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Abstract—The four-step transportation model plays an impor-
tant role in urban planning. The quality of the first phase, i.e.
trip generation, determines the performance of the global course.
The majority of trip generation forecasting models highly rely
on mathematical derivation and have many predictor variables
during the prediction, which leads to low accuracy of results and
requires laboriously hand-crafted design of input vectors. This
paper is the first to introduce the gradient boosting decision tree
(GBDT) algorithm for trip generation prediction, and harmonizes
such a powerful machine learning method with traditional urban
planning requirements to achieve better prediction performance.
Unlike the commonly used linear regression method, GBDT can
automatically perform feature selection and model the non-linear
relationships between input and output variables. Experimental
results on real-world residential travel census in Beijing prove
that the GBDT model significantly outperforms the baseline and
can forecast the trip generation more accurately.

Index Terms—Four-step model, Trip generation, Gradient
boosting decision tree, Linear regression
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I. INTRODUCTION

Urban traffic demand prediction is an important application

to evaluate the capacity of road traffic facility in city planning

and intelligent transportation systems [1]. The four-step model

serves as a dominated framework for demand prediction,

and can be calibrated through travel household surveys data

[2]–[5]. As its name implies, the model consists of four

stages: trip generation, trip distribution, mode choice, and

route assignment. Significantly, the accuracy of the first phase,

i.e. trip generation, influences the effectiveness of the four-step

model and becomes the backbone of travel demand modeling.

Trip generation predicts the travel frequency for particular

purposes in each traffic analysis zones. Practically, it can

be treated as a regression problem, which models the latent

correlation with population demographics, land use, and addi-

tional socio-economic factors. It has two sub-tasks, which are

the predictions for trip production and trip attraction, respec-

tively. Representative methodologies used for trip generation

are ordinary least squares linear regression (OLSLR), cross-

classification methods, etc [6] [7], which have been applied

to empirical studies. However, there are some drawbacks,

evidenced by: 1) the OLSLR model assumes that the input
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and output follow the linear functional form [6], while ignoring

the non-linear relationship. And the parameters are limited by

the identifiable attributes. 2) The cross-classification approach

needs the cell-by-cell calculation, leading to the incompre-

hensive prediction. Therefore, an effective model should be

designated to prevent or eschew these disadvantages.

The recent advances in machine learning may open a new

chapter in modeling prediction tasks [8]–[14]. The decision

tree-based models, such as classification and regression tree

(CART) [15], can accordingly explain how a target can be

predicted based on input features. Furthermore, the gradient

boost algorithm [16] assembles multiple weak learners for

getting stronger predictions in both classification and regres-

sion tasks. This provides us with novel insights. To response

the above-mentioned issues, in this paper, we introduce a

powerful gradient boost decision tree (GBDT) model [17]

with several CARTs for trip generation. The GBDT is trained

from previous household census data by gradient descent

approach and yields the prediction in planned years. It can

accurately model the non-linear correlation between input and

target, and automatically shield the redundant variables while

alleviating the hand-crafted feature selection engineering. Our

contributions lie in that we are the first to harness the power

of GBDT for trip generation and illustrate the feasibility

of bridging the connection between the advanced machine

learning methods and conventional traffic planning models.

The rest of the paper is organized as follows. Section II

provides the formulation and methodology. Section III states

the experimental results. The concluding remarks and future

directions are discussed in Section IV.

II. FORMULATION AND METHODOLOGY

A. Problem Statement

Trip generation aims to predict the number of trips, per unit

time by purpose, that is generated by and attracted to each

zone in study areas. Hence, it has two sub-tasks, namely trip

production prediction and trip attraction prediction.

By the urban residential travel census and land use infor-

mation, the origin-destination matrix between pairwise traffic

analysis zones (TAZ) is easily captured. Then, the traffic

volume of residents trip production and attraction for each

TAZ in history years can be observed. In practice, the im-

portant and valuable factors related to trip generation include

the populations of different types, demographic, occupation,

income, ownership of transportation tools, etc. The trip pro-

duction/attraction Pi and Ai for TAZ i are calculated by

Pi = Fα (oi, ui, wi, . . .) , (1)

Ai = Fβ (oi, ui, wi, . . .) , (2)

where oi, ui, wi represent the input factors, and α, β are the

parameters of respective trip generation models. For brevity,

in the following, these attributes are treated as input vector

x, and y is used to represent the production or attraction for
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Fig. 1. The diagram of GBDT model, which consists of N CARTs and
makes the prediction by adding the output from all leaners. The dashed boxes
represent the ground truth used to train each CART respectively.

respective TAZ. So the objective is converted to find optimal

parameters θ∗ for model F , which can be formulated as

θ∗ = argmin
θ

L(F(x), y), (3)

where L is the evaluated metric, which can be mean square

error. The θ∗ are trained by the data from previous years, then

the inference can be applied for planning year.

B. The CART sub-learner for GBDT

The CART is adopted as weak learner, while the GBDT

integrates multiple CARTs to construct a single strong learner

and obtain better predictive performance.

The CART model works by repeatedly partitioning the data

into multiple sub-regions according to its features, so that the

results in each region are as homogeneous as possible. The

objective is to find the optimal split feature j and split value s
from input x. Since CART is a binary tree, only two sub-

regions are generated in each division. By traversing each

dimensional split feature j and split value s, the loss function

l is calculated for the CART at each region, i.e.

l = min
j,s

[min
c1

∑
xi∈R1

(yi − c1)
2
+min

c2

∑
xi∈R2

(yi − c2)
2
], (4)

where R1 =
{
x(j) | x(j) ≤ s

}
,R2 =

{
x(j) | x(j) > s

}
denote two subregions divided by value s under j-th feature,

yi is the label of input xi, Mt is the number of samples in

region Rt, c1, c2 are the mean of samples in respective regions

R1,R2, that is,

ct =
1

Mt

∑
xi∈Rt

yi, t = 1, 2. (5)

For the data in respective sub-regions, the area should be

divided by the above steps unceasingly, until the number of

leaves of CART equals threshold J .

T (x,Θ) =

J∑
m=1

cmI (x ∈ Rm) , (6)

where Θ is the hyperparameters of CART, the x is divided

into J regions (i.e. the threshold), and each region has a fixed

output value cm, I (x ∈ Rm) = 1.
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C. The GBDT ensemble Model

In this paper, CART is the basic learner of GBDT, and each

one has the same depth and number of leaves. Each newly

added weak learner fits the residuals from the last step so

that the model can improve, and the GBDT thus becomes a

strong regressor by integrating trees using a gradient boosting

technique. Fig. 1 shows the diagram of the GBDT algorithm,

and each weak learner indicates a CART.

Note that existing trees in the model do not change when a

new tree is added for predicting the residuals. Therefore, in the

gradient boosting method, each new weak leaner is established

to reduce the residual error of the previous model following the

negative gradient direction. The mean square error is adopted

as loss function for the GBDT, i.e.

L =
1

M

M∑
i

(yi − f1 (xi))
2
, (7)

where M is the number of samples, f1 (xi) = T (xi,Θ1), Θ1

represents the parameters of the first CART T . By contrast,

loss l in CART is used to determine the optimal Θ of the

trees, while L here is used to calculate the residual prediction

error. For the sample (xi, yi), the negative gradient value for

the residual can be calculated as

r2i = −∂L (yi, f1 (xi))

∂f1 (xi)
. (8)

Then the input xi and r2i are constructed as a new sample,

and the second CART T (xi,Θ2) is added to predict r2i ,

while the prediction of the GBDT is the sum of the two

trees, i.e., f2 (xi) = T (xi,Θ2) + f1 (xi). For the residual

rNi from the (N −1)-th CART, a new sample (xi, r
N
i ) can be

constituted and used to train the N -th CART, while r1i can be

regarded as yi. The training process of GBDT is demonstrated

in Algorithm 1. And the total prediction for input xi is

F (xi) = T (xi,ΘN ) + fN−1 (xi) =

N∑
j=1

T (xi,Θj) , (9)

where N is the number of basic learners, i.e. CARTs.

III. EXPERIMENTS AND RESULTS

In this section, we analyze the results from the GBDT-

based trip generation method and compare the model with

a commonly used method in the trip generation, i.e. OLSLR.

A. Data Description

The experimental data is from Beijing residential household

travel survey in 2017. The covered attributes include the

information of populations, tourists, hospitals, occupations,

and educations. The data contains the respective volume of

trip production and attraction for 2, 006 traffic analysis zones.

That is, the size of samples is 2, 006. Trip generation is

divided into two types of families with and without cars

under four purposes, and finally, eight types of trips are

generated respectively, including CA-HBW (home-based work

with cars), CA-HBS (home-based school with cars), CA-HBO

Algorithm 1: The training of GBDT model for urban trip

generation prediction.

Inputs: Train set D = {(x1, y1) , . . . , (xM , yM )}; The

number of basic learners: N ; Loss function: L;

The number of leaves J .

Outputs: The trained GBDT model F (xi).
1 Initialize the first tree: Θ1 = argmin

Θ1

∑M
i L (yi, f1(xi));

2 for t = 2 to N do
3 Calculate the negative gradient of the model under the

t-th iteration: rti = −∂L(yi,ft−1(xi))
∂ft−1(xi)

, i = 1, . . . ,M ;

4 Train the t-th CART by (xi, r
t
i) , i = 1, . . . ,M , the

split regions are denoted as Rtj , j = 1, 2 . . . , J ;

5 For the region Rtj , j = 1, 2 . . . , J , find the optimal

ctj according (4)(5);

6 Build the the t-th CART: ft(x) =
∑J

i ctiI (x ∈ Rti)

7 Return F(x) =
∑N

t=1

∑J
j=1 c

t
jI (x ∈ Rtj)

(home-based other trips with cars), CA-NHB (non-home-based

trip with cars), and NCA-HBW (home-based work without

cars), NCA-HBS (home-based school without cars), NCA-

HBO (home-based other trips without cars) and NCA-NHB

(non-home-based trip without cars).

B. Experimental Setting

To conduct the experiment, we use the sci-kit learn library

with Python programming language. And the experimental

hyperparameters are set as follows:

• The number of weak learners is 100.

• The loss function is the mean square error.

• The maximum depth of the decision tree is 4.

• The minimum sample number of leaves is 2.

• The ratio between train set and test set is 8 : 2.

The evaluated metrics in this experiment are root mean

square error (RMSE) and mean absolute error (MAE), which

can be calculated by:

RMSE =

[
1

M

M∑
i=1

(yi − ŷi)
2

]1/2
, (10)

MAE =
1

M

M∑
i=1

|yi − ŷi| , (11)

where M is the number of samples, ŷi is the predicted value,

namely ŷi = F(xi), yi is the ground truth.

C. Results and Analysis

We perform predictions for trip production and attraction

associated with eight purposes, respectively. Fig. 2 shows

the RMSE and MAE metrics between predicted and true

values in eight purposes of respective OLSLR and GBDT

models. It is evident that the GBDT model (orange bar)

significantly outperforms the OLSLR method (blue bar) in
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Fig. 2. The evaluated errors for the two models across eight trip purposes.
CA and NCA are the short of travel with cars and without cars respectively.
Lower values indicate better performance.

TABLE I
THE COMPARISON BETWEEN TWO METHODS ACROSS EIGHT PURPOSES

Methods
mean Production mean Attraction

RMSE (×102) MAE (×102) RMSE (×102) MAE (×102)

OLSLR 33.03 26.48 51.96 41.23

GBDT 29.34 23.28 43.56 36.04

general, especially for the trip attraction prediction of CA-

HBS (about 10% ∼ 25% improvement). In detail, for the

attraction of NCA-HBW prediction, the performance of the

two models is comparable. While the OLSLR model performs

slightly better than the GBDT model in the trip production

prediction for NCA-HBO, and all of them achieve promising

performance for the trip production prediction of non-home-

based trips.

Moreover, we demonstrate the prediction errors of mean

production and attraction across the eight purposes in Table I.

It can be seen that the GBDT model is superior to the OLSLR

model in all indicators (about 12% overall improvement).

Another unshowable advantage of GBDT is that it does not

require the operation of hand-crafted feature selection, since

it works by traversing all the split features and values judging

by the loss function. All of those prove that the introduced

GBDT model is better than the OLSLR method for the task.

IV. CONCLUSION

Trip generation forecasts the number of trips that begin

from or end in each TAZ, which is the first phase of the

four-step travel demand prediction. This paper is the first

to introduce the GBDT algorithm for solving the problem

of trip generation prediction tasks in urban planning and

harmonizes such a powerful machine learning method with

traditional urban planning requirements to achieve better pre-

diction performance. In essence, the GBDT model integrates

weak learners with CART via the gradient descent approach,

which can adjust its structure according to data characteristics.

Hence it fits well the non-linear relationship between input

and output in the task, and does not need hand-crafted feature

selection. By such a data-driven method, the pattern of input

vectors can be extracted effectively. We also demonstrate the

superiority of the introduced GBDT model by comparing it

with the conventional OLSLR model. Our future work intends

to evaluate and develop effective algorithms for remaining

phases in four-step model and thus achieve better performance

for the overall urban travel demand prediction.
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