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Abstract

Video object detection is a challenging task because of the
presence of appearance deterioration in certain video frames.
One typical solution is to aggregate neighboring features
to enhance per-frame appearance features. However, such a
method ignores the temporal relations between the aggre-
gated frames, which is critical for improving video recogni-
tion accuracy. To handle the appearance deterioration prob-
lem, this paper proposes a temporal context enhanced net-
work (TCENet) to exploit temporal context information by
temporal aggregation for video object detection. To handle
the displacement of the objects in videos, a novel DeformA-
lign module is proposed to align the spatial features from
frame to frame. Instead of adopting a fixed-length window fu-
sion strategy, a temporal stride predictor is proposed to adap-
tively select video frames for aggregation, which facilitates
exploiting variable temporal information and requiring fewer
video frames for aggregation to achieve better results. Our
TCENet achieves state-of-the-art performance on the Ima-
geNet VID dataset and has a faster runtime. Without bells-
and-whistles, our TCENet achieves 80.3% mAP by only ag-
gregating 3 frames.

Introduction

Object detection is a fundamental problem in computer vi-
sion. Deep convolutional neural networks have achieved re-
markable results in this task, including (Ren et al. 2015;
Redmon et al. 2016; Dai et al. 2016). Although they have
been successfully applied to image-based object detection,
video object detection remains a challenging problem. Ob-
ject appearances in videos are usually deteriorated by mo-
tion blur or part occlusion, which are extremely difficult for
image-based detectors.

To handle the object appearance deterioration problem,
one straightforward solution is to consider the rich tempo-
ral and motion context in videos and leverage information
from neighboring frames. Some methods (Kang et al. 2016;
2017; Han et al. 2016) exploit the video context in a post-
processing manner, in which frame-based bounding boxes
are firstly predicted by an image detector and then linked
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Figure 1: Examples of object appearance deterioration in
video object detection. Method (a) is an image-based de-
tector, method (b) is a detector employing the spatial feature
enhanced aggregation method, method (c) is our proposed
TCENet employing the temporal context enhanced aggre-
gation method. When the zebra moves to a rare pose or is
occluded, the image-based detector fails to obtain a correct
box. Method (b) can help improve the results but it still per-
forms inaccurate. TCENet performs the most accurate re-
sults among these methods.

across time. However, these post-processing procedures can-
not be unified into an end-to-end trainable framework. In
contrast, some methods (Zhu et al. 2017a; Wang et al. 2018a;
Bertasius, Torresani, and Shi 2018) attempt to exploit the
video context to improve the per-frame feature by intuitive
feature fusion. In these methods, fixed-length neighboring
frames are used to enhance the appearance features at a ref-
erence frame, which is hereinafter referred to as spatial fea-
ture enhanced aggregation (SFEA) method. However, such
SFEA approaches may ignore the temporal relations be-
tween the aggregated frames. Specifically, the performance
of these methods is almost unaffected when shuffling the or-
der of aggregated frames. It indicates that these models may
not benefit from the temporal context modeling by ignoring
the order of aggregated frames. By only performing appear-
ance feature representation, it may be difficult to recognize
some objects with severe appearance deterioration, such as
rare poses, part occlusion.
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In this paper, our philosophy is that temporal context be-
tween neighboring frames play an important role in video
object detection. Unlike traditional spatial feature enhanced
aggregation methods, this paper proposes a temporal con-
text enhanced aggregation (TCEA) method. It aggregates
the features from neighboring frames to model the temporal
context to enhance the features at a reference frame. Specif-
ically, for each reference frame, the features from the neigh-
boring frames, as well as its features on the reference frame,
are aggregated according to attention weights and temporal
order. Compared to the SFEA, the TCEA is more effective
to handle severe appearance deterioration such as rare poses
or occlusions. As is shown in Figure 1, when the zebra is
occluded or in a rare pose, it still wouldn’t be well recog-
nized by the SFEA method. In comparison, our TCEA can
significantly improve over the belief obtained from a single
reference frame by taking the temporal context into account.

Furthermore, (Zhu et al. 2017a; Wang et al. 2018a; Berta-
sius, Torresani, and Shi 2018) aggregate long fixed-length
video frames to obtain richer information, which makes it
difficult to model variable temporal information and is com-
putationally expensive. After taking a deeper look at the
above aggregation, we find such densely feature aggregation
may be inefficient because of the redundancy and dynamics
of videos. Therefore, a temporal stride predictor is proposed
to adaptively select video frames for aggregation. It assists
TCENet to model variable temporal information and to re-
duce the number of aggregated frames. Besides, note that the
features of the same object instance are usually not spatially
aligned across frames due to video motion. To achieve more
accurate pixel-level spatial alignment over time, a novel De-
formAlign module is proposed to model the displacement
introduced by motion across frames.

The main contributions are summarized as follows:

• A TCENet is proposed for video object detection
which achieves state-of-the-art results on the Ima-
geNet VID dataset.

• A TCEA method is proposed to model temporal con-
text between aggregated frames, it is more effective
to handle appearance deterioration.

• A temporal stride predictor is proposed to adaptively
select video frames for aggregation, thus TCENet
can exploit variable temporal information and re-
quires fewer video frames for aggregation.

• A DeformAlign module is proposed to model the
displacement introduced by motion across frames
and achieve accurate pixel-level spatial alignment
over time.

Related Work

Image-based Object Detection

Image-based detectors can be divided into two categories,
two-stage detector, and one-stage detector. The pipeline of
the two-stage detector can be summarized as generating re-
gion proposals first, then classifying and refining the pro-
posals. Representative methods are R-CNN (Girshick et al.
2014), Fast R-CNN (Girshick 2015), Faster R-CNN (Ren et

al. 2015). A two-stage detector is usually accurate but slow.
In contrast, a one-stage detector is usually faster and simpler
but less accurate. One-stage detector directly predicts the re-
gion proposals based on the feature map. Related works in-
clude YOLO (Redmon et al. 2016) and its variants (Redmon
and Farhadi 2017; 2018), SSD (Liu et al. 2016), RetinaNet
(Lin et al. 2017), FCOS (Tian et al. 2019). R-FCN (Dai et al.
2016) is an accurate and fast two-stage detector which pro-
poses position-sensitive score maps and a position-sensitive
RoI pooling layer. We use R-FCN as our base detector and
extend it for video object detection.

Video Object Detection

Unlike static images, videos have richer information, and de-
tectors for videos should take this information into account.
Recent works on video object detection can be divided into
two categories, object level, and feature level. The object-
level works aim to explore the bounding box relations and
apply temporal post-processing. And the feature level works
are to leverage temporal coherence on features and try to do
feature aggregation or feature propagation.

For object level, the main idea is to do box relation in-
vestigation or object-level detection-and-tracking. (Kang et
al. 2016; 2017) propose to rescore tubelets. They apply a
pretrained tracker to revisit the detection results and then as-
sociate image-based object detections around the tubelets.
(Kang et al. 2016) proposes a re-scoring method to im-
prove tubelets in terms of temporal consistency. (Kang et
al. 2017) proposes multi-context suppression (MCS) to sup-
press false positive detections and motion-guided propaga-
tion (MGP) to recover false negatives. Seq-NMS (Han et al.
2016) proposes a cross-frame bounding boxes linkages us-
ing bounding box IoU and then rescores the boxes associ-
ated with each linkage to the average or maximum scores
of the linkage. D&T (Feichtenhofer, Pinz, and Zisserman
2017) applies a bounding box tracker to predict object move-
ments across frames while detecting. Then the detections are
linked and re-weighted using the predicted movements. (Luo
et al. 2019) uses detector and tracker on key frames and non-
key frames respectively, to obtain detection results and track
boxes. Key frames are selected by the key frame schedule
network.

For feature level, DFF (Zhu et al. 2017b) utilizes the op-
tical flow generated by FlowNet (Fischer et al. 2015) to es-
timate the per-pixel motion between two frames and align
the features of selected key frames to neighboring non-key
frames, reducing calculation and speeding up the system.
FGFA (Zhu et al. 2017a) also applies optical flow to prop-
agate features. The difference is that the propagated fea-
tures are used for feature aggregation to enhance the features
of reference frames to improve detection accuracy. STSN
(Bertasius, Torresani, and Shi 2018) and FGFA have simi-
lar ideas, but the difference is that deformable convolution
is used instead of the optical flow network. Based on FGFA,
MANet (Wang et al. 2018a) adds an instance-level feature
alignment and aggregation module besides the pixel-level
feature alignment. Then these two-level features are com-
bined through a motion pattern reasoning module. Different
from previous works, STMN (Xiao and Lee 2018) applies a
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Figure 2: The framework of our TCENet.

MatchTrans module to align features. Then the aligned fea-
tures are aggregate by the STMM module which utilizes re-
current computation unit.

Video Object Detection Framework

In this section, the entire pipeline of our framework is first
briefly overview. Then, three key modules in our framework
are introduced in turn, namely TCEA for figuring out how
to aggregate the features from neighboring frames, Defor-
mAlign for tackling object motion and aligning the features
from frame to frame, and a temporal stride predictor for
adaptively selecting video frames for aggregation. Finally,
the inference and training process of our method is intro-
duced in detail.

Framework Overview

The overall framework is shown in Figure 2. It is built on
the image-based detector R-FCN (Dai et al. 2016). At each
time step t, TCENet aggregates frames t− s(t) and t+ s(t)
with reference frame t, where s(t) is calculated by temporal
stride predictor. The feature extractor Nfeat receives frames
It−s(t), It and It+s(t) as input, then produces the interme-
diate features ft−s(t), ft and ft+s(t). Prior to feature aggre-
gation, the align module DeformAlign is applied to handle
spatial feature mis-alignment between ft−s(t), ft+s(t) and
ft, generating ft−s(t)→t, ft+s(t)→t, which are then aggre-
gated by our aggregation module TCEA to get gt. Finally,
the aggregated features gt are fed to the detection network
to obtain the detection results on the reference frame.

There are three modules in our framework: 1) TCEA. It
figures out how to aggregate the features from neighboring
frames. 2) DeformAlign. It tackles object motion and aligns
the features from frame to frame. 3) Temporal Stride Pre-
dictor. It adaptively selects video frames for aggregation in-
stead of fixed frames of aggregation. These key blocks of
our model are elaborated below.

Temporal Context Enhanced Aggregation

Temporal Fusion. To model temporal context, the spatial
feature enhanced aggregation approaches are insufficient as

c
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Figure 3: Temporal context enhanced aggregation module.

they may ignore the temporal relations between the aggre-
gated frames. Specifically, the performance of these meth-
ods is almost unaffected by shuffling the order of aggregated
frames, which indicates that their model may not benefit
from the contextual relationships modeling between aggre-
gated frames. As shown in the middle of figure 3, temporal
fusion is proposed to aggregate features from neighboring
frames to model temporal context. The features from N ad-
jacent frames with size C ×H ×W are firstly concatenated
together to aggregate the temporal information, forming a
NC-channel feature map. Unlike common appearance fea-
tures, there is an additional temporal dimension. Then a con-
volution layer with k × k kernel is used to convolve with
the concatenated feature map and capture temporal relations
between frames. Finally, generate a C-channel feature map
which both preserves temporal and spatial information. To
reduce the number of parameters to be learned in the convo-
lution kernel, k is set to 1. The experiment in ablation studies
shows that our temporal fusion module is quite effective.

Temporal and Spatial Attention. Attention is proved to
be effective in many tasks (Woo et al. 2018; Vaswani et al.
2017; Wang et al. 2019). Inspired by previous work (Zhu et
al. 2017a) which indicates the importance of all neighbor-
ing frames to the reference frame at each spatial location by
adaptive weight, attention modules are added to our TCEA
to assign pixel-level aggregation weights on each frame.
Specifically, temporal and spatial attentions are adopted as
shown in Figure 3.

The goal of temporal attention is to compute frame sim-
ilarity in an embedding space to focus on ’when’ is impor-
tant given neighboring frames. Intuitively, at location p, if
the aligned features fi→t(p) are close to the features ft(p),
they should be paid more attention. Here, the dot product
similarity metric (Wang et al. 2018b) is used to measure the
similarity.

The weights of temporal attention map are estimated by:

Mt(p) = σ(fe
i→t(p) · fe

t (p)), (1)

where σ is sigmoid function which restricts the outputs in
[0,1], fe = ε(f) and ε(·) is an embedding network to reduce
the features to 256 channels using convolution layer with
3 × 3 kernel. The temporal attention maps have the same
spatial size with ft and are then multiplied in a pixel-wise
manner to the original aligned features fi→t.

Different from the temporal attention, the spatial atten-
tion focuses on ’where’ is an informative part, which is com-
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plementary to the temporal attention. Spatial attention maps
are computed from the fused features generated by the tem-
poral fusion module. To highlight informative regions and
increase the attention receptive field, average-pooling and
max-pooling operation are applied to the fused features first
and two feature maps with half resolution are obtained. Then
they are concatenated to generate a feature descriptor and a
convolution layer is applied on the descriptor to generate an
intermediate feature map. The intermediate feature map is
upsampled with bilinear interpolation to generate a spatial
attention map fs. Similar to (Wang et al. 2018c), the spatial
attention modulated features gt is computed as:

gt = σ(fs)� f̃t + f3×3(fs), (2)

where σ denotes the sigmoid function and f3×3 represents a
convolution layer with 3×3 kernel. f̃t denotes the fused fea-
tures and � refers to element-wise multiplication. Through
element-wise multiplication and addition, spatial attention
provides fine-grained control to the features where should
be emphasized or suppressed.

DeformAlign feature alignment

Note that the features of the same object instance are usu-
ally not spatially aligned across frames due to video motion.
Without proper feature alignment before the aggregation, the
object detector may obtain a lot of false recognitions and in-
accurate localizations.

Therefore, the DeformAlign module is proposed to em-
ploy deformable convolution to achieve accurate pixel-level
spatial alignment over time. The architecture of DeformA-
lign is shown in Figure 4. In order to transform the feature
of frame i to align with that of reference frame t, the Defor-
mAlign module first takes the fi and ft as inputs to predict
sampling parameters Θ for the feature fi:

Θ = fθ(fi, ft) = {Δpn|n = 1, · · · , |R|}, (3)

where R = {(−1,−1), (−1, 0), · · · , (0, 1), (1, 1)} donates
a regular grid of a 3 × 3 kernel. With Θ and fi, the aligned
feature fi→t can be computed by the deformable convolu-
tion, for each position p0 on the aligned feature map fi→t:

fi→t(p0) =
∑

pn∈R

ω(pn)fi(p0 + pn +Δpn). (4)

The convolution will be operated on the irregular positions
pn +Δpn, where the Δpn may be fractional. To address the

issue, the operation is implemented by using bilinear inter-
polation, details can be found in (Dai et al. 2017).

For the sampling parameter generation function fθ, fi and
ft are first concatenated along axis 1. Then, the concatenated
features are reduced to 256 channels using two convolution
layers with 3×3 kernel. After that, there is a 1×1 kernel with
2× k× k channels to generate offsets, where k is the kernel
size of the deformable convolution. Finally, the aligned fea-
tures fi→t are obtained from offsets and fi based on equa-
tion 4. Inspired from (Dollár, Welinder, and Perona 2010)
and (Tian et al. 2018), an additional DeformAlign module is
cascaded to further refine the coarsely aligned features.

Temporal Stride Predictor

To obtain richer information at a reference frame t, some
models aggregate the long-term features of the input video
frames based on a fixed-length sliding window. With a large
convolution kernel, a large spatial receptive field can be ob-
tained on the feature map. In the same way, expanding the
length of the sliding window can increase the temporal re-
ceptive field to obtain more temporal information. However,
the temporal neighborhood of the reference frame comprises
mostly redundant information and is almost useless for im-
proving the belief about the present object. Moreover, the
large temporal length of the sliding window is computation-
ally expensive.

Inspired by dilated convolutions (Yu and Koltun 2016),
we find that increasing the temporal stride between aggre-
gated frames can increase the temporal receptive field and
aggregate more useful information without any computation
increasing. Here the temporal stride s between two frames
t1 and t2 in the same video is defined as s = |t2 − t1|. A
naive temporal stride scheduling policy uses a fixed tempo-
ral stride at each reference frame t, e.g., aggregating frames
[t − s0, t, t + s0], which makes it difficult to model vari-
able temporal information. A better temporal stride schedul-
ing policy should be adaptive to the varying dynamics in the
temporal domain.

A natural criterion for judging the temporal stride at a ref-
erence frame is the speed of the video content changes. If
the speed is fast, choose a smaller temporal stride and ag-
gregate the closer frames; on the contrary, choose a larger
temporal stride and aggregate farther frames. The speed of
the video content changes can be measured by the motion
speed of the ground truth objects. An object’s motion speed
is measured by its intersection-over-union (IoU) scores with
its corresponding instances in the neighboring frames (±10
frames). The indicator is dubbed as ’motion IoU’. The lower
the motion IoU is, the faster the object moves.

Based on this, a temporal stride predictor is proposed for
reference frame t to select which frames to aggregate. This
predictor takes the differences between features t and fea-
tures k, i.e. (ft − fk), as input, and predicts the deviation
score between frame t and frame k. The deviation score is
formally defined as the motion IoU. If the predicted devi-
ation is less than 0.7 (score < 0.7), the current reference
frame sets a fast temporal stride (=9 by default). If the pre-
dicted score ∈ [0.7, 0.9], the current reference frame sets
a middle temporal stride (=24 by default). And the rest of
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the situation (score > 0.9), the current reference frame sets
a slow temporal stride (=38 by default). Specifically, this
prediction network comprises two convolutional layers with
3 × 3 kernel and 256 channels, a global pooling, a fully-
connected layer and a sigmoid function that follows. In run-
time, at reference frame t, ft and ft−10 are fed to this net-
work to predict the motion speed of frame t.

Training and Inference

Inference. Algorithm 1 is a detailed summary of the infer-
ence algorithm. Given an input video of consecutive frames
{Ii}, the specified aggregation range K (=1 by default)
and the maximum temporal stride smax, minimum tempo-
ral stride smin(smin ≥ 10). The proposed method sequen-
tially processes each frame with a sliding feature buffer on
the neighboring frames (of length 2Ksmax + 1 in general,
except for the beginning and the ending Ksmax frames).
At initial, the feature network is applied in the beginning
Ksmax+1 frames to initialize the feature buffer and tempo-
ral stride (L3-L6 in Algorithm 1). Then the algorithm loops
over all the video frames to perform video object detection,
and to update the feature buffer. For each frame i as the ref-
erence, the aggregation 2K frames are sampled at stride si
from the feature buffer, and the feature maps of the aggre-
gate frames are aligned with respect to it (L10-L13). Then
the aligned features are aggregated by our aggregation mod-
ule to get aggregated feature gi and fed to the detection
network for object detection (L15-L16). Before taking the
(i + 1)-th frame as the reference, we calculate the temporal
stride for frame i + 10 with features of frame i and frame
i + 10 (L17). Finally, the feature maps are extracted on the
(i+Ksmax+1)-th frame and are added to the feature buffer
(L18-L19).

Training. The basic detection network, DeformAlign, and
TCEA module are first trained following the settings in
FGFA (Zhu et al. 2017a) and are then fixed as the feature
extractor. After that, the temporal stride predictor is trained.
It takes a pair of frames that are l steps apart as input(l is
randomly chosen in [5,15]). Here, the motion IoU between
the pair inputs is computed as the regression target based on
the ground truth objects. If there are multiple objects, select
the largest motion IoU.

Experiments

Experiment Setup

Dataset. Following most of the previous video object de-
tection works, we evaluate our method on the ImageNet
(Deng et al. 2009) VID. VID dataset contains 3862 training
videos and 555 validation videos. All videos are fully an-
notated with the object bounding box, object category, and
tracking IDs. There are 30 object categories. They are a sub-
set of the categories in the ImageNet DET dataset. Mean av-
erage precision (mAP) is used as the evaluation metric and
all results on the validation set are reported following the
previous methods (Zhu et al. 2017a; Lee et al. 2016).

Implementation Details. During training, following pre-
vious works, both the ImageNet DET training set and the

Algorithm 1 Inference algorithm of temporal context en-
hanced feature aggregation for video object detection.

1: input: video frames {Ii}, aggregation range K, initial-
ized temporal stride smin and smax

2: F = [ ] � feature buffer F
3: for k = 1 to Ksmax + 1 do � initialize F
4: fk = Nfeat(Ik)
5: F.append(fk)
6: sk = smin

7: end for
8: for i = 1 to ∞ do � reference frame
9: A = [ ] � aggregate features buffer A

10: for j = −K to K do
11: n = max(1, i+ jsi)
12: fn→i = Align(fn, fi) � align feature
13: A.append(fn→i)
14: end for
15: gi = TCEA(A) � aggregate features
16: yi = Ndet(gi) � detect on the reference frame
17: si+10 = Stride(fi, fi+10) � predict stride
18: fi+Ksmax+1

= Nfeat(Ii+Ksmax+1)
19: F.append(fi+Ksmax+1

) � update F
20: end for
21: output: detection results {yi}

ImageNet VID training set are utilized. Two-phase training
is performed. In the first phase, the detection networks, the
DeformAlign module, and TCEA are trained on ImageNet
DET and ImageNet VID, only the same 30 categories are
used. Each training batch contains three images. If they are
sampled from DET, all images within the same mini-batch
will be the same because DET only has images. If they are
sampled from VID, two supporting frames are randomly
sampled near the reference frame in the range of [-9,9]. In
the second phase, the whole network except temporal stride
predictor will be fixed. Then the predictor is trained based
on the feature network with ImageNet VID. Each training
batch has a pair of images, and the time step between them
is randomly taken in [5,15]. In both training and inference,
the images are resized to a shorter side of 600 pixels for the
feature network.

Comparison to state-of-the-art

Table 1 shows the comparison of TCENet and other state-of-
the-art methods, note all methods in the table use ResNet-
101 (He et al. 2016) as the base network and R-FCN as
the base detector. TCENet outperforms the image-based ob-
ject detector R-FCN with a large margin (+6.6%), which
demonstrates the effectiveness of our method. However,
some methods use deformable R-FCN (DCN) (Dai et al.
2017) as the base detector, and others employ temporal
post-processing techniques. To enable a fairer comparison to
them, a TCENet with the deformable R-FCN based detector
is also trained, and Seq-NMS (Han et al. 2016) is employed
as temporal post-processing. TCENet achieves the best per-
formance among various testing settings.

With R-FCN detector and no temporal post-processing.
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Table 1: Comparison to the state-of-the-art methods on the ImageNet VID validation set.
Methods Base network Aggregate frames Temp. Post-Proc mAP(%)
TCENet (Ours) ResNet-101 3 80.3
MANet (Wang et al. 2018a) ResNet-101 13 78.1
FGFA (Zhu et al. 2017a) ResNet-101 21 76.3
D&T (Feichtenhofer, Pinz, and Zisserman 2017) ResNet-101 - 75.8
R-FCN (Dai et al. 2016) ResNet-101 1 73.7
TCENet (Ours) ResNet-101+DCN 3 80.5
STSN (Bertasius, Torresani, and Shi 2018) ResNet-101+DCN 27 78.9
FGFA (Zhu et al. 2017a) ResNet-101+DCN 21 78.8
Towards (Zhu et al. 2018) ResNet-101+DCN - 78.6
TCENet (Ours) ResNet-101 3 � 81.0
STMN (Xiao and Lee 2018) ResNet-101 11 � 80.5
STSN (Bertasius, Torresani, and Shi 2018) ResNet-101+DCN 27 � 80.4
MANet (Wang et al. 2018a) ResNet-101 13 � 80.3
D&T (Feichtenhofer, Pinz, and Zisserman 2017) ResNet-101 - � 79.8
ST-Lattice (Chen et al. 2018) ResNet-101 - � 79.6
FGFA (Zhu et al. 2017a) ResNet-101 21 � 78.4

Table 2: Accuracy and runtime of different methods on Ima-
geNet VID validation. The runtime contains data processing
which is measured on an NVIDIA Titan X Pascal GPU.

Methods (a) (b) (c) (d) (e)
temporal fusion? � �
DeformAlign? � � �

TCEA? � �
stride predictor? �

mAP(%) 73.7 76.0↑2.3 77.1↑3.4 78.4↑4.7 80.3↑6.6
runtime(ms) 81 82 120 124 125

Compared with MANet (78.1% mAP) and FGFA (76.3%
mAP), TCENet obtains 80.3% mAP, outperforming these
two methods by 2.2% and 4.0%. Furthermore, TCENet only
aggregates 3 frames while these two methods are 13 and 21.
It also outperforms D&T by a large margin of 4.5%.

With deformable R-FCN (DCN) detector and no tempo-
ral post-processing, STSN achieves the best performance of
78.9% mAP among all previous works. However, TCENet
obtains 80.5% mAP, which is about 1.6% higher than it.

With temporal post-processing technique, TCENet still
performs the most excellent mAP score of 81.0%. D&T and
ST-Lattice adopt well-designed tubelet rescore technique
and others use Seq-NMS (Han et al. 2016).

Ablation Study

TCENet Architecture Design. Table 2 compares TCENet
with the image-based baseline and its variants.

Method (a) is the image-based baseline. It has a mAP
73.7% using R-FCN and ResNet-101, which is close to
73.4% mAP in FGFA (Zhu et al. 2017a). This indicates that
our baseline is competitive and serves as a valid reference
for evaluation. To verify the effectiveness of our method, we
do not add bells and whistles like temporal post-processing,
model ensemble, etc.

Method (b) only uses temporal fusion in Figure 3. It do
not employ alignment module and temporal stride predictor.
The variant is also trained in the same way as TCENet. After

aggregating 3 frames, it increases the mAP score by 2.3% to
76.0%, with little increase in time.

Method (c) adds the feature alignment module which
contains two cascading DeformAlign into (b). It obtains a
mAP 77.1%, 1.1% higher than that of (b) and 3.4% higher
than image-based detector R-FCN.

Method (d) uses completely TCEA which adds the tem-
poral and spatial attention modules into (c). It increases the
mAP score by 1.3% to 78.4%, which is a quite excellent per-
formance.

Method (e) is the proposed temporal context enhanced
feature aggregation method, which adds the temporal stride
predictor to (d). It achieves a mAP 80.3%, 1.9% higher than
that of (d). And in the case of image-based R-FCN, there is a
6.6% increase, which indicated the effectiveness of TCENet.

Aggregation Module. In this section, we seek to deter-
mine how much value the TCEA brings by replacing TCEA
in our framework with other aggregation module. Here
we choose the aggregation module which is widely used
in previous work (Zhu et al. 2017a; Wang et al. 2018a;
Bertasius, Torresani, and Shi 2018). We call it SFEA (Spatial
Feature Enhanced Aggregation). For specific details, please
refer to the article FGFA (Zhu et al. 2017a).

Theoretically, the SFEA module should be invariant to the
temporal order of the input frames, since it is not capable of
utilizing temporal relations between frames. To verify this,
we train the SFEA model and TCENet with normal frame
order, and employ the trained models on validation set in
which the frames are in normal order, randomly shuffled
temporal order and reversed order. The results of the ex-
periment are shown in Table 3. Not surprisingly, the SFEA
model has the same performance on all three versions dur-
ing testing. In comparison, TCENet performs much worse
on the randomly shuffled data than on the normal form of the
data. However, its performance on the reversed form is the
same, indicating that the model and/or dataset does not re-
quire inferring the causal ’arrow of time’ (Pickup et al. 2014;
Xie et al. 2018).
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Table 3: mAP scores on ImageNet VID validation set. We
train on frames in normal order and then test on frames in
normal order, randomly shuffled order or reversed order.

Model Normal(%) Shuffled(%) Reversed(%)
TCENet 80.3 14.3 80.3
SFEA 79.2 79.2 79.2

Table 4: mAP scores on ImageNet VID validation set. We
train three models and use the same settings except the align-
ment module.

AlignModule Flow-guided STSN DeformAlign
mAP(%) 78.8 78.9 79.8

Feature Alignment. To verify the efficiency of our De-
formAlign module, we compare the DeformAlign module
with the alignment module in the previous state-of-the-
art method. Flow-guided alignment (Zhu et al. 2017a) and
STSN (Bertasius, Torresani, and Shi 2018) are two align-
ment modules used in previous video object detection meth-
ods. To enable a fairer comparison, we follow the settings in
STSN. We use deformable R-FCN as the base detector and
SFEA as feature aggregation module, train three models to
use three different alignment modules respectively, and test
the performance on VID. Here, the temporal length of the
sliding window is set to 27. The results are shown in Ta-
ble 4. We can see the model with our DeformAlign module
achieve a higher mAP score than the other two.

Temporal Stride. In this section, we conduct an ablation
experiment to study the influence of the testing temporal
stride. We do this by testing our TCENet model on differ-
ent fixed temporal stride. For better analysis, besides the
standard mAP scores, we also report the mAP scores over
the fast, medium, and fast groups, respectively, denoted as
mAP (fast), mAP (medium) and mAP (slow). The results are
shown in Figure 5. Note that increasing the temporal stride
does not bring about any increase in computation. With the
increase of temporal stride, the mAP score gradually in-
creases to a maximum point and then begins to decrease.
This shows that increasing the temporal receptive field is
very effective for improving the detection accuracy. How-
ever, the effective receptive field length is also limited and is
distributed around the extreme points of the curve. We can
see that the faster the object motion speed is, the smaller the
effective receptive field is. Therefore, a temporal stride pre-
dictor can make sense.

Frames in Aggregation. The frames in aggregation are
controlled by the aggregation range K in Algorithm 1.
When the aggregation range is K, the number of aggrega-
tion frames is 2K + 1. Due to the memory issues, we use
a lightweight TCENet which abandons the attention mod-
ule in the original TCEA and the stride predictor. We try 3
and 7 frames in aggregation and train two models. During
the test, we adjust the temporal stride to make the tempo-
ral receptive fields of the two models consistent. The results
are shown in Figure 6. We notice that when the temporal re-
ceptive fields are the same, fusing 7 frames can get higher
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Figure 5: The influence of different temporal stride.
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Figure 6: The influence of different frames in aggregation.

accuracy than 3 frames. However, the alignment module is
evaluated 2K times for each frame. Therefore, in the fea-
ture alignment part, 7 frames require almost 3 times more
computation than 3 frames.

Runtime. The performance and runtime of each compo-
nent are listed in Table 2. TCENet takes 125ms to process
one frame, using ResNet-101. As a comparison, FGFA (76.3
mAP) takes 256ms to process one frame and MANet (78.1
mAP) takes 202ms to process one frame. It is slower than
the single-frame baseline (81ms) and most of the extra time
is spent on the DeformAlign module. One reason is that the
DeformAlign module is evaluated 2K (K is the aggregation
range in Algorithm 1) times for each frame. Another reason
is that deformable convolution in the DeformAlign module
is slower than normal convolution. All the above results are
tested on an NVIDIA Titan X Pascal GPU.

Conclusion

This paper proposes a temporal context enhanced feature ag-
gregation framework to incorporate the temporal context for
video object detection. Our main contributions are a feature
aggregation module that models temporal context in fea-
tures, a DeformAlign module that aligns the spatial features
across time and a temporal stride predictor that adaptively
selects video frames for aggregation. Ablation experiments
show the effectiveness of our modules. Together, the pro-
posed model achieves 80.3% mAP score on ImageNet VID
dataset with backbone network ResNet-101, which achieves
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state-of-the-art results with a competitive speed.
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