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Abstract

Although various methods have been proposed for pedestrian
attribute recognition, most studies follow the same feature
learning mechanism, i.e., learning a shared pedestrian image
feature to classify multiple attributes. However, this mecha-
nism leads to low-confidence predictions and non-robustness
of the model in the inference stage. In this paper, we investi-
gate why this is the case. We mathematically discover that
the central cause is that the optimal shared feature cannot
maintain high similarities with multiple classifiers simulta-
neously in the context of minimizing classification loss. In
addition, this feature learning mechanism ignores the spa-
tial and semantic distinctions between different attributes. To
address these limitations, we propose a novel disentangled
attribute feature learning (DAFL) framework to learn a dis-
entangled feature for each attribute, which exploits the se-
mantic and spatial characteristics of attributes. The frame-
work mainly consists of learnable semantic queries, a cas-
caded semantic-spatial cross-attention (SSCA) module, and a
group attention merging (GAM) module. Specifically, based
on learnable semantic queries, the cascaded SSCA module it-
eratively enhances the spatial localization of attribute-related
regions and aggregates region features into multiple disen-
tangled attribute features, used for classification and updat-
ing learnable semantic queries. The GAM module splits at-
tributes into groups based on spatial distribution and utilizes
reliable group attention to supervise query attention maps.
Experiments on PETA, RAPv1, PA100k, and RAPv2 show
that the proposed method performs favorably against state-
of-the-art methods.

1 Introduction
Pedestrian attribute recognition aims to predict multiple at-
tributes for one pedestrian image. Due to the wide range
of applications in person re-identification (Lin et al. 2019),
person retrieval (Li et al. 2018b), and scene understand-
ing (Jaderberg et al. 2015), pedestrian attribute recogni-
tion has attracted increasing attention from industry and
academia. From the perspectives of exploiting additional hu-
man knowledge and adopting attention mechanisms, numer-
ous methods have been proposed and got significant per-
formance improvements. However, recent works often ne-
glect essential characteristics of pedestrian attribute recogni-
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tion that distinguish it from other classification tasks (single-
label classification and general multi-label classification).
We believe that the essence of pedestrian attribute recogni-
tion is two-folds.

On the one hand, unlike the single-label classification,
as a sub-task of multi-label classification, pedestrian at-
tribute recognition requires a disentangled and discrimina-
tive feature for each attribute to predict the corresponding
attribute. However, almost all existing methods adopt the
same feature learning manner as the single-label classifica-
tion task, such as classification in ImageNet (Deng et al.
2009). For example, most works (Liu et al. 2017; Wang
et al. 2017; Li et al. 2018c, 2019a; Tan et al. 2020) use
the identical average-pooled image feature to classify dif-
ferent attributes, and some works (Zhao et al. 2018, 2019)
adopt a shared attribute-group feature to classify attributes
in the same group. Although these works propose various
approaches and achieve promising results, we argue that it is
inferior to represent different attributes with one shared and
entangled feature, named by the One-shared-Feature-for-
Multiple-Attributes (OFMA) mechanism. The fundamental
reason for the inferiority is that, given fixed feature chan-
nel dimension, angles between the shared optimal feature
learned by the OFMA mechanism and individual attribute
classifiers converge to 90 degrees as the number of attributes
increases, which impairs the robustness of the model. The
detailed analysis is introduced in Section 3.1. As far as
we know, our work is the first to reveal the limitations of
this mechanism mathematically. Besides pedestrian attribute
recognition, our analysis of limitations of the OFMA mech-
anism also applies to general multi-label classification.

On the other hand, different from general multi-label clas-
sification in COCO (Lin et al. 2014) and PASCAL-VOC
(Everingham et al. 2010), in which samples of the same cat-
egory can appear at any location in the image, each pedes-
trian attribute has a relatively consistent spatial distribution
across the samples, and some attributes share similar spatial
regions. For example, “Hat” and “Glasses” attributes appear
at the top of the image, while “Boots” and “Sandals” locates
at the bottom of the image.

However, how to exploit the two essential characteristics
and incorporate them into model construction is nontrivial.
To alleviate the limitations of the OFMA mechanism, we in-
troduce the One-specific-Feature-for-One-Attribute (OFOA)



mechanism and propose a Disentangled Attribute Feature
Learning (DAFL) framework as illustrated in Fig. 2. In-
stead of using a shared image feature, the DAFL framework
extracts attribute-specific features based on precise spatial
localization and representative semantic queries. Specifi-
cally, we construct learnable semantic queries and propose
two complementary modules, i.e., the cascaded Semantic-
Spatial Cross-Attention (SSCA) module and the group at-
tention merging (GAM) module. The learnable semantic
queries learns the unique semantic characteristic of each at-
tribute from all samples. The cascaded SSCA module it-
eratively locates attribute-related spatial regions based on
semantic queries and outputs query attention maps. Mean-
while, taking image feature maps as inputs and query at-
tention maps as the affinity matrix, the cascaded SSCA
module integrates spatial region features into disentangled
attribute features, used for classification and updating se-
mantic queries. To supervise the query attention map and
achieve accurate localization, we divide attributes into sev-
eral groups based on spatial distribution and propose the
GAM module to merges qualified query attention maps into
group attention memory, which is utilized as the pseudo-
label. To supervise the attribute features, besides the classi-
fication loss, we construct four triplets for each attribute and
apply the semantic triplet loss to achieves the compactness
between positive features and discrepancy between positive
and negative features 1.

The main contributions of our work are as follows:

• We expose the limitations of the one-shared-feature-for-
multiple-attributes mechanism adopted in most exist-
ing works and propose the disentangled attribute fea-
ture learning framework, an instance of the one-specific-
feature-for-one-attribute mechanism.

• We propose a cascaded semantic-spatial cross-attention
module to learn discriminative feature for each attribute,
which is assisted by a group attention merging module
and a semantic triplet loss to improve the localization
ability and robustness of the model.

• We confirm the efficacy of the proposed method
by achieving state-of-the-art performance on PETA,
RAPv1, PA100k, and RAPv2.

2 Related Work
Pedestrian attribute recognition has recently undergone
rapid development. Since Li (Li, Chen, and Huang 2015)
introduced deep learning into pedestrian attribute recogni-
tion, various methods have been proposed and significant
progress have been made. According to the feature used to
classify attributes, we divide current works into three cate-
gories.

The first category of methods (Li, Chen, and Huang 2015;
Yu et al. 2017; Liu et al. 2017; Li et al. 2018a; Liu et al.
2018; Sarafianos, Xu, and Kakadiaris 2018; Han et al. 2019;

1We use the positive feature to indicate the feature of the sam-
ple with the corresponding attribute. We use the negative feature
to indicate the feature of the sample without the corresponding at-
tribute.

Guo et al. 2019; Tan et al. 2020) extracted a shared global
feature to classify all attributes. These methods usually
adopted attention mechanisms and took the average-pooled
image feature as the global feature. Liu (Liu et al. 2017)
proposed a multi-direction attention network, HydraPlus-
Net, to utilize diverse semantic attention from different lay-
ers. Sarafianos (Sarafianos, Xu, and Kakadiaris 2018) con-
structed a Visual Attention and Aggregation (VAA) module
and applied it on multi-scale feature maps. Guo (Guo et al.
2019) proposed attention consistency loss to align the atten-
tion regions of augmentations of the same image. Tan (Tan
et al. 2020) proposed a two-branch network JLAC, where
the ARM branch generated attribute features based on the
average-pooled image feature and the CRM branch concate-
nated graph node features to make predictions.

The second category of methods divided attributes into
several groups based on the spatial distribution and adopted
one group feature to classify multiple attributes in the same
group. Zhao (Zhao et al. 2018) introduced human key points
to generate body proposals and adopt RoI average pooling
layers to extract proposal features as the group features. In-
stead of utilizing human key points, Li (Li et al. 2019a) ex-
ploited the human parsing model to locate body regions and
adopted graph convolution networks to obtain correspond-
ing group features.

The last category of methods attempted to extract one
specific feature for each attribute. Lin (Wang et al. 2017)
took horizontally divided features as input and introduced
LSTM (Hochreiter and Schmidhuber 1997) to decode indi-
vidual features for each attribute. Li (Li et al. 2019c) pro-
posed a visual-semantic graph reasoning framework to cap-
ture spatial region relations and attribute semantic relations.
Node features of the graph networks are used as the spe-
cific features for each attribute. Tang (Tang et al. 2019) con-
structed multi-scale feature maps by Feature Pyramid Net-
work (FPN) (Lin et al. 2017) and proposed the attribute lo-
cation module (ALM) to extracted features for each attribute
in each scale feature map.

Our work belongs to the last category and concentrates
on extracting a discriminative and disentangled feature for
each attribute. There are two distinctions between previous
works (Wang et al. 2017; Li et al. 2019c; Tang et al. 2019)
and our work. From the motivation of the attribute feature
learning mechanism, our work is the first to expose the lim-
itations in the OFMA mechanism mathematically. In con-
trast, previous works are only motivated by intuition. From
the implementation details, our proposed method considers
spatial and semantic characteristics of each attribute and de-
signs corresponding modules and loss functions to improve
the robustness of the model.

3 Proposed Approach
In this section, we first introduce the attribute prediction pro-
cess and point out that the only determinant for attribute
prediction is the angle between the shared feature vector
and the classifier weight. Then, we expose the limitations
of the One-shared-Feature-for-Multiple-Attributes (OFMA)
mechanism adopted by most methods and propose the One-
specific-Feature-for-One-Attribute (OFOA) mechanism to
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Figure 1: Optimal angle between a shared feature vector and multiple classifier weights. Assuming that the classifier
weights are orthogonal and the classifier norms are identical, the optimal angle is the angle that minimizes the binary cross-
entropy loss. We normalize the feature vector (red arrow) and attribute classifier weights (black arrows) for simplification. In (a)
and (b), we depict the optimal angles between a shared feature vector and two classifiers as well as three classifiers, respectively.
In (c), we plot the curve of the optimal angle as the number of classifiers increases and give the optimal angles on three popular
datasets.

tackle the deficiencies in OFMA. Finally, following the
OFOA mechanism, we construct the Disentangled Attribute
Feature Learning (DAFL) framework and design the spatial
group attention loss and semantic triplet loss.

3.1 Attribute Prediction Process
The prediction results of pedestrian attributes depend on
the choice of probability thresholds. To make an intuitive
and fair comparison, all existing methods set the probabil-
ity threshold ?C = 0.5. Given a dataset � = {G8 , H8 , |8 =

1, . . . , #} and H8 ∈ {0, 1}" , for the 9-th attribute of the 8-th
sample G8 , the prediction result Ĥ8, 9 is decided as follows:

Ĥ8, 9 =

{
1, ?8, 9 >= ?C

0, ?8, 9 < ?C
, (1)

?8, 9 = f(;>68CB8, 9 ), (2)

where ?8, 9 is the predicted probability and f(·) is the sig-
moid function. The output of classifier layer is denoted as
;>68CB, which is computed as:

;>68CB8, 9 = F
)
9 58 =

��F 9 �� · | 58 | · cos \, (3)

where 58 ∈ '� is the shared feature vector of the sample
G8 in OFMA machenism and , = {F 9 | 9 = 1, . . . , "} ∈
'�×" is the classifier weight matrix. Taking Eq. 2 and Eq.
3 into Eq. 1, we conclude that the prediction of attributes
only depends on the sign of cos \ in Eq. 3, i.e., the angle \
between the feature vector 5 and the classifier weight F:

Ĥ8, 9 =

{
1, 0◦ <= \ <= 90◦

0, 90◦ < \ < 180◦
. (4)

Therefore, for a target attribute, a well-trained model should
make angles between positive sample features and the cor-
responding classifier weights as small as possible, or even
close to 0◦, which means high-confidence prediction.

3.2 Limitations of the OFMA mechanism
For a well-trained model that follows the OFMA mecha-
nism, we have two critical experimental observations, which
is illustrated in the supplementary material. One is that the
classifier weights of attributes are mostly orthogonal. The
other is that the classifier norms are approximately the same.
Considering the orthogonality between attribute classifiers,
for the OFMA mechanism, it is intuitively impossible to
make angles between the shared feature vector and multiple
attribute classifier weights all close to 0◦. However, these
angles are expected to be as small as possible, which im-
plies high-confidence prediction of the model. But what is
the theoretical optimal angle?

We start from classification on two attributes, i.e., clas-
sifying a sample ( 58 , H8) where 58 is the feature vector of
the sample and H8 = {1, 1} is the ground truth label. We
take classification on the positive sample of attributes as an
example, and the classification on negative samples can be
analyzed in the same way. Following the common practice,
binary cross-entropy loss is adopted as the classification loss
and other experimental settings are present in the supple-
mentary material. Thus, the problem can be formulated as:

max
58

log
(
f(F)1 58)

)
+ log

(
f(F)2 58)

)
. (5)

Given the two experimental observations, we hypothesize
that the classifier weights F1 and F2 are orthogonal, and
their norms are the same. We prove that the optimal feature 5
is located in the middle of the two classifiers, i.e., the feature
has the same distance from both two classifiers and the opti-
mal angles between the shared feature and two classifiers are
both 45◦, as demonstrated in Fig. 1(a). The proof is available
in the supplementary material. For classification on three at-
tributes, the optimal feature has the same distance from all
three classifiers, i.e., the optimal angles are 54.74◦, as shown
in Fig. 1(b). Furthermore, for classification on " attributes,
we conclude that the optimal feature achieves a trade-off in
the distance between itself and multiple classifiers to mini-
mize the binary cross-entropy loss. This property makes the
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Figure 2: Illustration of the DAFL framework and the SSCA module. The proposed framework consists of two modules and
three losses. Taking the image feature map F and previous semantic query QB−1 as input, the cascaded SSCA module locates
attribute-related regions iteratively and outputs attribute feature F B−1 as the semantic query QB of next step, where B is the step
of the cascaded SSCA module. The GAM module merges query attention maps of the last SSCA module into spatial group
memory G as the pseudo-label to implement group consistency loss.

optimal angle converge to 90◦as the number of attributes "
increases. Specifically, on existing datasets PA100k, PETA,
and RAP, the attributes " are 26, 35, 51, and the optimal
angles are 78.69◦, 80.27◦, and 81.95◦respectively, as shown
in Fig. 1(c). This theoretical conclusion is verified in the ex-
perimental statistics in Fig. 3.

However, the optimal angles close to 90◦in the training
stage are far from our expectations. As a result, a small per-
turbation can make features of the test set cross the decision
boundary, causing angles of the test set to be greater than
90◦and yielding wrong predictions. Specifically, the learned
features are susceptible to changes in pedestrian pose, illu-
mination, and background, resulting in incorrect classifica-
tions. Some examples are given in Fig. 4. Thus, we conclude
that, the shared features learned by the OFMA mechanism
are too far from the classifiers, which reduces the robustness
of the model on the test set. In addition, it is worth noting
that this deficiency is determined by the OFMA mechanism
and independent of the specific method.

Besides to large angles between the shared feature and
classifiers, there is another limitation of the OFMA mecha-
nism. The shared global features and group features of the
OFMA mechanism, used to classify multiple attributes, are
average pooled from the image feature map. Nevertheless,
the pooling operation erases the spatial distinction of at-
tributes and only exploits the channel information. There-
fore, the OFMA mechanism is not adequate to exploit the
differences between attributes to learn discriminative fea-
tures for each attribute.

3.3 Proposed DAFL Framework
To solve the limitations in the OFMA mechanism, we pro-
pose a DAFL framework following OFOA mechanism as
illustrated in Fig. 2. Specifically, we propose to locate
attribute-related spatial regions and aggregate discrimina-
tive regional features as a specific feature for each attribute,
rather than pooling a shared feature for all attribute classifi-

cations, which erases the distinction of spatial distribution.
In addition to the difference in spatial distribution, seman-
tic characteristics also facilitate learning discriminative fea-
tures, especially for attributes with a similar spatial distribu-
tion. Considering that the semantic characteristics are con-
sistent across samples, we design learnable semantic queries
and introduce the triplet loss on features of each attribute to
further improve the discrimination of features.

The DAFL framework mainly consists of the cascaded
SSCA module and the GAM module. The SSCA module
is proposed to locate precise spatial regions for each at-
tribute and aggregate region features as attribute features.
Concretely, the B-th SSCA module takes semantic query
QB ∈ '�×" and image feature map F ∈ '�×�×, as in-
puts and outputs query attention map A ∈ '"×�×, and
attribute feature F B ∈ '�×" , where " is the number of
attributes. The channel, height, and width dimension of the
feature map is represented by �, �, and, respectively. The
feature map F is output by the backbone network (ResNet50
(He et al. 2016)). The query attention map A is computed as
follows:

A = (> 5 C<0G( \ (Q)
) q(F )
√
�

), (6)

where \ (Q) = W\Q and q(F ) = WqF are two linear em-
bedding functions. As shown in Fig. 2, query attention map
highlights attribute-related spatial regions and can be used as
affinity matrix to aggregate region features as specific spatial
feature �B , which is formulated as:

F B = Ak(F )) , (7)

where k(�) = ,k� is a linear embedding function. Inspired
by the success of the multi-head self-attention mechanism
(Vaswani et al. 2017), we implement the A, F B in a multi-
head manner. To further refine the semantic query and locate
reliable spatial regions, we cascade multiple SSCA modules
and take attribute feature F B−1 of the previous SSCA mod-



ule as the semantic query QB of the current SSCA module:

QB B F B−1, (8)

where B = 0, 1, . . . ( − 1 and ( is the number of cascaded
SSCA modules. The Q0 is randomly initialized.

Based on semantic query Q, we can extract spatially dis-
entangled attribute features F from single image feature
map F . However, due to the imbalanced attribute distribu-
tion, some minority attributes do not have enough positive
samples to learn the precise query attention map A and ef-
fective attribute features F . Inspired by the facts that some
attributes have a similar spatial locations, such as “Hat”
and “Glasses”, “UpperLogo” and “UpperPlaid”, “Front” and
“Back”, we propose to merge query attention maps of mul-
tiple attributes with the similar spatial distribution and use
the merged group attention to supervise minority attributes.
Specifically, we first divide attributes into several groups G
based on the spatial distribution. Then, we propose the group
attention merging (GAM) module to merge qualified query
attention maps �8,< into group attention �0 = {�0

:
|: =

1, . . . ,  } ∈ ' ×�×, as follows:

G0
: =

1
|G: |

∑
<∈G:

1
|R |

1C∑
8=1

1{R }A8,<, (9)

where 8 denotes the sample index, 1C indicates the batch size,
1(·) is the indicator function, and | · | represents the set cardi-
nality. The condition set R = {f(;>68CB8,<) > g, H8,< = 1}
and the hyper-parameter g are adopted to select qualified
query attention maps for each attribute from the current
batch.  is a pre-defined group number and set to  = 6
as default. For example, given attribute groups of PA100k as
listed in Tab. 1 of Supplementary materials, for group atten-
tion G0

1 , we first sum the qualified query attentions of “Hat”
and “Glasses” in a batch respectively to obtain a “Hat” at-
tention and a “Glasses” attention. Then, two attentions are
merged into “Head” group attention based on group G1.

To mitigate the fluctuation caused by limited batch size
and random sampling, we maintain a spatial group memory
�< in a momentum updated way to make the group atten-
tion reliable and consistent across batches. The �< is for-
mulated as:

G<
: ← (1 − U) ×G

<
: + U ×G

0
: , (10)

where U ∈ (0, 1] is the momentum hyper-parameter. We
take the group attention G<

:
as the pseudo-label to super-

vise the inaccurate query attention map A8,< of attributes
in the group G: . Thus, we propose the group consistency
loss to rectify the imprecise spatial localization of minority
attributes:

!6A>D? =
1
1C
| |
1C∑
8=1

 ∑
:=1

∑
<∈G:

G<
: −A8,< | |2, (11)

Although the cascaded SSCA and GAM module achieve
accurate spatial localization and obtain discriminative at-
tribute features, we find that the distance between posi-
tive samples is greater than the distance between positive

Table 1: The six spatial groups of attributes in PA100k.

Group Attribute

Head (G1) Hat, Glasses
UpperBody (G2) ShortSleeve, LongSleeve, UpperStride, UpperLogo, UpperPlaid, UpperSplice
LowerBody (G3) LowerStripe, LowerPattern, LongCoat, Trousers, Shorts, Skirt&Dress

Feet (G4) Boots
Bag (G5) HandBag, ShoulderBag, Backpack, HoldObjectsInFront

Whole (G6) AgeOver60, Age18-60, AgeLess18, Female, Front, Side, Back

and negative samples, which undermines the robustness of
the model and is illustrated in the supplementary material.
Therefore, we apply the triple loss (Hermans, Beyer, and
Leibe 2017) to features of each attribute to achieve the com-
pactness of positive features and discrepancy between posi-
tive and negative features.

Specifically, for each attribute, we select features from the
current batch and construct two triplets. For a positive fea-
ture 0?< of <-th attribute, we select the hardest positive fea-
ture 5

?
< (with the lowest prediction probability) from other

positive features and the hardest negative feature 5 =< (with
the highest prediction probability) from all negative features
to construct the positive triplet (0?<, 5 ?< , 5 =<). To minimizes
the distance between 0?< and 5 ?< and maximizes the distance
between 0?< and 5 =<, the positive triplet loss is computed as:

!?>B,< =
∑
9∈# ?

<

<0G(0, � (0?
9
, 5

?

9
) − � (0?

9
, 5 =9 )), (12)

where # ?< is the number of positive samples of the <-th at-
tribute in the current batch and � (·) is the distance func-
tion. For a negative feature 0=<, the hardest negative feature
5 =< and the hardest positive feature 5

?
< are selected to con-

struct the triplet (0=<, 5 =<, 5
?
< ). The negative triplet loss is

computed as:

!=46,< =
∑
9∈# =

<

<0G(0, � (0=9 , 5 =9 ) − � (0=9 , 5
?

9
)), (13)

where #=< is the number of negative samples of the <-th
attribute in the current batch. However, due to the imbal-
anced distribution of attributes and the random sampling of
training batches, positive samples of minority attributes in
a batch may be too few to construct effective triplets. Thus,
we borrowed the Queue Dictionary mechanism from MOCO
(He et al. 2020) to dynamically store positive and negative
samples for each attribute. Besides the triplets from the cur-
rent batch, we also construct two additional triplets from the
stored features and apply the triplet loss in the same way as
Eq. 12 and Eq. 13.

Following the common practice, we adopt the weighted
binary cross-entropy loss as the classification loss:

!2;B =
1
#

#∑
8=1

"∑
9=1
l8, 9 (H8, 9 log

(
?8, 9

)
+ (1 − H8, 9 ) log

(
1 − ?8, 9

)
),

(14)
where l8, 9 is the weighting function proposed in (Tan et al.
2020). The total loss is formulated as:

! = !2;B + V1!6A>D? + V2!CA8 ?;4C , (15)

!CA8 ?;4C =
1
"

"∑
<=1

!?>B,< + !=46,< (16)



Table 2: Performance comparison of state-of-the-art methods on the PETA, RAPv1, PA100k, and RAPv2 datasets. Per-
formance in five metrics, including mean Accuracy (mA), accuracy (Accu), precision (Prec), recall, and F1, is evaluated. The
first and second highest scores are represented by bold font and underline respectively.

Method Backbone
PETA RAPv1 PA100k RAPv2 1

mA Accu Prec Recall F1 mA Accu Prec Recall F1 mA Accu Prec Recall F1 mA Accu Prec Recall F1

DeepMAR (ACPR15) CaffeNet 82.89 75.07 83.68 83.14 83.41 73.79 62.02 74.92 76.21 75.56 72.70 70.39 82.24 80.42 81.32 – – – – –
HPNet (ICCV17) InceptionNet 81.77 76.13 84.92 83.24 84.07 76.12 65.39 77.33 78.79 78.05 74.21 72.19 82.97 82.09 82.53 – – – – –

JRL (ICCV17) AlexNet 82.13 – 82.55 82.12 82.02 74.74 – 75.08 74.96 74.62 – – – – – – – – – –
PGDM (ICME18) CaffeNet 82.97 78.08 86.86 84.68 85.76 74.31 64.57 78.86 75.90 77.35 74.95 73.08 84.36 82.24 83.29 – – – – –
GRL (IJCAI18) Inception-V3 86.70 – 84.34 88.82 86.51 81.20 – 77.70 80.90 79.29 – – – – – – – – – –

MsVAA (ECCV18) ResNet101 84.59 78.56 86.79 86.12 86.46 – – – – – – – – – – 78.34 65.57 77.37 79.17 78.26
RA (AAAI19) Inception-V3 86.11 – 84.69 88.51 86.56 81.16 – 79.45 79.23 79.34 – – – – – – – – – –

VRKD (IJCAI19) ResNet50 84.90 80.95 88.37 87.47 87.91 78.30 69.79 82.13 80.35 81.23 77.87 78.49 88.42 86.08 87.24 – – – – –
AAP (IJCAI19) ResNet50 86.97 79.95 87.58 87.73 87.65 81.42 68.37 81.04 80.27 80.65 80.56 78.30 89.49 84.36 86.85 – – – – –
VAC (CVPR19) ResNet50 – – – – – – – – – – 79.16 79.44 88.97 86.26 87.59 79.23 64.51 75.77 79.43 77.10
ALM (ICCV19) BN-Inception 86.30 79.52 85.65 88.09 86.85 81.87 68.17 74.71 86.48 80.16 80.68 77.08 84.21 88.84 86.46 79.79 64.79 73.93 82.03 77.77
JLAC (AAAI20) ResNet50 86.96 80.38 87.81 87.09 87.45 83.69 69.15 79.31 82.40 80.82 82.31 79.47 87.45 87.77 87.61 79.23 64.42 75.69 79.18 77.40

Baseline ResNet50 86.18 78.86 86.44 86.42 86.43 81.08 67.15 77.24 81.28 79.73 80.71 78.61 86.50 87.59 87.04 80.10 65.51 75.44 81.49 77.35
DAFL ResNet50 87.07 78.88 85.78 87.03 86.40 83.72 68.18 77.41 83.39 80.29 83.54 80.13 87.01 89.19 88.09 81.04 66.70 76.39 82.07 79.13

where hyper-parameters V1 and V2 are set to 0.1 as default.

4 Experiments and Discussion
In this section, we first conduct experiments on four datasets
PETA (Deng et al. 2014), RAPv1 (Li et al. 2016), PA100k
(Liu et al. 2017), and RAPv2 (Li et al. 2018b), to make a
fair comparison with state-of-the-art (SOTA) methods. The
dataset information and experimental settings are given in
the supplementary material. Then, we conduct exhaustive
ablation studies on the largest dataset PA100k to validate the
contribution of each component. Finally, we quantitatively
analyze our proposed approach and verify our motivation.

4.1 Comparison to the State of the Arts
In Tab. 2, we compare the performance between our pro-
posed methods and recent SOTA methods on PETA, RAPv1,
PA100k, and RAPv2 to show the superiority of our meth-
ods. Since some methods (Wang et al. 2017; Li et al. 2019b)
adopt the model ensemble policy in the inference stage, we
do not list their performance to make a fair comparison.
In the label-based metric mA, we achieve SOTA perfor-
mance and outperform the JLAC method by 0.11%, 0.03%,
1.23%, 1.81% on four datasets. In four instance-based met-
rics, our method DAFL achieves SOTA performance on the
two largest datasets PA100k and RAPv2, and comparable
performance on small datasets RAP and PETA. Our method
achieves better performance on the label-based metric than
those on the instance-based metrics for two reasons. One is
that the bottleneck of the mA metric lies in the attributes
with a small number of positive samples. The other is that
the GAM module and semantic triplet loss of our method
can alleviate the imbalance of attribute distribution. In ad-
dition, we find that our proposed method achieves better
performance on large datasets (90,000 and 67,943 train-
ing images on PA100k and RAPv2 respectively) than on
small datasets (33,268 and 11,400 training images on PETA
and RAPv1 respectively). This phenomenon due to the fact
that the effective semantic queries and reliable spatial group
memory require more samples to learn.

1Results on RAPv2 are reported in (Jia et al. 2021).

Table 3: Experiments on each component of our method
on PA100k. Performance which is improved by each com-
ponent validates the effectiveness of our method. The first
highest scores are represented by bold font. The variant of
the GAM module is represented by ★ symbol.

Method PA100k
SSCA GAM TripletLoss mA Accu Prec Recall F1

– – – 80.71 78.61 86.50 87.59 87.04
X – – 82.21 79.21 86.30 88.60 87.44
X X – 82.65 79.19 86.47 88.36 87.40
X – X 82.41 78.86 86.08 88.49 87.22
X ★ X 83.18 79.88 87.10 88.64 87.87
X X X 83.54 80.13 87.01 89.19 88.09

4.2 Ablation Study
As shown in Tab. 3, we investigate the effect of the cas-
caded SSCA module, GAM module (with spatial consis-
tency loss), and semantic triplet loss. To make a fair and con-
vincing evaluation, we conduct ablation experiments on the
largest dataset PA100k (Liu et al. 2017), which follows the
zero-shot pedestrian settings and can truly validate the gen-
eralization of the model (Jia et al. 2021). For the mA and F1
metric, the cascaded SSCA module alone can achieve 1.50%
and 0.40% performance improvement separately. Combin-
ing the GAM and TripletLoss into the cascaded SSCA mod-
ule can further improve the performance by 1.33%, 0.65%
in mA and F1.

To further validate the rationality of proposed spatial con-
sistency loss, we implement a variant GAM★ of our method.
To supervise the query attention map Q of each attribute,
the GAM★ module maintains a specific spatial memory for
each attribute instead of using the group memory shared by
multiple attributes. We report the performance of the variant
in the second last row of Tab. 3. On the one hand, the per-
formance improvement achieved by the GAM and GAM★

module proves the effectiveness of spatial consistency loss.
On the other hand, since the GAM module considers the in-
sufficiency in positive samples of minority attributes, it can
alleviate the distribution imbalance of attributes and achieve
better performance than the GAM★ module.

Experiments results on the number of the cascaded SSCA
module are listed in Tab 4. As ( increases, the performance
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Figure 3: Angle distribution of the baseline model and our proposed method on each attribute. We show angle distribution
on each attribute of the baseline model (blue box) and our proposed method (red box). The upper and lower green dashed lines
mark the theoretical optimal angle (78◦on PA100k) and the angle decision boundary (90◦), respectively.

first increases when ( < 3 and then decreases when ( > 3.
We argue that the cascaded SSCA module is beneficial for
discriminative semantic queries and accurate query attention
map when ( is small. However, the semantic query Qs of the
current step is the attribute feature F s−1 of the previous step,
which is aggregated from the feature map F . Thus, when
( is large, the number of pixels in the feature map similar
to the semantic query gradually increases, and the degree of
similarity also increases. As a result, the query attention map
A cannot highlight the attribute-related regions but focuses
on the whole foreground regions, excluding the background.

Table 4: Experiments on the number ( of the cascaded
SSCA modules.

Cascade Number mA Accu Prec Recall F1

( = 1 82.82 79.89 87.29 88.50 87.63
( = 2 83.31 79.46 86.21 89.10 87.89
( = 3 83.54 80.13 87.01 89.19 88.09
( = 4 83.01 79.49 86.40 88.95 87.66
( = 5 83.13 79.60 86.83 88.56 87.69
( = 6 82.73 79.44 86.64 88.69 87.65

4.3 Further Analysis and Discussions
Our DAFL framework aims to solve the problem of the
OFOA mechanism, that is, angles between features and clas-
sifiers are too large or even close to 90◦. To visually demon-
strate the progress made by our method, the angles distri-
bution on each attribute is given in Fig. 3. Compared to the
baseline model, the angles in our method DAFL are signifi-
cantly smaller and farther away from the decision boundary
(90◦), which means that the DAFL method learns more dis-
criminative features and achieves higher confidence in the
prediction. We believe this property has significant implica-
tions in practical applications. In addition, most of the angles
in the baseline model are distributed within the two green
dashed lines, which is consistent with our theoretical analy-
sis of the limitations of the OFOA mechanism in Sec. 3.2.

Besides the overall distribution of the attributes, specific
examples and corresponding prediction results are given in
Fig. 4. For the “Skirt&Dress” attribute, our method achieves

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8 Image 9 Image 10

(a) Ten images of one pedestrian with a similar appearance.
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(b) Predictions on “Skirt&Dress” and “Female” attributes.

Figure 4: Prediction on images with marginal pose vari-
ation. Due to the small angles between features and classi-
fiers, our method shows superior robustness than the base-
line model.

correct prediction in 9 out of 10 images. In comparison, the
baseline model achieves correct prediction in only 3 images.
For the “Female” attribute, although both methods achieve
successful prediction on ten images, the prediction of our
method is more confident. All these phenomena demonstrate
the robustness of our method.

5 Conclusion
This paper exposes the limitations in the OFMA mecha-
nism and proposes the discriminative and robust attribute
feature learning framework for pedestrian attribute recog-
nition, which follows the OFOA mechanism. The proposed
framework makes full use of distinctions between attributes
from the spatial distribution and semantic characteristics to
extract a specific feature for each attribute. Our proposed
method achieves outstanding performance consistently on
the PETA, RAPv1, PA100K, and RAPv2.
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