼ d1; d2 � � � dm�1; dmf g, we regard the interaction
structure as a fully-connected document graph G ¼ V ; Eð Þ, where
V and E are sets of nodes and edges, respectively. Specifically, each
node in the graph is a document in the corpus, and every two
nodes have an edge. Every node is also added a self-loop edge to
itself. The edge weight between two document nodes is computed
based on document word relation and frequency information.

In our approach, we set the edge weightwij as normalized inter-
document semantic proximity between document di and docu-
ment dj, which is computed as the sum of products of term
frequency-inverse document frequency (TF-IDF) between all the
co-occurrence vocabulary and documents, with normalization to
guarantee

Pm
j¼1wij ¼ 1:

w
�

ij ¼
XSij

s¼1

TF� IDFi;s � TF� IDFj;s; ð1Þ

wij ¼ w
�

ij

Xm

j¼1

w
�

ij

; ð2Þ

where Sij is the size of the co-occurrence vocabulary in di and dj, and
TF� IDFi;s is the TF-IDF score between di and the s-th word in the
co-occurrence vocabulary. We use TF-IDF score to increase the
attention and importance of those low-frequency words, which
are often professional nouns or out-of-vocabulary words. Therefore,
documents with similar semantic content in the corpus can be
linked with high weight in the defined graph. Then, we adopt quan-
tum probability-inspired graph neural network to model the struc-
tural information of document interaction graph.

3.2. Basic intuitions of quantum probability-inspired graph neural
network

Drawing inspiration from the quantum probability [48], which
is a sound mathematical framework of quantum mechanics [49],
we propose a novel graph neural network model Doc2Ket to cap-
ture inter-document semantics in the corpus for document repre-
sentation and classification.

We first introduce the widely used Dirac notation in quantum
mechanics, where a column vector u is denoted as jui, called as
a ket. The transpose of jui (a row vector) is denoted as ujh , called
as a bra. The inner product of two state vectors ju1i and ju2i is
denoted as u1ju2h i, and the outer product of them is denoted as
ju1i u2jh .
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The basic intuitions of the proposed model are illustrated in
Fig. 1.

� First, inspired by the framework of quantum probability, we
consider each document node as a particle, different semantic
meanings (or latent concepts) as different basis states. Superpo-
sition state jui can model uncertainty of a particle’s state that is
superposed in different basis states jxif igni¼1. Analogously, a doc-
ument can contain multiple meanings. Based on such an anal-
ogy, to describe each document node superposed in multiple
semantic basis vectors (for multiple meanings/concepts), the
proposed model directly models each document node as a
superposition state: jui ¼ Pn

i¼1aijxii, where probability ampli-
tudes aif gni¼1 are complex-valued scalars satisfying

0 6 jaij2 6 1 and
Pn

i¼1jaij2 ¼ 1. Superposition state can be con-
sidered as a ray in a Hilbert space, which is a complete vector
space defined on the complex-valued scalar field endowed with
an inner product.

� Second, we consider the contextuality of the document node
and its neighborhood in the document interaction graph as
mixed systems. In quantum probability, a density matrix can
model the state of a mixed system of multiple particles

juj

n E
g
m

j¼1
and is computed as: q ¼ Pm

j¼1xjjuji ujj
D

, where xj is

the proportion of participants. Hence, we use such a density
matrix to represent the mixed state for each document node
and to absorb inter-document semantic information from its
neighborhood in the graph, instead of using convolution or
attention operations in Graph Convolutional Network (GCN)
[38] or Graph Attention Network (GAT) [39].

� Finally, we follow the practice of quantum probability to extract
the probabilistic properties of the system by quantummeasure-
ment. The Gleason’s Theorem [50] can be used to calculate the
measurement probability as pv qð Þ ¼ v jqjvh i ¼ tr qjvð i v jh Þ,
where jvi is a measurement state. The proposed model per-
forms measurements of different measurement states on the
density matrix representation of the mixed state for each docu-
ment node, to compute the classification probabilities for differ-
ent categories, where each measurement state corresponds to
one category.
Fig. 1. Basic intuitions of the proposed Doc2Ket model. Different colors mean different do
arrows in different colors denote superposition states for document nodes defined in tw
quantum probability distributions defined by density matrix representations of mixed sy
are in grey lines, the length of which from the origin of coordinates to the intersection
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The whole model based on the above intuitions is implemented
as an efficient and effective graph neural network architecture to
work in an end-to-end learning mode, as illustrated in Fig. 2. Com-
ponents of the proposed neural network architecture, including
semantic representation, semantic mixture, and semantic mea-
surement, will be introduced in detail as follows.

3.3. Semantic representation

Given the document interaction graph of a corpus, the proposed
model follows the framework of quantum probability to define a
semantic representation space H as a n-dimensional real-valued
vector space. We assume H is spanned by a set of mutually orthog-
onal unit-length vectors jeif igni¼1 as semantic basis states, which
are the minimum semantic units of text meanings. Although quan-
tum probability is established on the complex-valued scalar field,
we restrict vector space to the real-valued scalar field for simplicity
and being in line with the previous quantum probability-inspired
models [37,51].

To formulate the ambiguous and uncertain semantic composi-
tion of a document node, we employ the concept of superposition
state. As shown in Fig. 2 Left part, each document node d is mod-
eled as a superposition state over all semantic basis states
jeif igni¼1 in the semantic representation space H:

jdi ¼
Xn

i¼1

aijeii; ð3Þ

where aif gni¼1 are trainable real-valued scalars to learn the most
suitable amplitudes automatically by the training data of a specific
task. In practical implementation, we ignore the constraints in
superposition definition to keep them easier for optimization.

Taking emotion classification as an example, we can define four
basic emotions including happiness jehi, anger jeai, sorrow jesi, and
fear jef i as the semantic basis states, then the semantic representa-
tion space H is spanned by these four vectors. The semantics (i.e.,
emotion) of a document jdi under this task can be represented as
a superposition state over the four emotional basis states:

jdi ¼ ahjehi þ aajeai þ asjesi þ af jef i: ð4Þ
cument nodes modeled as quantum particles (only three examples are shown). The
o-dimensional semantic representation space. The ellipses in solid line refer to the
stems for documents. The measurements states for different classification categories
with the ellipse corresponds to classification probability.



Fig. 2. The overall architecture of the proposed Doc2Ket model. The green, orange, and blue colors correspond to three different documents. First, each document node is
represented as a trainable superposition state, called ket representation jdi (Left). Second, density matrix representation for each document node is computed as the weighted
average of outer products for all document’s ket representations (Middle), where mixture weights are edge weights in the document interaction graph. Finally, the model
performs a set of measurements for classification categories, illustrated as m, on the density matrix representations of document nodes to generate classification probability
(Right).
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3.4. Semantic mixture

After modeling document nodes as superposition states, we
leverage the concept of mixed state to further capture inter-
document semantics in the document interaction graph, as shown
in Fig. 2 Middle part. For each document node di, we treat the con-
textuality of document node di in the context of its neighborhood
as a mixed system, and model the mixed state of the mixed system
for di as a density matrix qi:

qi ¼
Xm

j¼1

wijjdji djj;
� ð5Þ

where jdji is superposition state representation for document node
dj in the neighborhood of di, and we use the edge weight wij

between di and dj as the mixture weight, which can be understood
as the semantic connection between two documents.

The density matrix representation qi for document node di is a
non-classical probability distribution over semantic basis states,
which carries rich semantic information. In particular, the off-
diagonal elements provide the potential to describe the correla-
tions and interactions of semantic basis states, giving birth to inter-
ference effects of meanings in given states.

3.5. Semantic measurement

After computing density matrices for all document nodes in the
graph, we implement text classification by performing a set of
measurements on the density matrix representations, as shown
in Fig. 2 Right part. Specifically, we first define a set of trainable
measurement states jv j

� �gcj¼1 for classification categories, where c

is the number of classification categories and each measurement
state corresponds to one category. It is worth mentioning that
we ignore the orthogonality constraints of the measurement states
to keep them trainable, so the most suitable measurement state
can be learned automatically for each category. Then the projector
for each classification category can be computed as Pj ¼ jv ji v jj

�
.

According to the Gleason’s Theorem [50], the measurement proba-
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bility of performing each measurement projector Pj onto each doc-
ument node’s density matrix qi is computed as:

pjv ji qið Þ ¼ v jjqijv j
� � ¼ tr qijv j

� �
v jj
� �

: ð6Þ
After feeding m document nodes in the corpus into the mea-

surement layer of category size c, we can obtain a m� c matrix
of the measurement probabilities

M ¼ Mi;j
� �m;c

i¼1;j¼1 ¼ pjv ji qið Þ
n om;c

i¼1;j¼1
, as shown in the Fig. 2. Then

the measurement probabilities are fed into a softmax classifier to
get the final classification probability distribution. The probability
of document di belonging to the corresponding category of mea-
surement state jv ji is computed as:

Yi;j ¼
exp Mi;j

� �
X
k

exp Mi;k
� � ¼

exp pjv ji qið Þ
� 	

X
k

exp pjvki qið Þ
� 	 : ð7Þ
3.6. Training objective

The loss function for training the proposed model consists of
two parts. Firstly, the classification loss LC is designed as a cross-
entropy loss between ground truth labels and predicted labels of
training set:

LC ¼ �
X
i2YT

Xc

j¼1

Y
�
i;j lnYi;j; ð8Þ

where YT is the set of training document indices, c is the number of

categories, and Y
�
is the label indicator matrix, consisting of all one-

hot vectors of ground truth labels.
Secondly, due to the fact that we loose the orthogonality con-

straints of the trainable measurement states jv j
� �gcj¼1 in semantic

measurement, we add an orthogonality loss LO, designed as the
average of absolute values of inner products between all two dif-
ferent measurement states, to encourage measurement states to
be orthogonal to each other:
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LO ¼ 1
c c � 1ð Þ

X
i–j

j v ijv j
� �j: ð9Þ

In summary, the ultimate loss function L is formulated as:

L ¼ LC þ kLO

¼ �
X
i2YT

Xc

j¼1

Y
�
i;j lnYi;j þ k 1

c c�1ð Þ
X
i–j

j v ijv j
� �j; ð10Þ

where k is the orthogonality parameter for the balance between LC
and LO.

With the training loss function, we can use the Adam [52], a
variant of the back-propagation algorithm, to train the entire
model to obtain the values of the trainable parameters, including
the superposition states jdj

� �gmj¼1 for all documents and the mea-

surement states jv j
� �gcj¼1 for classification categories.

4. Experiment setup

In this section, we introduce the experiment settings in detail.

4.1. Datasets

We adopt four widely used benchmark datasets including R8,
R52, Ohsumed, and 20-Newsgroups (20NG). The statistics of these
datasets are summarized in Table 3.

� R8 and R52: R8 and R52 are two subsets of the Reuters-21578
collection. R8 includes 7,674 documents for 8 categories, and
R52 includes 9,100 documents for 52 categories. 1

� Ohsumed: Ohsumed includes medical abstracts from the MED-
LINE database, which is a bibliographic database of medical lit-
erature. We use a single-label subset of 7,400 unique abstracts
with only one associated category from 23 cardiovascular dis-
ease categories. 2

� 20NG: 20-Newsgroups dataset is a collection of approximately
20,000 newsgroup documents, partitioned evenly across 20 dif-
ferent categories. We use the bydate version of 20-Newsgroups,
which contains 18,846 documents, including 11,314 documents
for training and 7,532 documents for test.3

For all datasets above, we preprocess them by tokenizing text
and removing stop words and low-frequency words that appear
fewer than 5 times. For fair comparison, we use the same prepro-
cessing methods in all the compared models. As to validation, we
randomly select 10% documents from the training set for validation
for all four datasets.

4.2. Baselines

To evaluate the performance of Doc2Ket model, we conduct a
comprehensive comparison with multiple neural network models
and the previous quantum probability-inspired model:

� CNN: We adopt the CNN model for text classification [1] to per-
form convolution with different window sizes and max-pooling
on word embedding matrix.

� BiLSTM: We use two layer bi-directional LSTMs [10] with pre-
trained word embeddings for text classification.

� Transformer: Transformer [11] uses multi-head self-attention
1 This dataset is available at http://kdd.ics.uci.edu/databases/reuters21578/reuter-
s21578.html

2 This dataset is available athttp://disi.unitn.it/moschitti/corpora.htm
3 The dataset is available at http://qwone.com/�jason/20Newsgroups/20news-by

date.tar.gz
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with positional embedding to encode the words.
� FastText: FastText is an efficient text classification method [2],
which uses the average of word embeddings as document
embeddings and feeds them into a linear classifier.

� CapsuleNet: Capsule network is originally proposed in image
classification domain, but it can be also applied to text classifi-
cation domain [53].

� PTE: Predictive text embedding [54] is a semi-supervised repre-
sentation learning method for text classification, which con-
structs a heterogeneous network containing words,
documents, and labels as nodes to learn the word and document
embedding.

� LEAM: Label-embedding attentive model, proposed by [55], uti-
lizes label descriptions to learn words and labels representa-
tions in the same space for text classification.

� SWEM: Simple word embedding model, proposed by [56],
learns document embedding by operating pooling strategies
on word embeddings.

� Graph-CNN: Graph CNN models operate convolutions over
word embedding similarity graphs using different filters,
including Chebyshev filter (Graph-CNN-C) [57], Spline filters
(Graph-CNN-S) [58], and Fourier filters (Graph-CNN-F) [59].

� Text-GCN: A graph convolution network model for text classifi-
cation [60], learns document embedding by building one uni-
fied graph containing word nodes and document nodes for the
whole corpus.

� QPDN: Quantum Probability Driven Network [12] is a previous
quantum probability-inspired neural network model that can
encode different levels of semantic units in the same semantic
Hilbert space for text classification.

4.3. Parameter settings

For the proposed model, we train it with a learning rate as 0.005
for a maximum of 1000 epochs using Adam [52] and early stop
training if the validation loss does not decline for 10 consecutive
epochs. For the orthogonality parameter k, we choose the parame-
ter value in the range of 0 to 0.3 with an interval of 0.01 that
achieves the best performance on the validation set and set k as
0.07 for 20NG, 0.12 for Ohsumed, 0.04 for R8, and 0 for R52. For
the dimension n of the semantic representation space H, to provide
an enough and appropriate representation space to describe
semantic complexity of different corpora, we associate it with
the number of classification categories c of the given corpus:

n ¼ dimension Hð Þ ¼ int K � cð Þ; ð11Þ
where K is the dimension parameter and int �ð Þ means the function
to round up to an integer. We choose K ¼ 1 as default for all data-
sets to make the dimension of the measurement space spanned by
the measurement states jv j

� �gcj¼1 equals the dimension of the

semantic representation space H (n ¼ c). For all the baseline models
with word embedding, we use 300-dimensional GloVe pre-trained
embeddings [9] as initialization and fine-tune the embeddings dur-
ing training.

5. Result and analysis

5.1. Result

The experimental results are shown in Table 4. Doc2Ket model
outperforms most baseline models on four datasets and it is com-
parable to the strong Text GCNmodel, demonstrating the effective-
ness of the proposed model inspired by quantum probability. It is
noted that results of some models, including BiLSTM, PTE, LEAM,
SWEM, Graph-CNN, Text-GCN, are taken from [60]. For more in-

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://disi.unitn.it/moschitti/corpora.htm


Table 3
Summary statistics of the datasets used in our experiment.

Datasets #Docs #Training Docs #Test Docs #Categories

R8 7,764 5,485 2,189 8
R52 9,120 6,532 2,568 52

Ohsumed 7,400 3,357 4,043 23
20NG 18,846 11,314 7,532 20

Table 4
Accuracy of different models on four datasets in our experiment. All methods are run ten times and we report mean ± standard deviation of the results.

Model R8 R52 Ohsumed 20NG

Classical neural network models

CNN 0.9616 ± 0.0045 0.9032 ± 0.0073 0.5766 ± 0.0117 0.7781 ± 0.0085
BiLSTM 0.9631 ± 0.0033 0.9054 ± 0.0091 0.4927 ± 0.0107 0.7318 ± 0.0185

Transformer 0.9614 ± 0.0050 0.9158 ± 0.0072 0.5933 ± 0.0055 0.7527 ± 0.0127
FastText 0.9616 ± 0.0024 0.9235 ± 0.0027 0.5919 ± 0.0021 0.7944 ± 0.0046
Capsule 0.9688 ± 0.0032 0.9102 ± 0.0025 0.5838 ± 0.0075 0.8318 ± 0.0079
PTE 0.9669 ± 0.0013 0.9071 ± 0.0014 0.5358 ± 0.0029 0.7674 ± 0.0029
LEAM 0.9331 ± 0.0024 0.9184 ± 0.0023 0.5858 ± 0.0079 0.8191 ± 0.0024
SWEM 0.9532 ± 0.0026 0.9294 ± 0.0024 0.6312 ± 0.0055 0.8516 ± 0.0029

Graph-CNN-C 0.9699 ± 0.0012 0.9275 ± 0.0022 0.6386 ± 0.0053 0.8142 ± 0.0032
Graph-CNN-S 0.9680 ± 0.0020 0.9274 ± 0.0024 0.6282 ± 0.0037 –
Graph-CNN-F 0.9689 ± 0.0006 0.9320 ± 0.0004 0.6304 ± 0.0077 –
Text GCN 0.9707 ± 0.0010 0.9356 ± 0.0018 0.6836 ± 0.0056 0.8634 ± 0.0009

Quantum probability-inspired models
QPDN 0.9588 ± 0.0056 0.9281 ± 0.0048 0.6326 ± 0.0048 0.7776 ± 0.0050

Ours: Doc2Ket 0.9774 ± 0.0005 0.9449 ± 0.0009 0.6725 ± 0.0008 0.8483 ± 0.0009

Fig. 3. Sensitivity analysis of orthogonality parameter k on R8 and 20NG datasets.

Fig. 4. Sensitivity analysis of dimension parameter K on R8 and 20NG datasets.
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Fig. 6. The visualization result of document representation in R8 and 20NG. Each dot represents a document, and different colors and shapes of dots represent different
classification categories.

Fig. 5. Analysis on the impact of the training ratio for all datasets. The proposed Doc2Ket model performs the best consistently on each dataset and each training ratio.
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depth analysis, we note that the performance of Doc2Ket model
without the use of word embedding can be better than the neural
network baselines based on word embedding, including traditional
neural networks like CNN, BiLSTM, and advanced neural networks
like Transformer and CapsuleNet.

Furthermore, the proposed model also shows competitive per-
formance over the previous quantum probability-inspired method
QPDN and a variety of graph convolutional network models,
demonstrating the effectiveness of combining quantum probability
with graph neural network to model inter-document semantic
information in the corpus effectively.

5.2. Sensitivity analysis

Fig. 3 shows test accuracy of Doc2Ketwith different orthogonal-
ity parameter k in the range of 0 to 0.1 with an interval of 0.01 on
R8 and 20NG. We observe that both too small orthogonality
parameter k and too large k hurt performance. This is consistent
with the intuition that too small orthogonality parameter k can
not enforce sufficient orthogonality constraint on measurement
states jv j

� �gcj¼1, while too large orthogonality parameter k may

drown out the effect of the classification loss LC in the total loss L.
Fig. 4 reports test accuracy with different dimension parameter

K in the range of 0:25;0:5;0:75;1;2;3f g on R8 and 20NG. We can
find that test accuracy first increases as dimension parameter K
becomes larger and then decreases after reaching the highest value
when K ¼ 1. As defined in Eq. (11), dimension parameter K is
related to the semantic representation space dimension n. Thus,
it is effective to set the dimension of the semantic representation
space H to the dimension of the measurement space (n ¼ c) by set-
ting K to 1, which is also in line with the normal practice of quan-
tum probability.

5.3. Parameter size

The proposed Doc2Ketmodel shows efficiency in parameter size
compared to other neural network models with word embeddings.
The trainable parameters of Doc2Ket include the superposition
states jdj

� �gmj¼1 for all documents, which are m� n by size, and

the measurement states jv j
� �gcj¼1 for classification categories,

which are c � n by size, where m is the document size, n is the
dimension of semantic representation space H, and c is the number
of categories. In the default configuration, n ¼ c, so the parameter
size of Doc2Ket is mþ cð Þ � c. In contrast, neural network language
models need to store the substantial v � p embedding matrix in
GPU memory, where v is vocabulary size and p is dimensionality
of the embeddings. For most of limited-scale datasets, document
size is smaller than vocabulary size (m < v), and the number of
categories is usually much smaller that word embedding dimen-
sion (c < p). Therefore, parameter size of Doc2Ket is theoretically
smaller than word embedding matrix size of neural network
models.
Table 5
Trainable parameter sizes of the proposed model and some neural network baselines
(M stands for millions, K stands for thousands).

#Parameter R8 R52 Ohsumed 20NG

CNN 5.0 M 5.7 M 8.9 M 26.0 M
BiLSTM 4.9 M 5.6 M 8.8 M 26.0 M
FastText 2.9 M 3.4 M 4.9 M 13.5 M

CapsuleNet 10.2 M 29.3 M 20.4 M 36.3 M
QPDN 6.9 M 8.0 M 12.8 M 38.5 M

Ours: Doc2Ket 62.0 K 0.6 M 180 K 0.39 M
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Empirically, we compare trainable parameter sizes of the pro-
posed model with some neural network baselines on four datasets
in the experiment. As shown in Table 5, our model uses extremely
fewer trainable parameters compared to other baseline models.

5.4. Impact of training ratio

To demonstrate the robustness of the proposed model with lim-
ited training data, we further analyze the impact of training ratio
by evaluating our model with different ratios of the original train-
ing data in the range of 0.1 to 1.0 with an interval of 0.1. We com-
pare the performance of our model with several neural network
baselines on all the datasets. As shown in Fig. 5, Doc2Ket model
can achieve the best performance consistently with different ratios
of limited training documents. In particular, Doc2Ket achieves a
test accuracy of about 0.75 on 20NG with only 10% training docu-
ments, which is comparable to the performance of other baselines
with even the full training set. This shows the effectiveness and
robustness of the proposed model that can utilize limited training
data to model inter-document semantics, avoiding the problem of
insufficient training of word embedding when data is scarce.

5.5. Visualization

We use t-SNE tool [61] to give an illustrative visualization of the
document semantic representation learned by Doc2Ket on R8 and
20NG datasets. Specifically, we use the probability distribution
for measurement states in the measurement layer as the learned
document representation. We also compare the visualization with
some document representation baselines. One baseline is TF-IDF
that represents documents as term-frequency times inverse
document-frequency vectors of the vocabulary. Another is GloVe
that represents a document as the average of GloVe embeddings
[9] of words in the document. As shown in Fig. 6, we observe that
the proposed model Doc2Ket can learn more distinguishable and
discriminative document representations for different classifica-
tion categories than the baselines on both R8 and 20NG datasets.

6. Conclusion

In this paper, we further broaden the application of quantum
probability in modeling natural language by developing a quantum
probability-inspired graph neural network model Doc2Ket to lever-
age inter-document semantics for document representation and
classification. We implement the proposed model as an efficient
graph neural network in an end-to-end learning mode without
the use of word representations and any other sophisticated com-
positional architectures. The proposed model directly encodes doc-
uments into ket representations in semantic representation space,
conducts semantic mixture to capture inter-document semantic
information among a corpus, and performs semantic measurement
for text classification. Experimental results on four benchmark
datasets show promising performance of Doc2Ket model over mul-
tiple strong neural network baselines and the previous quantum
probability-inspired model. Besides effectiveness, extended analy-
ses also demonstrate Doc2Ket’s robustness to limited training ratio
and its efficiency in parameter size.
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