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Abstract— Vision-based multi-object tracking has many
potential applications in intelligent transportation systems
and intelligent vehicles. Tracking by detection, as a popular
approach to multi-object tracking, first obtains detection
responses from video sequence and then associates them into
tracks for every object. Existing tracking-by-detection methods
can work well in constrained scenarios. However, in those
complicated scenarios with occlusion and adverse illumination
conditions, the detection stage is deteriorated and thus makes
it difficult to track objects accurately. In this paper, we
present a robust tracker that represents object appearance
using stable temporal features and associates the detection
responses through a two-step association process. We propose
to use Bi-LSTM (Bidirectional Long Short-Term Memory) to
model object appearance and obtain reliable temporal features.
Then, we estimate the affinity between tracks and detections
based on multiple cues including appearance, motion and shape,
and integrate the affinity into a two-step association procedure.
Our method is verified on MOT datasets and the experimental
results are promising as compared to the state-of-the-art.

I. INTRODUCTION

In past decades, the fields of intelligent transportation
systems and intelligent vehicles have witnessed a rapid
development that partially benefits from machine learning
and computer vision technologies. Among them, multi-object
tracking is of great importance because it not only offers to
identify traffic objects but also predicts their velocities and
other information which could help to forecast traffic events
and alarm potential accidents for boosting traffic safety [1].

Multi-object tracking is also an active research topic in
image processing and computer vision. Benefitting from the
rapid progress of deep learning and computing hardware,
there has been a rapid development in object tracking.
Multi-object tracking can not only obtain the motion states
and trajectories of the targets of interest, but also provide
necessary knowledge for action recognition and scene
understanding. The technology combines knowledge from
different disciplines and has a wide range of applications.
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Fig. 1. Example of our visual tracking in transportation from MOT-
Challenge dataset.

For example, it can improve the detection performance when
objects are occluded with each other.

Despite the prosperity in object tracking field, there remain
challenges that are not yet solved. For example, occlusion
that appears in the captured video, especially with low-angle
camera views, will severely undermine the feature extraction
and detection association processes. Current methods mainly
focus on feature engineering and motion prediction based
on accurate detections, but the efficiency drops when
detections are not accurate enough. In addition, ambiguity
takes place in detection process where a single object may
relate to multiple detections. This kind of problem happens
frequently in popular methods such as DPM [2] and SDP
[3] methods. Current tracking methods [4] rely on frame-
by-frame matching and probably result in ID drift. Besides,
in moving views that are common in autonomous driving,
the jolt of the vehicle could dramatically change the view
of the camera. This effect attaches unmodeled noise to the
estimated position of the tracked objects.

In this paper, we focus on the problem of multi-object
tracking with flawed detections. To be specific, we propose
a tracking algorithm by evaluating the affinity of appearance
and motion, as well as the reliability of this affinity. First,
we use Bi-LSTM (Bidirectional Long Short-Term Memory)
model to predict the upcoming appearance feature of a track
to obtain what we call short-term feature; in contrast, we
propose a metric to define the reliability of an appearance to
represent a track, which we call long-term feature. Second,
we use the combination of Bi-LSTM and Kalman filter
to predict the motion and shape of a track to obtain
motion feature. Finally, we incorporate the long/short-term
appearance feature and motion feature to obtain the affinity
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Fig. 2. Overall framework of the multi-object tracking method via long/short-term appearance modeling and two-step association.

between candidate tracks and detections, and use a two-step
association process to online match tracks with detections.

The remainder of this paper is organized as follows.
Section II delivers a discussion on related works. Section
III describes the details of our proposed method. Section
IV presents the experimental results of our method in
comparison with the state-of-art methods. Finally, the
conclusion is drawn in Section V.

II. RELATED WORKS

Tracking in traffic scenes receives much attention in recent
years. The problem is more concerned with online tracking
[5]–[7] than offline tracking [8]. For online tracking, we have
to use only past and current frames to obtain information
instead of making advantage of the complete sequence,
thus making the problem more challenging. At present,
online tracking is still suffering from occlusion, complex
illumination, and drifting.

Long Short-Term Memory (LSTM) is a type of deep
neural networks that is good at processing sequential data
by linking historical information to the present to solve
temporal problems. It can solve the problem of gradient
disappearance and explosion during long sequence training,
which allows for better performance in modeling long
sequence. Sadeghian et al. [9] propose to use the LSTM
architecture and combine it with multiple cues within a
certain time window for object tracking. Liang et al. [10]
use LSTM to model the appearance, position and speed
of targets to obtain association results. Milan et al. [11]
propose an end-to-end learning approach for online multi-
target tracking. They use LSTM to predict state and estimate
target existence probability in the full sequence. In [12],
Kim et al. use bilinear LSTM to improve the learning of
long-term appearance models by coupling linear prediction
and the input in a multiplicative manner. However, when
the detection is not accurate, there will be a large error in
predicting the target position. Coupled with a large number
of false positive detections, the target is likely to be wrongly
associated.

Besides, some researchers also introduce person re-
identification (ReID) model into tracking algorithms in

order to obtain more accurate appearance representation
for different pedestrians [13]. The ReID feature is used
as a complement to the appearance affinity of the given
detections to regard as a part of cost matrix. However,
when the detections are not adequately reliable, the obtained
appearance features cannot distinguish the detections of
similar appearance characteristics.

Researchers also make great effort to better evaluate the
motion of objects. For example, Wojke et al. [7] use Kalman
filter to predict the motion affinity, and Liang et al. [10] use
LSTM to predict the location and calculate the velocity of
several objects. However, most papers are based on linear
assumptions, using kalman filter to predict boundingbox
shape jumps.

III. PROPOSED METHOD

Our approach aims to realize multi-object tracking by
considering the appearance, motion and shape similarities
between the detections in the current frame and the existing
tracks through an online frame-by-frame association process.

The framework is shown in Fig. 2. Firstly, raw images
are processed into detections frame by frame with FRCNN,
SDP or DPM as what the MOT171 dataset provides. The
detections are then input into a modified PCB network
[14] to form the features. After the association of tracks,
several past features of a track are input into a Bi-LSTM
network to predict future feature of the track. The shape
and motion of bounding box is also predicted through a
motion LSTM. Appearance, shape, and position are used to
calculate the similarity between detections and tracks. In the
association process, we first obtain the reliability of the track
and detections according to confidence, occlusion, visibility
and shape of the appearance, and then associate the tracks
and detections in order based on the reliability. This forms
a two-step association procedure.

A. Appearance

1) Detection’s appearance feature: In order to obtain
more robust appearance features and increase the stability in
detection, we introduce the PCB method [14] in pedestrian

1https://motchallenge.net/data/MOT17/
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re-identification to obtain the features of detections. The PCB
method is based on ResNet-50 to obtain deep features of each
detection. Then, it divides the feature map into six horizontal
stripes, which correspond to the head, shoulder, upper limbs
and other parts of the human body. For partially-occluded
targets, the method can still extract robust appearance
features from the visible body parts. As suggested by
[15], we change the pooling layer from average pooling to
max pooling to obtain features that are more suitable for
classification task, and to evenly partition body parts. The
refined PCB model is shown in Fig. 3.

Fig. 3. Our refined appearance model of PCB (Part-based Convolution
Baseline).

2) Track’s long/short-term appearance feature: An
object’s appearance in different frames could vary
dramatically, because of incorrect detection, occlusion
and background distraction. The matching process that
takes place only in adjacent frames could lead to wrongly
association. Therefore, we model appearance into long-term
feature and short-term feature, describing the tracked object
in steady and temporal pattern, respectively.

Fig. 4. The Bi-LSTM based short-term appearance prediction model.

The long-term appearance feature is defined as a combined
set of N most recent appearance features whose reliability
are above a preset threshold. By selecting a long-lasting
and reliable appearance feature, it is possible to reduce
the appearance disturbance caused by occlusion. The short-
term appearance feature is defined to predict a continuous
change in the appearance in upcoming frames. The short-
term appearance predictive model is shown in Fig. 4. As can
be seen, we use a Bi-LSTM (bidirectional LSTM) to learn
the representation of appearance of a track in future frames.
The way we use the Bi-LSTM in this process can be regarded
as an encoder of a series of detections, which captures the

trend of the changes in the detections, and through which
we predict the appreance feature in upcomming frames.
Different from basic LSTM that directly predicts Dt+1 from
the detections {D1, D2, · · · , Dt}, the Bi-LSTM encodes
the forward sequence {D1, D2, · · · , Dt} along with the
backward sequence {Dt−1, Dt−2, · · · , D1} to a hidden layer
as a combined representation. This combination of forward
and backward encodings make Bi-LSTM a better predictor
than basic LSTM.

To measure the similarity between track appearance
features and detection features, we use a combined metric of
long-term and short-term appearance features, as described
below:

aff i,j
app = w1 ∗ c

(
g
(
f(T i

t−k), · · · , f(T i
t )
)
, f(Dj)

)
+ w2 ∗

∑N
k c
(
f(T̃ i

k), f(Dj)
)

N
,

(1)

where T i
t is the image of ith track T on frame t, and Dj

is jth detection on current frame. f(·) is the appearance
model output given an image, and g(·) is the Bi-LSTM model
output given track T ’s last k features. T̃ i

k is the k-th image of
top N most reliable appearance of a track, and the definition
of reliability of an appearance refers to Section III-C.1. c(·, ·)
describes the similarity cost between a track feature f(T ) and
detection feature f(D). As described above, the first part on
the right-side of Eq. 1 can be regarded as the short-term
appearance affinity and the second part can be regarded as
the long-term affinity. w1 and w2 are tunable weights that
define the importance of short-term and long-term affinity.

B. Motion

In order to estimate the similarity between tracks and
detection bounding boxes, we use Bi-LSTM to predict future
position and shape of a track, and use shape matching method
to define the similarity. Different from the researchers that
use only the center point of bounding box for LSTM
prediction, the coordinates of the top-left and bottom-right
points are used as input of the Bi-LSTM. Therefore, we can
obtain four predicted coordinates of a track. The prediction
process is discontinuous because the detections contain a lot
of missing and falsely-positive bounding boxes. Meanwhile,
the position and shape of the detection cannot be accurately
marked with the target. If only the center point is used for
prediction, the width and height information of the target will
be lost, so that the matching detection candidates close to the
predicted center point cannot be robustly distinguished.

The structure of the motion prediction is shown in Fig.
5 and the affinity of motion is calculated through Eq. 2
and Eq. 3. As can be seen, we take into account height-
relevant distance to define the horizontal distance, and shape
in representation of the depth information.

The affinities between tracks and detections are calculated
separately on the position and shape of the bounding box:

aff i,j
motion = exp(−w3 ∗ ((

xi
T − xj

D

wi
Tw

j
D

)2 + (
yiT − yjD
hi
Th

j
D

)2)),

(2)
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Fig. 5. The motion affinity model.

aff i,j
shape = exp(−w4 ∗ (

|wi
T − wj

D|
wi

T + wj
D

+
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T − hj
D|

hi
T + hj

D

)), (3)

where xi
T , yiT , wi

T , and hi
T are the x/y-position at the center,

and width/height of the i-th track’s predicted bounding-box
respectively. Similarly, xj

T , yjT , wj
T , and hj

T are those from
the j-th detection. aff i,j

motion is the motion affinity between
track T i and detection Dj , and aff i,j

shape is the shape affinity
between track T i and detection Dj .

C. Two-Step Association

1) Detection reliability: As detections often contain lots
of background or other object parts, or multiple bounding
boxes, it is necessary to distinguish reliable detections against
distracting ones. In light of that, we propose to measure
the reliability of detections, considering factors including a)
occlusion rate, b) motion and shape similarity, c) time since
unseen, and d) confidence of detection. For a track that has
been formed, we select reliable detections that constitute the
trajectory, and use the appearance features of their bounding
boxes as the credible ones of the track. Eq. 4 describes how
we determine the reliability of detections.

reli(T i
t ) = w5 ∗MS (T i

t ) + w6 ∗ U(T i
t )

+ w7 ∗ C(T i
t ) + w8 ∗O(T i

t ),
(4)

where T i
t represents the detection at time t in i-th track.

MS(·) is the cost of shape and motion similarity between a
track and the given detection by Eq. 2 and Eq. 3. U(·) is the
cost that punishes the time-gap between a current detection
and the last robust observable appearance of a track shown
in Eq. 5.

U (T i) = 1−maxtjexp(−|tj − t|), T i
tj ∈ {T

i
R}, (5)

where T i is the i-th track alive at current time t, {T i
R} is the

set of robust detections in the i-th track. T i
tj is the detection

of the i-th track at timestamp tj , and the time-gap between t
and tj is used to calculate the punishment U(T i) at current
time stamp. C(·) is the confidence of the current detection
and O(·) is the cost of occlusion.

Different cases of occlusion are shown in Fig. 6, where
we use the the Y -coordinate of the bottom left corner
to determine the occlusion relationship between close
detections. In fact, we only name the front object not
occluded if rate of the diffence of Y coordinates and the
body height is above a threshold because of the noise.

(a) (b) (c)

Fig. 6. Three different cases of object occlusion. (a) shows that A occludes
B; (b) shows that C and D occlude each other; (c) shows that both E and
F are not occluded.

2) Track reliability: Except for getting the reliability of
the detections of tracks, we also calculate the reliability of
the existing tracks to ensure the high-quality ones can be
correctly correlated first. The way to work out the reliability
of tracks was proposed by [16].

3) Matching process: After we work out the reliability of
detections and tracks, we implement the two-step association
procedure to match detections and tracks. In the first step,
we associate the high-quality tracks to current detections.
In the second step, the not-yet correlated tracks and current
unmatched detections are associated using the detections in
several latest frames.

When there are more than N detections of a certain track,
we first use the above scheme to save the N most-recent
reliable appearance features as long-term features of the track
to better represent the appearance of the tracks. Afterwards,
high quality tracks with reliable detections are selected to
associate first, which forms the first quadrant in Fig. 2.

For the remaining trajectory fragments and detections that
are currently unmatched, we select the features of detections
in the last N frames as candidates of the appearance
features of the track. In this way, we find the best match
between current detections and last few detections of the
tracks. Meanwhile, motion features are also considered in
this step to work out the affinities. By considering long-
term appearance and motion, we improve the robustness of
tracking when dramatic changes occur in appearance due to
occlusion, camera shake, and imaging blur.

It is worth mentioning that the Hungarian algorithm is
used in this work to get the association results. At this stage,
a high threshold (in this paper 0.8) is set to ensure the target
association result reliable.

IV. EXPERIMENTS

The proposed tracking method is implemented with
TensorFlow and Keras, on a 2.20 GHz Inter Xeon CPU and
NVIDIA-TITAN X GPU.

A. Appearance

For the improved PCB model, we train it on three Re-
ID datasets, including Market1501, DukeMTMC-reID and
CUHK03, and the MOT17 training sets in addition. The input
images are resized to 384∗128 , and the output size is 1536.
We take advantage of the output of the 5th convolutional
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TABLE I
TRACKING PERFORMANCE ON THE MOT16 TEST SET USING PUBLIC DETECTIONS.

Tracker Mode MOTA IDF1 MT ML FP FN IDs Frag HZ
MHT bLSTM [12] Offline 42.1% 47.8% 14.9% 44.4% 11637 93172 753 1156 1.8

GCRA [17] Offline 48.2% 48.6% 12.9% 41.1% 5104 88586 821 1117 2.8
LMP [13] Offline 48.8% 51.3% 18.2% 40.1% 6654 86245 481 595 0.5

DMMOT [5] Online 46.1% 54.8% 17.4% 42.7% 7909 89874 532 1616 0.3
AMIR [9] Online 47.2% 46.3% 14.0% 41.6% 2681 92856 774 1675 1.0

MOTDT [18] Online 47.6% 50.9% 15.2% 38.3% 9253 85431 792 1858 20.6
LSST [19] Online 49.2% 56.5% 13.4% 41.4% 7187 84875 606 2497 2.0

Ours Online 50.5% 47.2% 15.3% 38.6% 2910 85705 1584 3423 3.3

TABLE II
TRACKING PERFORMANCE ON THE MOT17 TEST SET USING PUBLIC DETECTIONS.

Tracker Mode MOTA IDF1 MT ML FP FN IDs Frag HZ
MHT bLSTM [12] Offline 47.5% 51.9 18.2% 41.7% 25981 268042 2069 3124 1.9

FWT [20] Offline 51.3% 47.6 21.4% 35.2% 24101 247921 2648 4279 0.2
eHAF [21] Offline 51.8% 54.7 23.4% 37.9% 33212 336772 1834 2739 0.7

PHD GSDL [22] Online 48.0% 49.6 17.1% 35.6% 23199 265954 3998 8886 6.7
DMAN [5] Online 48.2% 55.7 19.3% 38.3% 26218 263608 2194 5378 0.3

HAM SADF [6] Online 48.3% 51.1 17.1% 41.7% 20967 269038 1871 3020 5.0
MOTDT [18] Online 50.9% 52.7 17.5% 35.7% 24069 250768 2474 5317 18.3

Ours Online 52.2% 50.1 19.9% 33.9% 16290 248840 4355 8781 3.5

layer of ResNet-50 and divide it into six parts. And we input
each part through a max-pooling layer and an embedding
layer to get the 256-d description. Finally, we concatenate the
six parts to form a 1536-d vector to represent the appearance
characteristics of a target. During the training stage, we use
cross-entropy loss to define the classification loss and the
optimizer is SGD. We use the learning rate decay method
and the first learning rate is 0.01.

The appearance Bi-LSTM is only trained on MOT17
training datasets. The learning rate of the appearance Bi-
LSTM is 0.00001 and the Adam Optimizer is used to
optimize the cosine distance training loss. Both the forward
LSTM and backward LSTM are composed of two basic
LSTMs. The dimension of output feature is 512, which is the
combination of two 256-d LSTM hidden layers. Afterwards,
a fully-connected layer is added to map the final state to
target space of 1536-d, and the output will be used to predict
the appearance feature in upcoming frame.

As the provided detection bounding boxes in MOT17-
challenge dataset suffer a lot from irregular noise, the
detection data and ground truth data differ largely. In order
to make our prediction more robust to detection noises,
we gradually substitute the ground truth bounding boxes to
detection bounding boxes during training, through an IoU
matching process, as suggested by [12].

B. Motion

The proposed Bi-LSTM motion model is trained only on
the MOT17-challenge dataset. The input bounding boxes are
normalized to [0,1] before feeded into the Bi-LSTM model.
The LSTM unit in the model is composed of three LSTM
layers, each owning 256 hidden units. The cost is defined as
the summed mean squared error (MSE) of the coordinates of

each vertex of the bounding box. The optimizer at training
stage is Adam and early stopping is used to avoid over-fitting.

The data augmentation from ground truth bounding boxes
to detection boxes take place in the training of motion model,
and a Kalman filter is also used to smoothen the predicted
coordinates. Additionally, the w3 and w4 are respectively set
to 0.5 and 1.5.

C. Two-Step Association

In the association process, when calculating the reliability
of the detections of a certain track, the four weights in Eq.
4 are respectively set to 0.5, 0.25, 0.25 and −10. In order
to get exact detections, we think that the detections that are
obscured with others are not reliable, which means that we
set the weight to negative infinity. We set the threshold of
the reliable detections to 0.8 and keep the last 5 reliable
detections as the corresponding long-term appearance. For
the tracks that have reliable detections, we will use the last
100 frames coupled with the Bi-LSTM predicted appearance
to calculate the appearance affinity.

D. Evaluation Metrics

TABLE III
THE EVALUATION INDEXES

Measure Description
MOTA ↑ Multiple Object Tracking Accuracy
IDF1 ↑ The ratio of correctly identified detections
ML ↓ Mostly lost
MT ↑ Mostly tracked
FM ↓ The number of track fragmentations
FP ↓ False positive output
FN ↓ False negative output
IDs ↓ ID switch
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The CLEAR MOT evaluation method [23] and the
MT/ML evaluation metrics [24] are used to assess the
tracking algorithm performance. The detailed tracking
evaluation indicators are shown in Table III.

E. Result Analysis

The comparison between our method and the state-of-art
MOT Benchmarks are shown in Table I and Table II.

Based on the experimental results, we find that our method
reduces the false positives while decreasing the number of
missed detections.

The extraction and prediction of the long/short-term
appearance characteristics enlarges the differences of the
detections to be associated and improves the robustness
under occlusion, which means the combined feature is more
effective in capturing the steady and temporal appearance
feature of an object. We have obtained that FP and FN are
relatively better than other online methods listed above.

Meanwhile, the number of mostly-tracked tracks goes up
and the number of mostly-lost tracks decreases. Compared
with other methods listed in last page, our method has also
improved in the MOTA indicator. The two-step association
process based on reliability of tracks and detections
guarantees a reduction in mismatch between reliable tracks
and distraction noises, and leads to an increase in track
length. This is because the method screens out effective and
reliable features to enhance continuous tracking.

In addition, our algorithm are able to deal with the
situation when the tracked target has switched or lost its ID,
and the lost ID could be recovered at later time. This ID-
rematching process could lead to an increase in ID-switch
but extend the track lengths of the targets.

V. CONCLUSION

In this paper, we propose a method to deal with
online multi-object tracking problem in traffic scenes.
The model involves a refined PCB model to extract the
appearance feature, two Bi-LSTM models to predict short-
term appearance feature and motion respectively, and a
metric to evaluate a track’s reliability to obtain long-term
appearance feature. We combine the affinity of appearance
and motion and put it into a two-step matching process to
associate existing tracks and detections. In future work, we
plan to train a general model to measure the reliability of
detections and tracks. We also plan to take a deeper look into
occlusion between detections, which we believe is the key to
improve multi-object tracking in crowded traffic scenarios.
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