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framework via relational graph reasoning is proposed to en-
able agents to ef�ciently accomplish adversarial tasks in this
paper. The main innovation of this framework is to design a
relational graph reasoning module including an agent graph
reasoning module and an opponent graph reasoning module,
which enables the agents to learn mixture state representation
to enhance the effectiveness of the policy. Speci�cally, the
agent graph reasoning module with agent relation attention,
the opponent graph reasoning module with opponent relation
modeling, and state prediction are designed for each agent
to represent the state representation about its surroundings in
the agent-level and opponent-level, respectively. Moreover, to
promote the cooperative behaviors among the agents, inter-
actions among the agents are adopted to transmit messages
and fuse information. The main contributions in this paper
are listed as follows:

1) A novel collaborative policy framework via relational
graph reasoning is proposed for multi-agent systems to
ef�ciently accomplish adversarial tasks.

2) Different from some existing methods, the proposed
opponent graph reasoning module describes the dif-
ferent in�uences from the agents to the opponents in
the opponent perspective and then predicts the future
state of the opponents. This strongly promotes the
effectiveness of the policy.

3) To effectively predict the state of the opponents, an
intrinsic reward based on the prediction error is de-
signed to motivate the agents to predict the state of the
opponents and promote the policy learning.

II. BACKGROUND

A. Markov Games

In this paper, we consider the framework of Markov
Games [17], which is an multi-agent extension of Markov
Decision Process. A Markov Game forN agents is de�ned
by a global stateS, a set of observationsO1; � � � ; ON ,
and a set of actionsA1; � � � ; AN . At each time-step, each
agent chooses an action using a learned policy� i , which
determines the next state according to state transition model
T : S � A1 � � � � � AN ! S0. Each agenti receives an
reward denoted asr i after all agents execute the actions. The
agenti aims to maximize its own expected discounted return
Ri =

∑T
t =0 
 t r t

i with the learned policy, where
 2 [0; 1] is
a discount factor andT is the time horizon.

B. Proximal Policy Optimization

The proximal policy optimization (PPO) [18] is adopted
as a training algorithm in this paper. It addresses the problem
that the policy updating is unstable in the gradient descent
method and the problem of low sampling ef�ciency through
clip operation and importance sample. Let

l t (� ) =
� � (at jst )

� � old (at jst )
(1)

be the likelihood ratio.� � is the policy with parameters� .
Then, the optimization objective of PPO is as follow:

L (� ) = E [ min( l t (� )Â � old
t (st ; at );

clip(l t (� ); 1 � �; 1 + � )Â � old
t (st ; at ))]

(2)

whereÂ � old
t (st ; at ) is an estimator of the generalized advan-

tage. To ensure the rationality of importance sampling,l t (� )
should be limited in the range[1� �; 1+ � ] with parameters�
through the clip operation. It ensures the difference between
� � and � � old not too big.

III. M ETHOD

For an adversarial scenario, there are at least two or more
participating teams. In this paper, we consider that one agent
team includingN a agents competes with opponent team
including N o opponents in a two-dimensional continuous
space. Then, we introduce our approach from the perspective
of the agent team. Letsi denotes the state of thei th

agent in the agent team, which includes the position and
velocity of the agent. Similarly, letsoppj denotes the state
of the j th opponent in the opponent team. In addition, the
dynamic model of each agent is modeled as a second-order
integrator. The purpose of this paper is to design a policy
for agent i , � i (t) : Oi (t) ! ai (t) to select an appropriate
action to ef�ciently accomplish multi-agent adversarial tasks,
where Oi (t) = [ S(t); Sa

opp (t)], S(t), Sa
opp (t) denote the

set of agents’ state and the set of alive opponents’ state,
respectively.

A. Overall Structure

In this section, a collaborative policy framework consist-
ing of three components, i,e., relational graph reasoning, in-
teraction, and actor-critic, is given in Fig. 1. First, a relational
graph reasoning module is designed for each agent to learn
mixture state representation to enhance the effectiveness of
policy, which consists of two components, i.e., agent graph
reasoning module and opponent graph reasoning module. In
particular, the agent graph reasoning aims to infer different
underlying in�uences from different opponents to the agent.
It represents the state representation in the perspective of
the agent. Then, the opponent graph reasoning module is
designed for the opponents to model relations from their
surrounding objects including the agents and the opponents
and then predict the future state of the opponents in the
opponent’s perspective. It generates the state representation
in the opponent-level. Besides, in order to effectively predict
the opponents’ state, an intrinsic reward based on prediction
error is designed to motivate the agents to predict the oppo-
nents’ state and promote the policy learning simultaneously.
Moreover, by fusing two components, the agents can have
a mixture state representation for surrounding environment.
Furthermore, interactions among the agents are used to
transmit messages and fuse different representations.

5597

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. The collaborative policy framework with relational graph reasoning.

B. Agent Graph Reasoning

In an adversarial scenario, agents should make decisions
based on the state of opponents in real-time. Intuitively,
different opponents have different in�uences on the behavior
of the agents. Besides, the number of the opponents is
changing because the opponents may be killed in competing.
Therefore, to address these issues, an agent graph reasoning
module is proposed for each agent to reason the different
in�uences from the opponents in its own perspective.

In particular, each agenti receives an observationOi .
Then, the agent and the opponents can be represented as
a graphGa = ( V a ; E a) called an agent relation graph,
where jV a j = No + 1 . The si , soppj are encoded into
embeddinghi , hoppj , respectively through different fully
connected networks. Then, the normalized attention weight
can be computed using a dot product attention, i,e.,aij . It
illustrates agenti how much attention it pays to opponentj .

eij =
1
d1

< h i ; hoppj >; (3)

aij =
exp(eij )∑

j 2 N o
a

exp(eij )
; (4)

ho
i =

∑
j 2 N o

a

aij hoppj ; (5)

where<> denotes vector dot product.N o
a is the number of

the alive opponents.d1 is the dimension ofhi . ho
i represents

the embedding from the opponents in the perspective of agent

i . Finally, ho
i is concatenated withhi to generate an agent-

level state representationh0
i .

C. Opponent Graph Reasoning

Inferring opponent behaviors is an important ability for
agents by constructing models that make predictions about
the opponents in adversarial tasks. [13] uses an auxiliary
task to learn a response and an opponent model in the
agent’s perspective without considering the in�uences from
surrounding objects to the opponents. In fact, the in�uences
from the agents to the opponents are important for the agents
for predicting the opponents’ future state. Therefore, an op-
ponent graph reasoning module is designed for the opponents
to reason the relations among the agents and the opponents
and then predict the future state of the opponents. Previous
work does not model the in�uences for the opponents to
predict the opponents’ state. Here, we model the agents and
opponents as a graph, reason about the relations among the
agents and the opponents, and use graph attention network
(GAT) [19] to compute the in�uences, which is further to
predict the future state of the opponents.

Opponent relational modeling. The key challenge in
opponent reasoning is to learn the in�uences for the oppo-
nents from their surrounding objects. Graph neural network
is used to learn the relations between the opponents and the
objects and calculate new state representation with learned
attention in [12]. This provides a new sight to model the
relations between the opponents and the objects. Therefore,
the agents and the opponents can be modeled as a directed

5598

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 12:44:43 UTC from IEEE Xplore.  Restrictions apply. 



graphGr = ( V r ; E r ) called an opponent relational graph,
where jV r j = Na + No. The relational graph is unidirec-
tional, where the edges point to the opponents. The edge
eji indicates how much in�uence agenti to opponentj or
the importance of agenti to opponentj . The relation is not
known as a prior, so it is inferred through learning. After
inferring the relations among the agents and the opponents,
the information is propagated from one node to another
by a graph neural network. Then, the state representation
for the opponents can be computed. In particular, since
the agents and the opponents contain different level state
information, we use two fully connected networksf a and
f o to map the state of agentk and opponentj into a latent
space denotedhr

k , hr
oppj . Given the latent features, a relation

weight is computed using a linear learnable weight matrix
Wr , i.e., er

jk = f r
a (hr

oppj ; hr
k ; Wr ) describing in�uence from

the surrounding agentsk to the opponentj . The normalized
relation weight is computed by the softmax function

ar
jk =

exp(� 0(er
jk ))∑

k2 N o
a + N a exp(� 0(er

jk ))
; (6)

where � 0 is LeakyReLU activation function.N o
a is the

number of the alive opponents. With the latent featureshr
k

and normalized relation weightar
jk , the state representation

of the opponentj in the perspective of agenti is computed
by hi

j = � (
∑

k2 N o
a + N a ar

jk W T
r hr

k ), where� is the RELU
activation function. Finally, by stacking the state representa-
tion of the opponents, the state representation matrix of the
opponents in the perspective of agenti denoted asH i

opp can
be obtained.

State prediction.After obtaining the state representation
of the opponents by the opponent relation modeling, a state
prediction module is designed to predict the future state
of the opponents. It is different from other works where
action prediction is considered. In fact, the action space
of the opponents can not be known. Therefore, the state
prediction is more realistic and reasonable. Speci�cally, a
state prediction model uses the state representation of the
opponents to predict their next statêSi 0

opp = f p(H i
opp ),

where Ŝi 0

opp is the predicted state for the opponents in the
perspective of agenti . The state prediction networkf p is
modeled with a fully connected network. In order to make
the state prediction valid, the prediction error is used as an
intrinsic reward [20] to guide agenti to reason the future
state of the opponents.

r i
in = E ŝi 0

opp � Sa
opp

[(ŝi 0

opp � s
0

opp )2]; (7)

wheres
0

opp is the actual state of the opponent, which repre-
sents the position of the opponent. It can obtained by some
sensors.Sa

opp is the set of the alive opponents. Then the total
reward for agenti is computed as:

r i = r i
ex � �r i

in ; (8)

wherer i
ex is an extrinsic or environmental reward, and� is

a tunable parameter that balances the extrinsic team reward
and the intrinsic reward. In the process of competing, the

number of opponents is changing. Therefore, for agenti , long
short term memory (LSTM) [21] is adopted to handle the
changing opponents and encode the opponent team, which
forms an opponent-level state representation denoted ashopp

i .
Finally, fusing the agent-level state representation and the
opponent-level state representation, the agents can have a
mixture state representation denoted ash

00

i about surrounding
environments, which promotes the policy learning.

D. Interaction

After obtaining the mixture state representationh00, an
interaction module is adopted to selectively aggregate the
incoming messages, instead of stacking all interaction mes-
sages. For the agents in the team, a communication graph
Gc = ( V; E) is de�ned. Each node denotes the agents,
and each edge denotes the interaction between different
agents. Next, the mixture state representation is regarded
as messages to be transmitted in this graph. Transformer
attention [22] is implemented to extract the interaction vector
hc

i , from the graph by:

hc
i = �

 ∑
k2N c

i

exp((W Q h
00

k )(W K h
00

i )=dK )∑
k2N c

i
exp((W Q h00

k )(W K h00

i )=dK )
W V h

00

i


(9)

whereN c
i is the neighborhood of agenti , W Q ; W K ; W V is

the linear weight matrix.dK is the dimensionality of keys.
� is a nonlinear action function. Besides, theK -hop [23]
communications is used to enlarge the receptive �eld of agent
i . With the interaction, the opponent information can be fused
with other agents, which promotes the agents cooperation.

E. Training Method

The �nal embeddinghc
i of agenti is passed to a policy

network and a value network. The policy network outputs
a categorical distribution in discrete action space. The value
network outputs a scalar value to evaluate the behavior of
the policy network. The PPO algorithm in the Actor-critic
framework is adopted to train the proposed framework de-
noted as CPF-RGR. The parameter-sharing method is applied
to train all the agents in a decentralized framework. Besides,
multiple parallel environments are conducted to speed up the
training. Moreover, the policy is trained by minimizing the
total lossL total consisting of weighted value lossL V , policy
lossL � and entropyH . The training algorithm is shown in
Algorithm 1.

IV. SIMULATION

In this section, simulations including predator-prey task
and defender-attacker task as shown in Fig. 2 are conducted
to show the effectiveness of the proposed framework. Be-
sides, to validate the superiority of the proposed framework,
the baseline algorithm TRANSFER [23] is taken for com-
parisons, which do not adopt the opponent graph reasoning.
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Algorithm 1 Training Algorithm forCPF-RGR
1: Initialize the parameters of actor� , critic V , memoryD,

initial observationo = ( o1; o2; � � � ; oN )
2: Build W parallel environments
3: for episode =1to num-episodesdo
4: for step =1to num-stepsdo
5: Select a action by running actor�
6: Model the opponent relation and Predict next state

of the alive opponent̂s0

7: Execute the actiona = ( a1; a2; � � � ; aN )
8: Receive the external rewardr ex and new observa-

tions o0 = ( o0
1; o0

2; � � � ; o0
N )

9: Compute the intrinsic rewardr in with mean squared
losses:r in = E ŝ0

opp � Sa
opp

[(ŝ
0

opp � s
0

opp )2], whereSa
is is the set of alive opponent.

10: Compute the total rewardr = r ex � �r in
11: o  o0

12: end for
13: Compute advantages estimatesÂ t
14: Compute action-values functionQt
15: Store(o; a; r; o 0; Q; Â ) in a memoryD
16: � old  �
17: for k = 1 to ppo-epochdo
18: Sample a random minibatch from memoryD
19: Calculate total loss:L total = � 1L V + � 2L � � � 3H
20: Update actor and critic network by minimizing

L total with gradient descent algorithm
21: end for
22: Clear memoryD
23: end for

TABLE I
SIMULATION TEST PERFORMANCE OF OUR METHOD AND BASELINE

METHOD IN PREDATOR-PREY TASK. Mean Reward (MR): the mean of
rewards for each episode of the agents. Success Rate (S%): the

percentage of episodes the agents completed the task. Episode Length
(EL): the mean of episode length.

Method
Mean

Reward

Success

Rate

Episode

Length

N a =5, N o=2
CPF-RGR (Ours) 7.68 96.2 30.5

TRANSFER 5.88 76.2 39.80

N a =7, N o=3
CPF-RGR (Ours) 7.44 96.5 31.47

TRANSFER 2.72 51.2 44.96

N a =10, N o=4
CPF-RGR (Ours) 7.33 98.9 27.73

TRANSFER 0.6 40.3 46.82

N a =15, N o=5
CPF-RGR (Ours) 6.67 99.6 25.07

TRANSFER -0.09 49.5 45.19

N a =20, N o=6
CPF-RGR (Ours) 6.35 99.9 22.42

TRANSFER -0.34 60.3 43.91

(a) Predator-prey (b) Defender-attacker

Fig. 2. The simulation tasks.

(a) Mean Reward (b) Success Rate

Fig. 3. The training curves in 5 vs. 2 predator-prey.

A. Simulation Setting

In these simulations, all tasks are implemented based
on Multi-Agent Particle Environment (MAPE) developed by
Open AI. The environment size with4� 4 box is considered.
The policy is updated by collecting a total of16384time-step
experience (128 time-steps on 128 parallel environments).
The tunable parameter� is chosen as 0.01 for the two tasks.
K = 3 is set asK -hop communications between the agents.
The parameters of the PPO algorithm� 1, � 2, � 3 are chosen
as 0.5, 1, 0.01, respectively. In addition, to speed up the
training, curriculum learning [24] based on model load is
adopted to train the policy from a small number of agents
to a large number of agents.

TABLE II
SIMULATION TEST PERFORMANCE OF OUR METHOD AND BASELINE

METHOD IN DEFENDER-ATTACKER TASK.

Method Mean Reward Success Rate

N a =2, N o=3
CPF-RGR (Ours) 6.22 97.0

TRANSFER 6.10 96.2

N a =3, N o=5
CPF-RGR (Ours) 6.42 96.5

TRANSFER 6.23 94.1

N a =5, N o=8
CPF-RGR (Ours) 6.80 98.6

TRANSFER 6.60 96.8

N a =7, N o=10
CPF-RGR (Ours) 6.79 99.2

TRANSFER 6.57 98.1

N a =10, N o=15
CPF-RGR (Ours) 6.87 98.6

TRANSFER 6.72 97.7
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(a) N a = 5, N o = 2 (b) N a = 7, N o = 3 (c) N a = 10, N o = 4 (d) N a = 15, N o = 5 (e) N a = 20, N o = 6

Fig. 4. Generalization performance of CPF-RGR and baseline method in predator-prey task. The policy trained in the scenario withN a predators and
N o prey is directly evaluated for other scenarios that �x the number of the predators and change the number of the preys.

TABLE III
GENERALIZATION PERFORMANCE OF OUR METHOD AND BASELINE METHOD IN DEFENDER-ATTACKER TASK. The policy trained in the scenario with
N a defenders andN o attackers is directly evaluated for other scenarios that �x the number of the defenders and change the number of the attackers.

.

Method
N a = 2, N o = 3

MR/S(%)

N a = 3, N o = 5

MR/S(%)

N a = 5, N o = 8

MR/S(%)

N a = 7, N o = 10

MR/S(%)

N a = 10, N o = 15

MR/S(%)

2 vs. 2 2 vs. 4 3 vs. 4 3 vs. 6 5 vs. 7 5 vs. 9 7 vs. 9 7 vs. 11 10 vs. 14 10 vs. 16

CPF-RGR (Ours) 99.6/6.17 83.2/5.10 99.2/6.47 92.5/6.20 99.4/6.66 95.8/6.64 99.1/6.65 96.8/6.72 98.9/6.82 96.5/6.84

TRANSFER 99.5/6.11 82.6/5.04 98.7/6.40 91.9/6.16 98.8/6.65 93.3/6.40 98.1/6.57 95.6/6.56 97.7/6.72 96.3/6.83

B. Predator-prey task

As shown in Fig. 2(a), green predators team hopes to
capture pink preys team. The preys move faster than the
predators. In this section, the predators with learning policy
are taken into consideration. Then, we consider a rule-based
opponents that the preys move with a scripted policy based
on the repulsion forces from the predators and the walls with
a repulsive range. The predators get a positive reward when
all the preys are eaten. Besides, to guide the predators to
learn an effective policy, the predators also are rewarded
to get close to the preys team. Therefore, to maximize the
accumulated rewards, the predator team should coordinate in
order to capture the preys. When the preys are captured or
the time-step reaches the maximum steps, the task will be
terminated.

The training curves in 5 vs. 2 predator-prey is shown in
Fig. 3. Although CPF-RGR learns slower than TRANSFER
in the early stage, it can achieve higher performance in
the stable stage. This is because the proposed framework
needs to spend more time to learn the policy. The �nal
results illustrate the effectiveness and superiority of the
proposed framework. This is due to that the opponent graph
reasoning module promotes the policy learning. Furthermore,
to fully demonstrate the superiority and transferability of
the proposed framework, �ve scenarios, where,N a preda-
tors hunt N o preys, where,N a = 5 ; 7; 10; 15; 20, N o =
2; 3; 4; 5; 6, respectively, are conducted by the curriculum
learning. Speci�cally, the policy with fewer predators and
preys trained by 5000 updates is transferred to a new
scenario with more predators and preys. The comparison
results obtained by testing 1000 episodes with the trained
policy are shown in Table I. As expected, it is indicated
that in any scenario, CPF-RGR has higher performance than
TRANSFER in the evaluation criteria of success rate, mean
reward, and episode length. The success rate obtained by

CPF-RGR are almost twice as much as TRANSFER in the
scenarioN a = 7 ; 10; 15; 20, which means that CPF-RGR
actually can help agents learn a stable policy in complex
scenarios. It is noted that the performance of TRANSFER is
greatly degraded in complicated scenarios. However, the pro-
posed framework also has satisfying performance in complex
scenarios, especially in large-scale agent scenarios, verifying
the transferability of the proposed framework. Therefore, the
above results fully re�ect the effectiveness and superiority of
CPF-RGR.

In order to verify the generalization of the proposed
framework, the learned policy trained from old scenarios is
directly used to accomplish new scenarios without any �ne-
tuning. The generalization performance of our method and
baseline method is shown in Fig. 4. The results show that the
proposed framework has better adaptability than the baseline
method, especially in the large-scale agent scenarios.

C. Defender-attacker

As shown in Fig. 2(b), there are two groups; one is the
green defender, the other is the pink attacker. The task of the
defenders is to eliminate the attackers and prevent them from
attacking the red base. The task of the attackers is to avoid
eaten by the defenders and attack the base. We consider the
defenders with learning policy, while the attackers adopt the
Velocity Obstacle (VO) algorithm [25], which is proposed in
the navigation problem. The termination is triggered when
the base is attacked, or the attackers are eliminated. When
all the attackers are eliminated, the defenders get a positive
reward. Besides, we consider the case that the number of
defenders is less than the attackers. Therefore, the defenders
are set to move faster than the attackers. The initial positions
of the attackers are set to satisfy the condition that the
distance between the attackers and the base should be in the
range[1:5; 2]. Similarly, the distance between the defenders
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and the base should be in the range[0:4; 0:5]. The radius
of the base is set as0:25. Therefore, the defenders need to
reason about the future state of the attackers and then timely
coordinate to accomplish the task.

In this part, �ve scenarios, whereN a defenders block
N o attackers, whereN a = 2 ; 3; 5; 7; 10; N o = 3 ; 5; 8; 10; 15,
are conducted to verify the proposed framework through
curriculum learning. The simulation results as shown in Table
II. It is indicated that CPF-RGR has higher performance than
TRANSFER in the mean reward and success rate evaluation
criteria. This further shows that the proposed framework
can enable the agents to learn an effective policy, owing
to reasoning about the opponent state. Furthermore, the
generalization tests are also conducted to verify the adapt-
ability of the proposed framework. The comparative results
are shown in Table III. When the scenario is complicated,
the improvement is signi�cant compared with the baseline
method. Therefore, the effectiveness and superiority of CPF-
RGR are further validated.

V. CONCLUSION

In this paper, a collaborative policy framework via rela-
tional graph reasoning is proposed for multi-agent systems
to accomplish adversarial tasks. A relational graph reasoning
module is creatively designed to enable the agents to learn
mixture state representation to enhance the effectiveness
of the policy. Speci�cally, an agent graph reasoning with
agent relation attention, an opponent graph reasoning with
opponent relation modeling, and state prediction are designed
to represent the state features of surroundings. Furthermore,
to promote the cooperative behaviors among the agents,
interactions among agents are used to transmit messages and
fuse information. Simulation results verify the effectiveness
and superiority of the proposed framework compared with
existing methods in several challenging tasks.
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