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framework via relational graph reasoning is proposed to etve the likelihood ratio. is the policy with parameters.
able agents to ef ciently accomplish adversarial tasks in thi$hen, the optimization objective of PPO is as follow:
paper. The main innovation of this framework is to design a

relational graph reasoning module including an agent graph  L( ) = E[min(l;( )A,* (st;a);

reasoning module and an opponent graph reasoning module, cliple( );1 1+ )A\tom (st; a))] @
which enables the agents to learn mixture state representation

to enhance the effectiveness of the policy. Speci cally, th(\?vhereA‘t % (s:a,) is an estimator of the generalized advan-

agent graph reasoning module with agent relation attentio Yige. To ensure the rationality of importance samplirg)

the opponent graph reasoning module with opponent relatl%rplould be limited in the rangd : 1+ ]with parameters

modeling, and state prediction are deS|gn§d for each .ageiﬂrough the clip operation. It ensures the difference between
to represent the state representation about its surroundings N nd not 00 big
old °

the agent-level and opponent-level, respectively. Moreover, to
promote the cooperative behaviors among the agents, inter-

actions among the agents are adopted to transmit messages [1l. METHOD
and fuse information. The main contributions in this paper
are listed as follows: For an adversarial scenario, there are at least two or more

| participating teams. In this paper, we consider that one agent

1) A novel collaborative policy framework via relationa . . a :
o . eam includingN 2 agents competes with opponent team
graph reasoning is proposed for multi-agent systems {o

ef ciently accomplish adversarial tasks INcluding N° opponents in a two-dimensional continuous
2) Different from some existing methodé the proposeapace' Then, we introduce our approach from the perspective
’ f the agent team. Les; denotes the state of thgh

opponept graph reasoning module describes the qg—gent in the agent team, which includes the position and
ferent in uences from the agents to the opponents "Welocity of the agent. Similarly, lesop, denotes the state
the opponent perspective and then predicts the futur y gent. Y: 1€Sopp

. of the j opponent in the opponent team. In addition, the
state of the opponents. This strongly promotes th : .
: : ynamic model of each agent is modeled as a second-order
effectiveness of the policy.

3) To effectively predict the state of the opponents, amtegrator. The purpose of this paper is to design a policy

LN A A !
s reward based on the preciton sror s celr 20°TT (0 O ) (0 lo seet n pproprite
signed to motivate the agents to predict the state of the y P 9 '

. . where O;(t) = [S(t); S5, (D], S(1), S§,p(t) denote the
opponents and promote the policy learning. set of agents’ state and the set of alive opponents’ state,

respectively.
Il. BACKGROUND

A. Markov Games A. Overall Structure

In this paper, we consider the framework of Markov In this section, a collaborative policy framework consist-
Games [17], which is an multi-agent extension of Markoynd of three components, i.e., relational graph reasoning, in-
Decision Process. A Markov Game fbr agents is de ned teraction, and actor-critic, is given in Fig. 1. First, a relational
by a global stateS, a set of observation®;; ;Oy, 9raph reasoning module is designed for each agent to learn
and a set of actiond;; Ay . At each time-step, each Mixture state representation to enhance the effectiveness of
agent chooses an action using a learned policywhich ~ Policy, which consists of two components, i.e., agent graph
determines the next state according to state transition mod&fsoning module and opponent graph reasoning module. In
T:S A An ! SO Each ageni receives an Particular, the agent graph reasoning aims to infer different
reward denoted as after all agents execute the actions. Théinderlying in uences from different opponents to the agent.
agenti aims to maximize its own expected discounted returf represents the state representation in the perspective of
Ri = ELO 'r! with the learned policy, where 2 [0; 1] is the agent. Then, the opponent graph reasoning module is
a discount factor and is the time horizon. dESigned for the Opponents to model relations from their
surrounding objects including the agents and the opponents
and then predict the future state of the opponents in the
opponent’s perspective. It generates the state representation

The proximal policy optimization (PPO) [18] is adoptedin the opponent-level. Be.sidgs,.in order to effectively prgdi'ct
as a training algorithm in this paper. It addresses the probleifi opponents’ state, an intrinsic reward based on prediction
that the policy updating is unstable in the gradient desceftror is designed to motivate the agents to predict the oppo-

method and the problem of low sampling ef ciency throughnents’ state and promote the policy learning simultaneously.
clip operation and importance sample. Let Moreover, by fusing two components, the agents can have
a mixture state representation for surrounding environment.

B. Proximal Policy Optimization

()= (atjst) ) Furthermore, interactions among the agents are used to
T (agst) transmit messages and fuse different representations.
5597

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore. Restrictions apply.



' Relation Graph Reasoning '

Opponent Graph Reasoning
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Fig. 1. The collaborative policy framework with relational graph reasoning.

B. Agent Graph Reasoning i. Finally, h? is concatenated with; to generate an agent-

In an adversarial scenario, agents should make decisioff¥€! state representatioy.
based on the state of opponents in real-time. Intuitivel3(t
different opponents have different in uences on the behavior”
of the agents. Besides, the number of the opponents is Inferring opponent behaviors is an important ability for
changing because the opponents may be killed in competi%ntS by constructing models that make predictions about

Opponent Graph Reasoning

Therefore, to address these issues, an agent graph reasoffiifg OPPonents in adversarial tasks. [13] uses an auxiliary
module is proposed for each agent to reason the differef@Sk to learn a response and an opponent model in the
in uences from the opponents in its own perspective. agent’'s perspective without considering the in uences from
In particular, each agerit receives an observatiod;. Surrounding objects to the opponents. In fact, the in uences
Then, the agent and the opponents can be representedfrgén the_ agents to the opponents are important for the agents
a graphG? = (V2 E?) called an agent relation graph,for predicting the opponents’ fut_ure state. Therefore, an op-
where jVaj = N, + 1. The s;, Sopy are encoded into ponent graph reasoning module is designed for the opponents
embeddingh;, hopyi , respectively through different fully to reason the relanons among the agents and the opponents
connected networks. Then, the normalized attention weigAfid then predict the future state of the opponents. Previous
can be computed using a dot product attention, ag., It work does not model the in uences for the opponents to

illustrates agent how much attention it pays to opponént predict the opponents’ state. Here, we model Fhe agents and
1 opponents as a graph, reason about the relations among the

& = — <hi;hopp >; (3) agents and the opponents, and use graph attention network
di (GAT) [19] to compute the in uences, which is further to
exp(e; ) predict the future state of the opponents.
aQj = m; 4) Opponent relational modeling. The key challenge in
12Ng ! opponent reasoning is to learn the in uences for the oppo-
he = Z 8 Nopp; ) nents from their surrounding objects. Graph neural network

is used to learn the relations between the opponents and the
objects and calculate new state representation with learned
where<> denotes vector dot produdil? is the number of attention in [12]. This provides a new sight to model the

the alive opponentsl; is the dimension oh;. h? represents relations between the opponents and the objects. Therefore,
the embedding from the opponents in the perspective of agahe agents and the opponents can be modeled as a directed

i2Ng
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graphG" = (V';E") called an opponent relational graph,number of opponents is changing. Therefore, for agdohg
wherejV'j = N, + Ny. The relational graph is unidirec- short term memory (LSTM) [21] is adopted to handle the
tional, where the edges point to the opponents. The edgbanging opponents and encode the opponent team, which
gi indicates how much in uence agentto opponeng or forms an opponent-level state representation denotaff8s

the importance of agentto opponenj . The relation is not Finally, fusing the agent-level state representation and the
known as a prior, so it is inferred through learning. Afteropponent-level state representation, the agents can have a
inferring the relations among the agents and the opponentsixture state representation denotemgabout surrounding

the information is propagated from one node to anothemvironments, which promotes the policy learning.

by a graph neural network. Then, the state representation

for the opponents can be computed. In particular, sings. |nteraction

the agents and the opponents contain different level state

information, we use two fully connected networks and  After obtaining the mixture state representatiof} an
f, to map the state of agektand opponent into a latent interaction module is adopted to selectively aggregate the
space denotetly, h,,, . Given the latent features, a relationiNCOMing messages, instead of stacking all interaction mes-

weight is computed using a linear learnable weight matrix29€s- For the agents in the team, a communication graph
Wi, ., = {1 (L ;hi;W,) describing in uence from G° = (ViE) is dened. Each node denotes the agents,
the surrounding agentsto the opponent. The normalized and each edge denotes the interaction between different

relation weight is computed by the softmax function agents. Next, the mixture s_tate _repre_sentation is regarded

as messages to be transmitted in this graph. Transformer
ro_ exp( o(€)) . (6) attention [22]is implemented to extract the interaction vector
T g exp( o€ ) he, from the graph by:

where ¢ is LeakyRelLU activation function.N? is the O K O

number of the alive opponents. With the latent featres pe - exp((W hk)(V¥ h; ):?;) wYn®

and normalized relation weigla) , the state representation ' o Y kaN c exp(WQh (WK h{")=dk ) :

of the opponenj in the perspective of agemtis computed ' (9

by hi = (Xkonowna & Wi hi), where is theRELU  whereN ¢ is the neighborhood of agentW Q; WX ; WV is
activation function. Finally, by stacking the state representahe linear weight matrixdy is the dimensionality of keys.
tion of the opponents, the state representation matrix of theis a nonlinear action function. Besides, tKe-hop [23]
opponents in the perspective of agemtenoted asl(,, can  communications is used to enlarge the receptive eld of agent
be obtained. i. With the interaction, the opponent information can be fused

State prediction. After obtaining the state representationyith other agents, which promotes the agents cooperation.
of the opponents by the opponent relation modeling, a state

prediction module is _des?gned to predict the future statg Training Method

of the opponents. It is different from other works where

action prediction is considered. In fact, the action space The nal embeddingh{ of agenti is passed to a policy

of the opponents can not be known. Therefore, the staf@twork and a value network. The policy network outputs
prediction is more realistic and reasonable. Speci cally, & categorical distribution in discrete action space. The value
state prediction model uses the state representation of thetwork outputs a scalar value to evaluate the behavior of
opponents to predict their next staﬁ%p = fp(H(i)pp), the policy network. The PPO algorithm in the Actor-critic
where S} is the predicted state for the opponents in th&@mework is adopted to train the proposed framework de-
perspective of agernit The state prediction network, is noted_ as CPF-RGR. The parameterisharlng method is apphed
modeled with a fully connected network. In order to makdo train all the agents in a decentralized framework. Besides,
the state prediction valid, the prediction error is used as dnultiple parallel environments are conducted to speed up the
intrinsic reward [20] to guide ageritto reason the future training. Moreover, the policy is trained by minimizing the

state of the opponents. total lossL a1 CONSsisting of wgighted vaIL_Je Ioi;.s,, policy.

, S o lossL and entropyH . The training algorithm is shown in

fin = Ego sa [(Sopp  Sopp)°]; (7)  Algorithm 1.

0 . .

wheresg,, is t_h_e actual state of the opponent, WhICh repre- IV. SIMULATION
sents the position of the opponent. It can obtained by some
sensorsSgy, is the set of the alive opponents. Then the total  |n this section, simulations including predator-prey task
reward for agent is computed as: and defender-attacker task as shown in Fig. 2 are conducted

[ ®) to show the effectiveness of the proposed framework. Be-
ex in:»

' sides, to validate the superiority of the proposed framework,
whererl, is an extrinsic or environmental reward, ands  the baseline algorithm TRANSFER [23] is taken for com-
a tunable parameter that balances the extrinsic team rewgrarisons, which do not adopt the opponent graph reasoning.
and the intrinsic reward. In the process of competing, the

r=r
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Algorithm 1 Training Algorithm for CPF-RGR

1:

2:

Initialize the parameters of actor, critic V, memoryD,
initial observationo = ( 07; 0y; Ho'ND]
Build W parallel environments

3: for episode =1to num-episodesio

4. for step =1to num-stepdo
5: Select a action by running actor
6: Model the opponent relation and Predict next state
; 0

of the alive opppnens (a) Predator-prey (b) Defender-attacker
7: Execute the actiom = (a; ay; ;an)
8: Receive the external reward, and new observa- Fig. 2. The simulation tasks.

tionso®=(0%;03; ;o)
9 Compute the intrinsic rewand, with mean squared

. _ 0 0 2

lossesrin = Eq  sa [(8opp  Sopp) ‘], WhereS,

. . opp, opp

is is the set of alive opponent. ..
10: Compute the total reward= rex i ’2
11: o o ’
12: end fOI’ frii.f]?;gm}
13:  Compute advantages estimat®s = -
14:  Compute action-values functioR; Mean Reward b S Rat
15:  Store(o;a;r;0 %Q; A) in a memoryD (&) Mean Rewar (b) Success Rate
16: old Fig. 3. The training curves in 5 vs. 2 predator-prey.
17:  for k = 1 to ppo-epochdo
18: Sample a random minibatch from memdsy
19: Calculate total losSLtotgy = 1Lv + 2L sH A, Simulation Setting
20: Update actor and critic network by minimizin . . .

Lp with aradient descent al orithn}; 9 In these simulations, all tasks are implemented based

total 9 9 on Multi-Agent Particle Environment (MAPE) developed by
21:  end for . . . . .
Open Al. The environment size with 4 box is considered.

22:  Clear memoryD o . )
23 end for The policy is updated by collecting a total b384time-step

experience (128 time-steps on 128 parallel environments).
The tunable parameteris chosen as 0.01 for the two tasks.
K = 3 is set aK -hop communications between the agents.
The parameters of the PPO algorithm, », 3 are chosen
TABLE | as 0.5, 1, 0.01, respectively. In addition, to speed up the

SIMULATION TEST PERFORMANCE OF OUR METHOD AND BASELINE training, curriculum |earning [24] based on model load is
METHOD IN PREDATOR-PREY TASK. Mean Reward (MR): the mean of  gdopted to train the policy from a small number of agents

rewards for each episode of the agents. Success RB&fg: (the to a large number of agents.

percentage of episodes the agents completed the task. Episode Length

(EL): the mean of episode length.

TABLE Il
Method Mean Success Episode SIMULATION TEST PERFORMANCE OF OUR METHOD AND BASELINE
Reward Rate Length METHOD IN DEFENDER-ATTACKER TASK.
Naz5 No=p | CPFRGR (Ours)] 7.68 96.2 30.5 Method Mean Reward| Success Rate
TRANSFER 588 | 76.2 | 39.80 CPF-RGR (OurS) 622 570
a— 00— . .
' TRANSFER 272 | 512 | 44.96 CPF-RGR (Ours) v 968
a— 0 — . .
Nac10.Nocq | CPFROR (Ours)| 733 | 89 | 2773 N®=3,N°=5 TRANSFER 523 o1
TRANSFER 0.6 | 403 | 4682 Nas noog | CPFRGR (Ours)  6.80 98.6
Naz1s nog | CPFRGR(Ous) 667 | 996 | 2507 = N"= TRANSFER 560 956
' TRANSFER | -0.09 | 495 | 45.19 CPF-RGR (OurS) e 992
CPF-RGR (Ours)| 6.35 | 99.9 | 2242 N#=7,N°=10
N a@=20, N °=6 : : : TRANSFER 6.57 98.1
TRANSFER | -0.34 | 603 | 4391 CPFE-RGR (Ours) e 56
N2=10, N °=15 : :
TRANSFER 6.72 97.7
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(N3 =5N°=2 () Na =7,N° =3 () N3 =10,N° =4 (d)Na=15N°=5 (e) N2 =20,N° = 6

Fig. 4. Generalization performance of CPF-RGR and baseline method in predator-prey task. The policy trained in the sceMafigoreittators and
N © prey is directly evaluated for other scenarios that x the number of the predators and change the number of the preys.

TABLE Il
GENERALIZATION PERFORMANCE OF OUR METHOD AND BASELINE METHOD IN DEFENDERTTACKER TASK. The policy trained in the scenario with
N @ defenders andN © attackers is directly evaluated for other scenarios that x the number of the defenders and change the number of the attackers.

Na=2,N°=3 Na=3,N°=5 Na=5N°=8 Na=7,N°=10 Na& =10,N° =15

Method MR/S(%) MR/S(%) MR/S(%) MR/S(%) MR/S(%)

2vs. 2 2vs. 4 3vs. 4 3vs. 6 5vs. 7 5vs. 9 7vs. 9 7vs.11 | 10vs. 14| 10 vs. 16

CPF-RGR (Ours)| 99.6/6.17 | 83.2/5.10 | 99.2/6.47 | 92.5/6.20 | 99.4/6.66 | 95.8/6.64 | 99.1/6.65| 96.8/6.72| 98.9/6.82 | 96.5/6.84
TRANSFER 99.5/6.11 | 82.6/5.04 | 98.7/6.40 | 91.9/6.16 | 98.8/6.65| 93.3/6.40 | 98.1/6.57 | 95.6/6.56 | 97.7/6.72 | 96.3/6.83

B. Predator-prey task CPF-RGR are almost twice as much as TRANSFER in the
. a — . . 8 H -
As shown in Fig. 2(a), green predators team hopes E)cenarloN = 710,15 20, which means thf_it C.PF RGR
: I;?é:tually can help agents learn a stable policy in complex
Scenarios. It is noted that the performance of TRANSFER is

predators. In this section, the predators with learning polic i d ded | licated i0s. H th
are taken into consideration. Then, we consider a rule-bas gratly degradedin complicated scenarios. However, the pro-

opponents that the preys move with a scripted policy basé)c?SEd framework also has satisfying performance in complex

on the repulsion forces from the predators and the walls witfy enarios, especially in large-scale agent scenarios, verifying

a repulsive range. The predators get a positive reward wh f transferability of the proposed _framework. Therefp re, the
all the preys are eaten. Besides, to guide the predators ove results fully re ect the effectiveness and superiority of

learn an effective policy, the predators also are rewarde% F-RGR. ) L

to get close to the preys team. Therefore, to maximize thfe In ordker rt10 lverlfy C’;he lgenergllz:(ajtl;)n of lt;e proposed

accumulated rewards, the predator team should coordinate jMEWork, the learned policy trained from old scenarios is
ectly used to accomplish new scenarios without any ne-

order to capture the preys. When the preys are captured (HF,

the time-step reaches the maximum steps, the task will funing. The generalization performance of our method and
terminated baseline method is shown in Fig. 4. The results show that the

The training curves in 5 vs. 2 predator-prey is shown ir;I)roposed framework has better adaptability than the baseline

Fig. 3. Although CPF-RGR learns slower than TRANSFEFEnethOd’ especially in the large-scale agent scenarios.
in the early stage, it can achieve higher performance i
the stable stage. This is because the proposed framewo
needs to spend more time to learn the policy. The nal As shown in Fig. 2(b), there are two groups; one is the
results illustrate the effectiveness and superiority of thgreen defender, the other is the pink attacker. The task of the
proposed framework. This is due to that the opponent gramtefenders is to eliminate the attackers and prevent them from
reasoning module promotes the policy learning. Furthermorattacking the red base. The task of the attackers is to avoid
to fully demonstrate the superiority and transferability okaten by the defenders and attack the base. We consider the
the proposed framework, ve scenarios, whele? preda- defenders with learning policy, while the attackers adopt the
tors huntN° preys, whereN? = 5;7;10;15;20, N° =  Velocity Obstacle (VO) algorithm [25], which is proposed in
2;3;4;5;6, respectively, are conducted by the curriculunthe navigation problem. The termination is triggered when
learning. Speci cally, the policy with fewer predators andthe base is attacked, or the attackers are eliminated. When
preys trained by 5000 updates is transferred to a neall the attackers are eliminated, the defenders get a positive
scenario with more predators and preys. The comparissaward. Besides, we consider the case that the number of
results obtained by testing 1000 episodes with the trainatefenders is less than the attackers. Therefore, the defenders
policy are shown in Table I. As expected, it is indicatechre set to move faster than the attackers. The initial positions
that in any scenario, CPF-RGR has higher performance thah the attackers are set to satisfy the condition that the
TRANSFER in the evaluation criteria of success rate, meatistance between the attackers and the base should be in the
reward, and episode length. The success rate obtained taynge[1:5;2]. Similarly, the distance between the defenders

K Defender-attacker
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and the base should be in the ran@et; 0:5]. The radius [7] Y. Zhou, F. Lu, G. Py, X. Ma, R. Sun, H.-Y. Chen, and X. Li, Adaptive

of the base is set a&25. Therefore. the defenders need to leader-follower formation control and obstacle avoidance via deep
bout the fut tate of th ’ ttack d th ti | reinforcement learning, irR019 IEEE/RSJ International Conference
reason about the future state or the attackers an entumely o, Intelligent Robots and Systems (IROS)EEE, 2019, pp. 4273

coordinate to accomplish the task. 4280.

In this part, ve scenarios. wherdl 2 defenders block [8] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and |. Mordatch,
’ ! Multi-agent actor-critic for mixed cooperative-competitive environ-

N © attackers, wherdl # = 2;3;5; 7, 10;N ° = 3;5; 8; 10; 15, ments, inAdvances in Neural Information Processing Syste2047,
are conducted to verify the proposed framework through pp. 6379 6390.

curriculum learning. The simulation results as shown in Tabld® J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
A . Counterfactual multi-agent policy gradients, iRroceedings of the
Il It is indicated that CPF-RGR has higher performance than  aaai conference on Arti cial Intelligencevol. 32, no. 1, 2018.

TRANSFER in the mean reward and success rate evaluatifi9] H. Ryu, H. Shin, and J. Park, Multi-agent actor-critic with hierarchi-

it A ; cal graph attention network, ifProceedings of the AAAI Conference
criteria. This further shows that the proposed framework on At cial Intelligence, vol, 34, no. 05, 2020, pp. 7236 7243,

can enable the agents to learn an effective policy, owingij r. Raileanu, E. Denton, A. Szlam, and R. Fergus, Modeling others
to reasoning about the opponent state. Furthermore, the using oneself in multi-agent reinforcement learning, liniernational

generalization tests are also conducted to verify the adaﬁé] Conference on Machine LearningPMLR, 2018, pp. 4257 4266.

- . A. Grover, M. Al-Shedivat, J. K. Gupta, Y. Burda, and H. Edwards,
ability of the proposed framework. The comparative result Learning policy representations in multiagent systems, IGML,

are shown in Table Ill. When the scenario is complicated, 2018.

the improvement is signi cant compared with the baseliné!3! P- Hernandez-Leal, B. Kartal, and M. E. Taylor, Agent modeling
. L as auxiliary task for deep reinforcement learning, Rroceedings of
method. Therefore, the effectiveness and superiority of CPF- e aaAI Conference on Arti cial Intelligence and Interactive Digital
RGR are further validated. Entertainmentvol. 15, no. 1, 2019, pp. 31 37.
[14] G. Papoudakis and S. V. Albrecht, Variational autoencoders
for opponent modeling in multi-agent systemsarXiv preprint
V. CONCLUSION arXiv:2001.108292020.
[15] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, Relational
In this paper, a collaborative policy framework via rela- graph learning for crowd navigation, 2020 IEEE/RSJ International

tional graph reasoning is proposed for multi-agent systems fggge;i%cglgn Intelligent Robots and Systems (IR@8}0, pp.

to accomplish adversarial tasks. A relational graph reasonifg) 3. zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
module is creatively designed to enable the agents to learn and M. Sun, Graph neural networks: A review of methods and

mixture state representation to enhance the effectiveness, 2pplications, arXiv preprint arXiv:1812.084342018. .
e[??] M. L. Littman, Markov games as a framework for multi-agent rein-

of the pOH(?Y- Speci _Cally, an agent graph reasoning With forcement learning, itMachine Learning proceedings 199&|sevier,
agent relation attention, an opponent graph reasoning with 1994, pp. 157 163. _ _
opponent relation modeling, and state prediction are design&d! J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

. Proximal policy optimization algorithms, arXiv preprint
to represent the state features of surroundings. Furthermore, arxiv:1707.063472017.
to promote the cooperative behaviors among the ageni&] P. Velickovie, G. Cucurull, A. Casanova, A. Romero, P. Lio,
interactions among agents are used to transmit messages and gpgivélgigg& 20<137raph attention - networks, arXiv - preprint
fuse information. Simulation results verify the effectivenesgg) N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. Ortega,

and superiority of the proposed framework compared with  D. Strouse, J. Z. Leibo, and N. De Freitas, Social inuence as

ot ; ; intrinsic motivation for multi-agent deep reinforcement learning, in
existing methods in several challenglng tasks. International Conference on Machine LearningPMLR, 2019, pp.
3040 3049.
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