
Multi-agent Collaborative Learning with Relational Graph Reasoning
in Adversarial Environments*

Shiguang Wu1,2, Tenghai Qiu1, Zhiqiang Pu1,2, and Jianqiang Yi1,2, Senior Member, IEEE

Abstract— This paper proposes a collaborative policy frame-
work via relational graph reasoning for multi-agent systems
to accomplish adversarial tasks. A relational graph reasoning
module consisting of an agent graph reasoning module and an
opponent graph module, is designed to enable each agent to
learn mixture state representation to enhance the effectiveness
of the policy. In particular, for each agent, the agent graph
reasoning module is designed to infer different underlying
influences from different opponents and generate agent-level
state representation. The opponent graph reasoning module
is creatively designed for the opponents to reason relations
from their surrounding objects including the agents and the
opponents based on their latent features and then predict
the future state of the opponents. It forms an opponent-level
state representation. Besides, in order to effectively predict the
state of the opponents, an intrinsic reward based on prediction
error is designed to motivate the policy learning. Furthermore,
interactions among agents are utilized to transmit messages and
fuse information to promote the cooperative behaviors among
the agents. Finally, various representative simulations on two
multi-agent adversarial tasks are conducted to demonstrate the
superiority and effectiveness of the proposed framework by
comparison with existing methods.

I. INTRODUCTION

Multi-agent systems have received increasing attention
from researchers due to their broad applications in several
domains. Their applications can be found in warehousing
logistics [1], disaster relief [2], formation control [3], satellite
cluster [4], and so on. In a multi-agent system, agents
need to cooperatively accomplish a complex task that a
single agent can not complete. The collaboration among the
agents becomes more significant especially in adversarial
environments, where an agent needs to cooperate with other
agents of the same team to fight against the opponent team.
Meanwhile, in some special cases, the number of opponents
is uncertain and changing since the opponents may be killed
in competing. This requires that the policy of the agents
has better adaptability. Therefore, for each agent, deriving a
distributed, efficient, and collaborative policy in multi-agent
adversarial environments remains challenging.

*This work was supported in part by the National Key Research and De-
velopment Program of China under Grant 2018AAA0102404, the Strategic
Priority Research Program of Chinese Academy of Sciences under Grant
XDA27000000, the National Natural Science Foundation of China under
Grant 62073323, and the Innovation Academy for Light-duty Gas Turbine,
Chinese Academy of Sciences, No.CXYJJ19-ZD-02 and No.CXYJJ20-QN-
05.

1Institute of Automation, Chinese Academy of Sciences, Beijing
100190, China, e-mail: shiguang.wu@outlook.com,
tenghai.qiu@ia.ac.cn, zhiqiang.pu@ia.ac.cn,
jianqiang.yi@ia.ac.cn

2School of Artificial Intelligence, University of Chinese Academy of
Sciences, Beijing 100049, China.

Recently, deep reinforcement learning (DRL) becomes
a research focus and shows the potentialities and learning
ability [5]–[7]. Owing to the huge potential, a natural idea
is to extend reinforcement learning to multi-agent settings.
Some multi-agent reinforcement learning (MARL) methods
[8], [9] are used to enable agents to collaborate and achieve
common goals. However, most of them treat opponents as a
part of environments by directly using or stacking the states
of the opponents, which have the difficulty of transferability
and scalability. Besides, they ignore different influences from
different opponents, which has an impact on decision-making
agents. A hierarchical graph neural network is utilized to
effectively model inter-agent and inter-group relationships in
[10]. However, it only considers different influences from
different opponents to agents without considering different
influences from the agents to the opponents in the opponent
perspective.

The opponent modeling in the opponent perspective can
make multi-agent systems effectively accomplish an adver-
sarial task. Some works focus on the opponent modeling
using deep learning architectures [11]–[14]. In [13], agent
modeling is used to learn an opponent policy to improve
the expected rewards. It takes the prediction of the opponent
policy as an auxiliary task to train the policy of the agent
simultaneously. However, it predicts the opponent policy
based on the representation of the agent without designing
corresponding representation in the opponent perspective.
In [14], modeling opponent policy using variational au-
toencoders is utilized to learn the opponent representation
based on the trajectories of the opponent or the agent. These
methods consider opponent modeling with fixed number op-
ponents, which can not adapt to changing number opponents.
This also makes these methods suffer from the difficulty of
transferability and adaptability.

Inferring underlying relations among agents and oppo-
nents can provide valuable information for the decision-
making of the agents [15]. Relations and objects can usually
be represented as a connected graph. Hence, graph-based
learning methods are developed to model objects and their
relations, such as graph neural networks (GNNs) [16]. GNN
is an effective method to extract features by taking objects
as nodes and relations as edges. In [12], an agent-interaction
graph is designed to describe the relations among objects and
then generate new features. This motivates us to reason about
the relations among agents and opponents then generate high-
dimensional features based on the relational reasoning and
GNN models.

Motivated by the above discussion, a collaborative policy

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 27 - October 1, 2021. Prague, Czech Republic

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 5596

20
21

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 | 

97
8-

1-
66

54
-1

71
4-

3/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IR

O
S5

11
68

.2
02

1.
96

36
63

6

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



framework via relational graph reasoning is proposed to en-
able agents to efficiently accomplish adversarial tasks in this
paper. The main innovation of this framework is to design a
relational graph reasoning module including an agent graph
reasoning module and an opponent graph reasoning module,
which enables the agents to learn mixture state representation
to enhance the effectiveness of the policy. Specifically, the
agent graph reasoning module with agent relation attention,
the opponent graph reasoning module with opponent relation
modeling, and state prediction are designed for each agent
to represent the state representation about its surroundings in
the agent-level and opponent-level, respectively. Moreover, to
promote the cooperative behaviors among the agents, inter-
actions among the agents are adopted to transmit messages
and fuse information. The main contributions in this paper
are listed as follows:

1) A novel collaborative policy framework via relational
graph reasoning is proposed for multi-agent systems to
efficiently accomplish adversarial tasks.

2) Different from some existing methods, the proposed
opponent graph reasoning module describes the dif-
ferent influences from the agents to the opponents in
the opponent perspective and then predicts the future
state of the opponents. This strongly promotes the
effectiveness of the policy.

3) To effectively predict the state of the opponents, an
intrinsic reward based on the prediction error is de-
signed to motivate the agents to predict the state of the
opponents and promote the policy learning.

II. BACKGROUND

A. Markov Games

In this paper, we consider the framework of Markov
Games [17], which is an multi-agent extension of Markov
Decision Process. A Markov Game for N agents is defined
by a global state S, a set of observations O1, · · · , ON ,
and a set of actions A1, · · · , AN . At each time-step, each
agent chooses an action using a learned policy πi, which
determines the next state according to state transition model
T : S × A1 × · · · × AN → S′. Each agent i receives an
reward denoted as ri after all agents execute the actions. The
agent i aims to maximize its own expected discounted return
Ri =

∑T
t=0 γ

trti with the learned policy, where γ ∈ [0, 1] is
a discount factor and T is the time horizon.

B. Proximal Policy Optimization

The proximal policy optimization (PPO) [18] is adopted
as a training algorithm in this paper. It addresses the problem
that the policy updating is unstable in the gradient descent
method and the problem of low sampling efficiency through
clip operation and importance sample. Let

lt(θ) =
πθ(at|st)
πθold(at|st)

(1)

be the likelihood ratio. πθ is the policy with parameters θ.
Then, the optimization objective of PPO is as follow:

L(θ) = E[ min(lt(θ)Â
θold
t (st, at),

clip(lt(θ), 1− ε, 1 + ε)Âθoldt (st, at))]
(2)

where Âθoldt (st, at) is an estimator of the generalized advan-
tage. To ensure the rationality of importance sampling, lt(θ)
should be limited in the range [1−ε, 1+ε] with parameters ε
through the clip operation. It ensures the difference between
πθ and πθold not too big.

III. METHOD

For an adversarial scenario, there are at least two or more
participating teams. In this paper, we consider that one agent
team including Na agents competes with opponent team
including No opponents in a two-dimensional continuous
space. Then, we introduce our approach from the perspective
of the agent team. Let si denotes the state of the ith

agent in the agent team, which includes the position and
velocity of the agent. Similarly, let soppj denotes the state
of the jth opponent in the opponent team. In addition, the
dynamic model of each agent is modeled as a second-order
integrator. The purpose of this paper is to design a policy
for agent i, πi(t) : Oi(t) → ai(t) to select an appropriate
action to efficiently accomplish multi-agent adversarial tasks,
where Oi(t) = [S(t), Saopp(t)], S(t), S

a
opp(t) denote the

set of agents’ state and the set of alive opponents’ state,
respectively.

A. Overall Structure

In this section, a collaborative policy framework consist-
ing of three components, i,e., relational graph reasoning, in-
teraction, and actor-critic, is given in Fig. 1. First, a relational
graph reasoning module is designed for each agent to learn
mixture state representation to enhance the effectiveness of
policy, which consists of two components, i.e., agent graph
reasoning module and opponent graph reasoning module. In
particular, the agent graph reasoning aims to infer different
underlying influences from different opponents to the agent.
It represents the state representation in the perspective of
the agent. Then, the opponent graph reasoning module is
designed for the opponents to model relations from their
surrounding objects including the agents and the opponents
and then predict the future state of the opponents in the
opponent’s perspective. It generates the state representation
in the opponent-level. Besides, in order to effectively predict
the opponents’ state, an intrinsic reward based on prediction
error is designed to motivate the agents to predict the oppo-
nents’ state and promote the policy learning simultaneously.
Moreover, by fusing two components, the agents can have
a mixture state representation for surrounding environment.
Furthermore, interactions among the agents are used to
transmit messages and fuse different representations.

5597

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. The collaborative policy framework with relational graph reasoning.

B. Agent Graph Reasoning

In an adversarial scenario, agents should make decisions
based on the state of opponents in real-time. Intuitively,
different opponents have different influences on the behavior
of the agents. Besides, the number of the opponents is
changing because the opponents may be killed in competing.
Therefore, to address these issues, an agent graph reasoning
module is proposed for each agent to reason the different
influences from the opponents in its own perspective.

In particular, each agent i receives an observation Oi.
Then, the agent and the opponents can be represented as
a graph Ga = (V a, Ea) called an agent relation graph,
where |V a| = No + 1. The si, soppj are encoded into
embedding hi, hoppj , respectively through different fully
connected networks. Then, the normalized attention weight
can be computed using a dot product attention, i,e., aij . It
illustrates agent i how much attention it pays to opponent j.

eij =
1

d1
< hi, hoppj >, (3)

aij =
exp(eij)∑

j∈No
a
exp(eij)

, (4)

hoi =
∑
j∈No

a

aijhoppj , (5)

where <> denotes vector dot product. No
a is the number of

the alive opponents. d1 is the dimension of hi. hoi represents
the embedding from the opponents in the perspective of agent

i. Finally, hoi is concatenated with hi to generate an agent-
level state representation h′i.

C. Opponent Graph Reasoning

Inferring opponent behaviors is an important ability for
agents by constructing models that make predictions about
the opponents in adversarial tasks. [13] uses an auxiliary
task to learn a response and an opponent model in the
agent’s perspective without considering the influences from
surrounding objects to the opponents. In fact, the influences
from the agents to the opponents are important for the agents
for predicting the opponents’ future state. Therefore, an op-
ponent graph reasoning module is designed for the opponents
to reason the relations among the agents and the opponents
and then predict the future state of the opponents. Previous
work does not model the influences for the opponents to
predict the opponents’ state. Here, we model the agents and
opponents as a graph, reason about the relations among the
agents and the opponents, and use graph attention network
(GAT) [19] to compute the influences, which is further to
predict the future state of the opponents.

Opponent relational modeling. The key challenge in
opponent reasoning is to learn the influences for the oppo-
nents from their surrounding objects. Graph neural network
is used to learn the relations between the opponents and the
objects and calculate new state representation with learned
attention in [12]. This provides a new sight to model the
relations between the opponents and the objects. Therefore,
the agents and the opponents can be modeled as a directed

5598

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



graph Gr = (V r, Er) called an opponent relational graph,
where |V r| = Na + No. The relational graph is unidirec-
tional, where the edges point to the opponents. The edge
eji indicates how much influence agent i to opponent j or
the importance of agent i to opponent j. The relation is not
known as a prior, so it is inferred through learning. After
inferring the relations among the agents and the opponents,
the information is propagated from one node to another
by a graph neural network. Then, the state representation
for the opponents can be computed. In particular, since
the agents and the opponents contain different level state
information, we use two fully connected networks fa and
fo to map the state of agent k and opponent j into a latent
space denoted hrk, hroppj . Given the latent features, a relation
weight is computed using a linear learnable weight matrix
Wr, i.e., erjk = fra(h

r
oppj , h

r
k,Wr) describing influence from

the surrounding agents k to the opponent j. The normalized
relation weight is computed by the softmax function

arjk =
exp(σ0(e

r
jk))∑

k∈No
a+N

a exp(σ0(erjk))
, (6)

where σ0 is LeakyReLU activation function. No
a is the

number of the alive opponents. With the latent features hrk
and normalized relation weight arjk, the state representation
of the opponent j in the perspective of agent i is computed
by hij = σ(

∑
k∈No

a+N
a arjkW

T
r h

r
k), where σ is the RELU

activation function. Finally, by stacking the state representa-
tion of the opponents, the state representation matrix of the
opponents in the perspective of agent i denoted as Hi

opp can
be obtained.

State prediction. After obtaining the state representation
of the opponents by the opponent relation modeling, a state
prediction module is designed to predict the future state
of the opponents. It is different from other works where
action prediction is considered. In fact, the action space
of the opponents can not be known. Therefore, the state
prediction is more realistic and reasonable. Specifically, a
state prediction model uses the state representation of the
opponents to predict their next state Ŝi

′

opp = fp(H
i
opp),

where Ŝi
′

opp is the predicted state for the opponents in the
perspective of agent i. The state prediction network fp is
modeled with a fully connected network. In order to make
the state prediction valid, the prediction error is used as an
intrinsic reward [20] to guide agent i to reason the future
state of the opponents.

riin = Eŝi′opp∼Sa
opp

[(ŝi
′

opp − s
′

opp)
2], (7)

where s
′

opp is the actual state of the opponent, which repre-
sents the position of the opponent. It can obtained by some
sensors. Saopp is the set of the alive opponents. Then the total
reward for agent i is computed as:

ri = riex − αriin, (8)

where riex is an extrinsic or environmental reward, and α is
a tunable parameter that balances the extrinsic team reward
and the intrinsic reward. In the process of competing, the

number of opponents is changing. Therefore, for agent i, long
short term memory (LSTM) [21] is adopted to handle the
changing opponents and encode the opponent team, which
forms an opponent-level state representation denoted as hoppi .
Finally, fusing the agent-level state representation and the
opponent-level state representation, the agents can have a
mixture state representation denoted as h

′′

i about surrounding
environments, which promotes the policy learning.

D. Interaction

After obtaining the mixture state representation h′′, an
interaction module is adopted to selectively aggregate the
incoming messages, instead of stacking all interaction mes-
sages. For the agents in the team, a communication graph
Gc = (V,E) is defined. Each node denotes the agents,
and each edge denotes the interaction between different
agents. Next, the mixture state representation is regarded
as messages to be transmitted in this graph. Transformer
attention [22] is implemented to extract the interaction vector
hci , from the graph by:

hci = σ

 ∑
k∈N c

i

exp((WQh
′′

k)(W
Kh

′′

i )/dK)∑
k∈N c

i
exp((WQh

′′
k)(W

Kh
′′
i )/dK)

WV h
′′

i


(9)

where N c
i is the neighborhood of agent i, WQ,WK ,WV is

the linear weight matrix. dK is the dimensionality of keys.
σ is a nonlinear action function. Besides, the K-hop [23]
communications is used to enlarge the receptive field of agent
i. With the interaction, the opponent information can be fused
with other agents, which promotes the agents cooperation.

E. Training Method

The final embedding hci of agent i is passed to a policy
network and a value network. The policy network outputs
a categorical distribution in discrete action space. The value
network outputs a scalar value to evaluate the behavior of
the policy network. The PPO algorithm in the Actor-critic
framework is adopted to train the proposed framework de-
noted as CPF-RGR. The parameter-sharing method is applied
to train all the agents in a decentralized framework. Besides,
multiple parallel environments are conducted to speed up the
training. Moreover, the policy is trained by minimizing the
total loss Ltotal consisting of weighted value loss LV , policy
loss Lπ and entropy H . The training algorithm is shown in
Algorithm 1.

IV. SIMULATION

In this section, simulations including predator-prey task
and defender-attacker task as shown in Fig. 2 are conducted
to show the effectiveness of the proposed framework. Be-
sides, to validate the superiority of the proposed framework,
the baseline algorithm TRANSFER [23] is taken for com-
parisons, which do not adopt the opponent graph reasoning.

5599

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Training Algorithm for CPF-RGR
1: Initialize the parameters of actor π, critic V , memory D,

initial observation o = (o1, o2, · · · , oN )
2: Build W parallel environments
3: for episode =1 to num-episodes do
4: for step =1 to num-steps do
5: Select a action by running actor π
6: Model the opponent relation and Predict next state

of the alive opponent ŝ′

7: Execute the action a = (a1, a2, · · · , aN )
8: Receive the external reward rex and new observa-

tions o′ = (o′1, o
′
2, · · · , o′N )

9: Compute the intrinsic reward rin with mean squared
losses: rin = Eŝ′opp∼Sa

opp
[(ŝ

′

opp− s
′

opp)
2], where Sa

is is the set of alive opponent.
10: Compute the total reward r = rex − αrin
11: o← o′

12: end for
13: Compute advantages estimates Ât
14: Compute action-values function Qt
15: Store (o, a, r, o′,Q, Â) in a memory D
16: πold ← π
17: for k = 1 to ppo-epoch do
18: Sample a random minibatch from memory D
19: Calculate total loss: Ltotal = β1LV +β2Lπ −β3H
20: Update actor and critic network by minimizing

Ltotal with gradient descent algorithm
21: end for
22: Clear memory D
23: end for

TABLE I
SIMULATION TEST PERFORMANCE OF OUR METHOD AND BASELINE

METHOD IN PREDATOR-PREY TASK. Mean Reward (MR): the mean of

rewards for each episode of the agents. Success Rate (S%): the

percentage of episodes the agents completed the task. Episode Length

(EL): the mean of episode length.

Method
Mean

Reward

Success

Rate

Episode

Length

Na=5, No=2
CPF-RGR (Ours) 7.68 96.2 30.5

TRANSFER 5.88 76.2 39.80

Na=7, No=3
CPF-RGR (Ours) 7.44 96.5 31.47

TRANSFER 2.72 51.2 44.96

Na=10, No=4
CPF-RGR (Ours) 7.33 98.9 27.73

TRANSFER 0.6 40.3 46.82

Na=15, No=5
CPF-RGR (Ours) 6.67 99.6 25.07

TRANSFER -0.09 49.5 45.19

Na=20, No=6
CPF-RGR (Ours) 6.35 99.9 22.42

TRANSFER -0.34 60.3 43.91

(a) Predator-prey (b) Defender-attacker

Fig. 2. The simulation tasks.

(a) Mean Reward (b) Success Rate

Fig. 3. The training curves in 5 vs. 2 predator-prey.

A. Simulation Setting

In these simulations, all tasks are implemented based
on Multi-Agent Particle Environment (MAPE) developed by
Open AI. The environment size with 4×4 box is considered.
The policy is updated by collecting a total of 16384 time-step
experience (128 time-steps on 128 parallel environments).
The tunable parameter α is chosen as 0.01 for the two tasks.
K = 3 is set as K-hop communications between the agents.
The parameters of the PPO algorithm β1, β2, β3 are chosen
as 0.5, 1, 0.01, respectively. In addition, to speed up the
training, curriculum learning [24] based on model load is
adopted to train the policy from a small number of agents
to a large number of agents.

TABLE II
SIMULATION TEST PERFORMANCE OF OUR METHOD AND BASELINE

METHOD IN DEFENDER-ATTACKER TASK.

Method Mean Reward Success Rate

Na=2, No=3
CPF-RGR (Ours) 6.22 97.0

TRANSFER 6.10 96.2

Na=3, No=5
CPF-RGR (Ours) 6.42 96.5

TRANSFER 6.23 94.1

Na=5, No=8
CPF-RGR (Ours) 6.80 98.6

TRANSFER 6.60 96.8

Na=7, No=10
CPF-RGR (Ours) 6.79 99.2

TRANSFER 6.57 98.1

Na=10, No=15
CPF-RGR (Ours) 6.87 98.6

TRANSFER 6.72 97.7

5600

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



(a) Na = 5, No = 2 (b) Na = 7, No = 3 (c) Na = 10, No = 4 (d) Na = 15, No = 5 (e) Na = 20, No = 6

Fig. 4. Generalization performance of CPF-RGR and baseline method in predator-prey task. The policy trained in the scenario with Na predators and
No prey is directly evaluated for other scenarios that fix the number of the predators and change the number of the preys.

TABLE III
GENERALIZATION PERFORMANCE OF OUR METHOD AND BASELINE METHOD IN DEFENDER-ATTACKER TASK. The policy trained in the scenario with

Na defenders and No attackers is directly evaluated for other scenarios that fix the number of the defenders and change the number of the attackers.

.

Method
Na = 2, No = 3

MR/S(%)

Na = 3, No = 5

MR/S(%)

Na = 5, No = 8

MR/S(%)

Na = 7, No = 10

MR/S(%)

Na = 10, No = 15

MR/S(%)

2 vs. 2 2 vs. 4 3 vs. 4 3 vs. 6 5 vs. 7 5 vs. 9 7 vs. 9 7 vs. 11 10 vs. 14 10 vs. 16

CPF-RGR (Ours) 99.6/6.17 83.2/5.10 99.2/6.47 92.5/6.20 99.4/6.66 95.8/6.64 99.1/6.65 96.8/6.72 98.9/6.82 96.5/6.84

TRANSFER 99.5/6.11 82.6/5.04 98.7/6.40 91.9/6.16 98.8/6.65 93.3/6.40 98.1/6.57 95.6/6.56 97.7/6.72 96.3/6.83

B. Predator-prey task

As shown in Fig. 2(a), green predators team hopes to
capture pink preys team. The preys move faster than the
predators. In this section, the predators with learning policy
are taken into consideration. Then, we consider a rule-based
opponents that the preys move with a scripted policy based
on the repulsion forces from the predators and the walls with
a repulsive range. The predators get a positive reward when
all the preys are eaten. Besides, to guide the predators to
learn an effective policy, the predators also are rewarded
to get close to the preys team. Therefore, to maximize the
accumulated rewards, the predator team should coordinate in
order to capture the preys. When the preys are captured or
the time-step reaches the maximum steps, the task will be
terminated.

The training curves in 5 vs. 2 predator-prey is shown in
Fig. 3. Although CPF-RGR learns slower than TRANSFER
in the early stage, it can achieve higher performance in
the stable stage. This is because the proposed framework
needs to spend more time to learn the policy. The final
results illustrate the effectiveness and superiority of the
proposed framework. This is due to that the opponent graph
reasoning module promotes the policy learning. Furthermore,
to fully demonstrate the superiority and transferability of
the proposed framework, five scenarios, where, Na preda-
tors hunt No preys, where, Na = 5, 7, 10, 15, 20, No =
2, 3, 4, 5, 6, respectively, are conducted by the curriculum
learning. Specifically, the policy with fewer predators and
preys trained by 5000 updates is transferred to a new
scenario with more predators and preys. The comparison
results obtained by testing 1000 episodes with the trained
policy are shown in Table I. As expected, it is indicated
that in any scenario, CPF-RGR has higher performance than
TRANSFER in the evaluation criteria of success rate, mean
reward, and episode length. The success rate obtained by

CPF-RGR are almost twice as much as TRANSFER in the
scenario Na = 7, 10, 15, 20, which means that CPF-RGR
actually can help agents learn a stable policy in complex
scenarios. It is noted that the performance of TRANSFER is
greatly degraded in complicated scenarios. However, the pro-
posed framework also has satisfying performance in complex
scenarios, especially in large-scale agent scenarios, verifying
the transferability of the proposed framework. Therefore, the
above results fully reflect the effectiveness and superiority of
CPF-RGR.

In order to verify the generalization of the proposed
framework, the learned policy trained from old scenarios is
directly used to accomplish new scenarios without any fine-
tuning. The generalization performance of our method and
baseline method is shown in Fig. 4. The results show that the
proposed framework has better adaptability than the baseline
method, especially in the large-scale agent scenarios.

C. Defender-attacker

As shown in Fig. 2(b), there are two groups; one is the
green defender, the other is the pink attacker. The task of the
defenders is to eliminate the attackers and prevent them from
attacking the red base. The task of the attackers is to avoid
eaten by the defenders and attack the base. We consider the
defenders with learning policy, while the attackers adopt the
Velocity Obstacle (VO) algorithm [25], which is proposed in
the navigation problem. The termination is triggered when
the base is attacked, or the attackers are eliminated. When
all the attackers are eliminated, the defenders get a positive
reward. Besides, we consider the case that the number of
defenders is less than the attackers. Therefore, the defenders
are set to move faster than the attackers. The initial positions
of the attackers are set to satisfy the condition that the
distance between the attackers and the base should be in the
range [1.5, 2]. Similarly, the distance between the defenders

5601

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



and the base should be in the range [0.4, 0.5]. The radius
of the base is set as 0.25. Therefore, the defenders need to
reason about the future state of the attackers and then timely
coordinate to accomplish the task.

In this part, five scenarios, where Na defenders block
No attackers, where Na = 2, 3, 5, 7, 10, No = 3, 5, 8, 10, 15,
are conducted to verify the proposed framework through
curriculum learning. The simulation results as shown in Table
II. It is indicated that CPF-RGR has higher performance than
TRANSFER in the mean reward and success rate evaluation
criteria. This further shows that the proposed framework
can enable the agents to learn an effective policy, owing
to reasoning about the opponent state. Furthermore, the
generalization tests are also conducted to verify the adapt-
ability of the proposed framework. The comparative results
are shown in Table III. When the scenario is complicated,
the improvement is significant compared with the baseline
method. Therefore, the effectiveness and superiority of CPF-
RGR are further validated.

V. CONCLUSION

In this paper, a collaborative policy framework via rela-
tional graph reasoning is proposed for multi-agent systems
to accomplish adversarial tasks. A relational graph reasoning
module is creatively designed to enable the agents to learn
mixture state representation to enhance the effectiveness
of the policy. Specifically, an agent graph reasoning with
agent relation attention, an opponent graph reasoning with
opponent relation modeling, and state prediction are designed
to represent the state features of surroundings. Furthermore,
to promote the cooperative behaviors among the agents,
interactions among agents are used to transmit messages and
fuse information. Simulation results verify the effectiveness
and superiority of the proposed framework compared with
existing methods in several challenging tasks.

REFERENCES

[1] J. Fischer, C. Lieberoth-Leden, J. Fottner, and B. Vogel-Heuser,
“Design, application, and evaluation of a multiagent system in the
logistics domain,” IEEE Transactions on Automation Science and
Engineering, vol. 17, no. 3, pp. 1283–1296, 2020.

[2] T. Yang, Z. Jiang, R. Sun, N. Cheng, and H. Feng, “Maritime
search and rescue based on group mobile computing for unmanned
aerial vehicles and unmanned surface vehicles,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 12, pp. 7700–7708, 2020.

[3] Z. Sui, Z. Pu, J. Yi, and S. Wu, “Formation control with collision
avoidance through deep reinforcement learning using model-guided
demonstration,” IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[4] H. Zhang and P. Gurfil, “Distributed control for satellite cluster
flight under different communication topologies,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 3, pp. 617–627, 2016.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[7] Y. Zhou, F. Lu, G. Pu, X. Ma, R. Sun, H.-Y. Chen, and X. Li, “Adaptive
leader-follower formation control and obstacle avoidance via deep
reinforcement learning,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 4273–
4280.

[8] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems, 2017,
pp. 6379–6390.

[9] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[10] H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with hierarchi-
cal graph attention network,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 05, 2020, pp. 7236–7243.

[11] R. Raileanu, E. Denton, A. Szlam, and R. Fergus, “Modeling others
using oneself in multi-agent reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2018, pp. 4257–4266.

[12] A. Grover, M. Al-Shedivat, J. K. Gupta, Y. Burda, and H. Edwards,
“Learning policy representations in multiagent systems,” in ICML,
2018.

[13] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Agent modeling
as auxiliary task for deep reinforcement learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 15, no. 1, 2019, pp. 31–37.

[14] G. Papoudakis and S. V. Albrecht, “Variational autoencoders
for opponent modeling in multi-agent systems,” arXiv preprint
arXiv:2001.10829, 2020.

[15] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp.
10 007–10 013.

[16] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” arXiv preprint arXiv:1812.08434, 2018.

[17] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine Learning proceedings 1994. Elsevier,
1994, pp. 157–163.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[19] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[20] N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. Ortega,
D. Strouse, J. Z. Leibo, and N. De Freitas, “Social influence as
intrinsic motivation for multi-agent deep reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2019, pp.
3040–3049.

[21] A. Graves, “Long short-term memory,” in Supervised sequence la-
belling with recurrent neural networks. Springer, 2012, pp. 37–45.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in Neural Information Processing Systems, 2017, pp. 5998–
6008.

[23] A. Agarwal, S. Kumar, K. Sycara, and M. Lewis, “Learning transfer-
able cooperative behavior in multi-agent teams,” in Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent
Systems, 2020, pp. 1741–1743.

[24] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, 2009, pp. 41–48.

[25] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation. IEEE, 2008, pp. 1928–1935.

5602

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 


