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Abstract

In this paper, we convert traditional video captioning

task into a new paradigm, i.e., Open-book Video Caption-

ing, which generates natural language under the prompts

of video-content-relevant sentences, not limited to the video

itself. To address the open-book video captioning prob-

lem, we propose a novel Retrieve-Copy-Generate network,

where a pluggable video-to-text retriever is constructed to

retrieve sentences as hints from the training corpus effec-

tively, and a copy-mechanism generator is introduced to

extract expressions from multi-retrieved sentences dynam-

ically. The two modules can be trained end-to-end or sepa-

rately, which is flexible and extensible. Our framework co-

ordinates the conventional retrieval-based methods with or-

thodox encoder-decoder methods, which can not only draw

on the diverse expressions in the retrieved sentences but

also generate natural and accurate content of the video.

Extensive experiments on several benchmark datasets show

that our proposed approach surpasses the state-of-the-art

performance, indicating the effectiveness and promising of

the proposed paradigm in the task of video captioning.

1. Introduction

Video captioning is one of the most important vision-

language tasks, and it seeks to automatically describe what

has happened in the video according to the visual content.

Recently, many promising methods [36, 22, 24, 34, 2] have

been proposed to address this task. These methods mainly

focus on learning the spatial-temporal representations of

videos to fully tap visual information and devising novel

decoders to achieve visual-textual alignment or controllable

decoding. In general, there exist some drawbacks for most

of the existing work: first, since the video content is the

only source of input, the generation process lacks appropri-
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Figure 1. Pipeline comparison of the existing methods and our method.

Our generation is produced based on not only video content but also the

cues of multi-retrieved sentences searched from text corpus by a cross-

modal retriever. Pluggable retriever provides guidance and expansion for

the generating model.

ate guidance, resulting in the generations of more generic

sentences; second, the memory or knowledge domain of the

model is fixed after training and cannot be expanded or re-

visited unless retraining.

To address these issues, we propose an Open-book Video

Captioning paradigm. We first compare the two cross-

modal tasks for better illustration: Video-Text Retrieval

(VTR) and Video Captioning (VC). VTR is a discrimina-

tive task that can access all the information of visual and

textual modalities all the time; VC as a generative task can

only produce words based on current generated words and

visual information, which is more challenging than VTR.

Instead of performing the VC task directly, we propose to

convert it into two-stages: we first perform VTR to search

for sentences relevant to the given video from the text cor-

pus; then, we leverage the retrieval sentences as extra hints

or guidance for caption generation. During the inference,

the generator can generate words based on the video con-

tent or directly copy expressions from retrieved sentences.
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The flexible VTR and the changeable corpus provide the

possibility for the model’s extension or revision.

The inspiration for the proposed paradigm comes from

the Open-domain Question Answering task [18, 10, 15],

which requires a system to answer any questions utilizing

large-scale documents. Open means not providing the sys-

tem with documents containing the correct answers directly

but requires the system to retrieve documents related to the

question from massive corpus and then generate the cor-

rect answer based on them. We claim that the open-domain

mechanism is also effective in cross-modal interaction area

and can thus be applied to the video captioning task.

This mechanism essentially extends the knowledge do-

main of the model learned only from the labeled data. It

is known that producing large-scale, high-quality labeled

data is extremely laborious and time-consuming. Instead,

a model learns to collect related references, distinguish use-

ful hints, abstract and summarize information from external

weakly labeled or unlabeled documents breaks through the

limitations of labeled data. This is valuable especially for

the industry-scale video platforms where hundreds of mil-

lions weakly labeled or unlabeled data are generated every-

day. Unlike traditional semi-supervised learning that uti-

lizes fixed weakly labeled or unlabeled examples directly

for training, the proposed paradigm makes the model learn

to extract useful information from changeable weakly la-

beled or unlabeled corpus directly for inference.

To realize the aforementioned open-book video caption-

ing, we introduce a novel Retrieve-Copy-Generate (RCG)

network. We introduce a Video-to-Text Retriever to search

for video-content-relevant sentences from the corpus con-

taining the whole sentences of the training set. Our retriever

follows the Bi-encoders [14] structure and utilizes both mo-

tion and appearance features to search desired sentences ef-

ficiently and effectively. For the example in Fig.1, the top

retrieved sentences contain expressions “on a mat”, “does

somersaults”, and “someone watches”, which describe the

given video accurately. Then, the retrieved sentences and

the visual features are passed to the generator. A novel

Copy-Mechanism Generator is introduced, which dynami-

cally decides whether to copy the expressions directly from

multi-retrieved sentences or generate new words from the

video contents. The model combines the information from

the video content and the words copied from retrievals to

generate the final caption “A kid doing a somersault on a

mat while a boy watches”, which is much better than the

generic caption “A little girl practices in a room”.

The contributions of this work are listed as follows:

(1) We propose to solve the video captioning task with an

open-book paradigm, which generates captions under

the guidance of video-content-retrieval sentences, not

limited to the video itself.

(2) We introduce a novel Retrieve-Copy-Generate net-

work to tackle this task, where an improved cross-

modal retriever is utilized to provide hints for gener-

ator, and a copy-mechanism generator is proposed for

dynamical copying and better generation.

(3) The extensive experimental results highlight the ben-

efits of combining cross-modal retrieval with copy-

mechanism generation for the video caption task. The

proposed approach achieves state-of-the-art results on

VATEX and superior performance on MSR-VTT.

2. Related Works

Video Captioning. Reviewing the early retrieval-based

visual description methods can be roughly divided into two

categories: [21, 9, 16] cast the problem as retrieval from

a visual space problem and transfer the retrieved descrip-

tions to a novel image/video; [5, 25, 11] cast the problem

as retrieval from a multimodal space problem. Although

retrieval-based methods can find human-like sentences with

similar semantics to the video, it is challenging to generate

an entirely correct description due to limited retrieval sam-

ples. With the advent of the encoder-decoder framework,

most of the current work is studying how to better use vi-

sual features [35, 23, 1, 36, 22, 24] and design elaborate

models [34, 2, 28, 13] to generate sentences directly. How-

ever, the diversity and controllability of sentences generated

in this way are not satisfactory. We coordinate the clas-

sical retrieval-based method with modern encoder-decoder

method to generate descriptions with diverse expressions

and accurate video contents.

Video-Text Retrieval. Video-Text Retrieval is a fun-

damental discriminative vision-language task that helps to

learn the semantic alignment of different modalities. In

general, there are two kinds of model architectures, i.e., Bi-

encoders [4, 6, 19, 20] and Cross-encoders [26, 30, 33, 3].

Bi-encoders map the query and candidates into a com-

mon feature space with two separate encoders. Since there

is no interaction between their features, Bi-encoders are

lower-accuracy but very efficient during evaluation. Com-

pared with it, Cross-encoders yield rich interactions be-

tween query and candidates by integrating features at an

early stage. This helps to gain a higher-accuracy but steep

computational cost. We make efficient and effective im-

provements to the Bi-encoders based model, which is more

applicable to our paradigm.

Retrieval Augmented Generation Tasks. A series of

NLP works utilize the retrieved knowledge for better gen-

eration, such as open-domain question answering (Open-

QA), neural machine translation(NMT), and dialog gen-

eration. REALM [10] and ORQA [17] show promising

results on the Open-QA task by combining masked lan-

guage models with a differentiable retriever. DPR [15]

implements a dense embedding-based retriever to replace

traditional sparse retrievers and achieves significant per-

formance. RAG [18] combines this learnable retriever in

9838



Video-to-Text
Retriever

bi-LSTM

Text1:

Text2:

Training Text Corpus

Aggregation

softmax

Aggregation

similarity

Text3:

Attention LSTM

Language LSTM

Visual
Attention

softmax
weighted

sum

Feature
Extractors

Final Distribution

Motion &
Appearance

Fixed Vocabulary
Distribution

Retrieval Words
Distribution

Retrieved
Sentences

Input Video

Video-to-Text
Retriever

Copy-mechanism
Generator

Copy-mechanism
Generator

Copy-mechanism
Generator

Copy-mechanism
Generator

Element-wised
Multiplication

Element-wised
Addition

Inner
Production

A mom encourages a
baby to clap, she
claps, and then
squeals with delight.

A baby in yellow is
sitting on the ground
and playing with
someone's foot.

An adult playfully
interacts with a baby
engages the baby to
clap and then calls
out her name.

Figure 2. Overview of the proposed Retrieve-Copy-Generate Network for Open-book Video Captioning. The left side is the pipeline of our method, which

consists of two components: the Video-to-Text Retriever that searches for the video-content-relevant sentences from the corpus containing all the sentences

in the training set; the Copy-mechanism Generator produces the words by steps under the hints or guidance of retrieved sentences and the visual features.

In the upper right corner, the Bi-encoders architecture is leveraged to efficiently and effectively achieve the cross-modal retrieval. Here we only show

the similarity calculation process based on the motion features. In the bottom right corner, a hierarchical caption decoder is used to generate the fixed

vocabulary based on the video content. Meanwhile, an improved multi-pointer module directly copies the expressions from the retrieved sentences for a

better generation.

an end-to-end pre-trained generator. Meanwhile, SEG-

NMT [7] and RER [12] leverage retrieval to assist the NMT

system. DeepCopy [32] also retrieves relevant unstructured

sentences as external knowledge to assist dialog generation.

Inspirited from these works, we extend this pattern to cross-

modal generation task, i.e., video captioning, which is quite

different and challenging.

3. Retrieve-Copy-Generate Network

We show the overall pipeline of the proposed Retrieve-

Copy-Generate (RCG) for Open-book video captioning in

Fig.2. It consists of two components: (1) the video-to-text

retriever pη(z|x) with parameter η, which retrieves the top-

k semantically similar sentences z according to video x;

and (2) the copy-mechanism generator pθ(yt|z, x, y1:t−1)
parametrized by learnable θ, which leverages the above ad-

ditional retrieved sentences z, the original visual informa-

tion x, and the previous t− 1 generated tokens yt−1 to gen-

erate the current target token yt. Formally, the conditional

probability of producing caption given video for our pro-

posed approach are defined as follows:

p(y|x) =

T∏

t=1

topk
∑

i=1

pη(zi|x)
︸ ︷︷ ︸

retriever

pθ(yt|zi, x, y1:t−1
︸ ︷︷ ︸

generator

), (1)

where y is the target sentence with N tokens. Since a

dataset usually contains videos with semantically similar

content, the corresponding sentences always have similar

forms or expressions. Thus, the top-k retrieved sentences

z can provide information related to the video’s content x
to help the generator to produce the target sentence more

accurately. Meanwhile, pη(z|x) can be treated as a soft-

threshold, which represents the confidence of whether the

generator can copy words directly from the retrieval sen-

tences or not.

The theoretical part is organized as follows. We intro-

duce how to construct a simple but effective cross-modal re-

triever in Sec.3.1, and how to extract representations related

to video content from multi-retrieved sentences to augment

the generation in Sec.3.2. The iterative training procedure

of the whole system is described in Sec.3.3.

3.1. Effective VideotoText Retriever

The major function of our retriever is to find the top-k
most similar sentences z given video x in a massive retrieval

corpus Z . Note that |Z| can be large enough to cover all the

video contents ideally (the corpus contain nearly 0.3 mil-

lion pieces of sentences in our implement), and k is usually

small, such as 1 ∼ 30.

The video-to-text retriever applies Bi-encoders architec-

ture: the textual encoder Etxt(·) maps all sentences in the

corpus Z into d-dimensional vectors and constructs a can-

didate dataset; the visual encoder Evis(·) maps the video x
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into a d-dimensional vector as a query. The whole retrieval

model is trained by metric learning, which embeds visual

and textual modalities into a joint high-dimensional seman-

tic space. Subsequently, the similarity between the video

and text is defined as the dot-product of their embedding

vectors:

sim(x, z) = Etxt(z) · Evis(x). (2)

In this way, the sentences whose embeddings are top-k
closest to the video embedding are sorted by the retriever.

We use a simple but effective way to build these two en-

coders.

Textual Encoder. Given a sentence z = {s1, · · · , sL},
each word is first input to a bi-LSTM to generate a se-

quence of d-dimensional context-aware word embeddings

w = {w1, · · · ,wL}:

−→
wt =

−−−−→
LSTM(Wsst,wt−1; ηs),

←−
wt =

←−−−−
LSTM(Wsst,wt+1; ηs),

wt = (−→wt +
←−
wt)/2,

(3)

where Ws is a learnable word embedding matrix and ηs
denotes the parameters of LSTM.

Subsequently, all the embeddings are aggregated to a sin-

gle vector as the overall representation. For simplicity, we

denote the aggregation function as Agg(·;v) which utilizes

the multiplicative attention mechanism, where the param-

eter v ∈ R
d can be viewed as a learnable core that gives

higher weights to more discriminative features:

Agg(w;v) =
L∑

t=1

αtwt, (4)

αt = softmax(vTwt). (5)

Thus, the word embeddings are aggregated to a single

vector via ēw = Agg(w;vs), where vs is the parameters

of the word aggregation function.

Visual Encoder. It is assumed that appearance fea-

tures xa = {xa
1
, · · · ,xa

K} and motion features xm =
{xm

1
, · · · ,xm

K} together constitute the representation of the

video x. Each feature is the original feature after linear

transformation to d-dimensional. The video is usually di-

vided into K key frames and segments.

For visual encoder, we directly aggregate features at dif-

ferent moments according to their importance, since the se-

quential information has been involved in motion features,

and appearance features only provide discrimination for the

main objects in the video. We aggregate motion embed-

dings via ēm = Agg(xm;vm) and appearance embed-

dings via ēa = Agg(xa;va) by reusing the aggregation

function defined by Eq.4, where vm, va ∈ R
d are the pa-

rameters of two modalities’ aggregation functions.

We take the average of appearance and motion similari-

ties as the final video-text similarity:

sim(x, z) = ẽTw(ẽm + ẽa)/2, (6)

where ẽ = ē/||ē||2 is the operation of L2 normalization.

Pre-training and Retrieval. The training of our cross-

modal retriever follows the contrastive learning, where each

positive pair (x+, z+) should be closer than any other nega-

tive pairs (x+, z−) and (x−, z+) in a mini-batch. The max-

margin ranking loss function pushes the hardest negative

pair ∆ distance away from the positive pair, as follows:

Lret = [∆ + sim(x+, z−)− sim(x+, z+)]+

+[∆ + sim(x−, z+)− sim(x+, z+)]+
, (7)

where [x]+ = max(x, 0) and ∆ is the slack coefficient.

The sentences belonging to other videos in the mini-batch

are all negative samples of this video and vice versa.

Due to the independent structure of Bi-encoders, the tex-

tual embeddings can be calculated offline in advance for ef-

ficient evaluation. Given video x as the query, top-k most

relevant retrieved sentences can be found following Eq.6,

and the probability of retrieved sentence zi is estimated as:

pη(zi|x) = softmax(sim(x, zi)), zi ∈ {z1, · · · , ztopk}.
(8)

3.2. Copymechanism Caption Generator

To generate captions based on the video content and

the retrieved sentences, we design a novel copy-mechanism

caption generator, which consists of the Hierarchical Cap-

tion Decoder and the Dynamic Multi-pointers Module. We

describe the proposed generator in detail as follows:

Hierarchical Caption Decoder. It consists of attention-

LSTM and language-LSTM. Formally, the attention-LSTM

tries to focus on different visual features x = [xm;xa] ac-

cording to the current hidden state ha
t to achieve the visual

context cvt , where [·; ·] is the concatenation of two sets of

features in the feature dimension. The current hidden state

of the attention-LSTM ha
t depends on the previous hidden

state ha
t−1

and generated word yt−1:

ha
t = LSTM(Weyt−1,h

a
t−1

; θa), (9)

cvt = Att(ha
t ,x,x; θv), (10)

where, Att(query, key, value; θ) denotes standard additive

attention module with parameters θ for simplify; We is the

word embedding matrix.

Then, the language-LSTM aggregates the current state

ha
t and the visual context cvt to generate the probability dis-

tribution of the fixed vocabulary pvoc at each time step:

hl
t = LSTM([ha

t , c
v
t ],h

l
t−1

; θl), (11)

pvoc = softmax(Wvoch
l
t + bvoc), (12)

where pvoc ∈ R
1×V ; θv, θa, θl are parameters of the visual

attention module and hierarchical-LSTMs; Wvoc and bvoc
are all learnable parameters.
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Dynamic Multi-pointers Module. In Sec.3.1, we get

the top-k most similar retrieved sentences to the given

video. We also leverage the bi-LSTM(·; θz) to encode these

retrieved sentences to z = {z1, · · · , ztopk}. Each retrieved

sentence zi consists of a set of words with their embeddings

zi = {z
1
i , · · · , z

L
i }.

To draw on the expressions in multiple retrieved sen-

tences, we propose the multi-pointers module improved

on Pointer-Networks [27] by extending the single docu-

ment copying to multiple’s. At each decoding step t, the

multi-pointers module acts on each retrieved sentence zi
separately, uses the hidden state hl

t as the query to attend

L words, and produces the word probability distribution

pret,i ∈ R
1×L of the corresponding sentence:

pret,i, c
r
i,t = Att(hl

t, zi, zi; θr), (13)

where Att(·) is the additive attention module with param-

eters θr; cri,t denotes the context of the retrieved sentence

which is the weighted summation of zi by pret,i. Since not

all the words in the retrieved sentence are valid, the model

needs to decide whether to copy or generate dynamically.

The probabilities of copying words from each retrieved sen-

tence zi are determined by the semantic context of retrieved

sentence cri,t and the decoder’s state hl
t:

pcopy,i = σ(Wrc
r
i,t +Wlh

l
t), (14)

Finally, we get the generation probability distribution

pθ ∈ R
topk×V , which is summarized by accumulating

the probability distribution of the fixed vocabulary pvoc ∈
R

1×V and the dynamic words in retrieved sentences pret ∈
R

topk×V conditioned on copy probability pcopy ∈ R
topk×1

via broadcasting. Note that pret has been extended to the

same size of fixed vocabulary.

pθ = (1− pcopy)pvoc + pcopypret. (15)

3.3. Training

Review the definition of the open-book video captioning,

the final probability of target word is jointly predicted by the

similarities pη of the retrieved sentences and the generation

probabilities pθ with copy-mechanism by substituting Eq.8

and Eq.15 into Eq.1. Our goal is to minimize the negative

log-likelihood of each target word yt:

Lgen = −

T∑

t=1

log

topk
∑

i=1

pη(zi)pθ,i(yt). (16)

These two components can be trained separately. As-

suming that given an off-the-shelf retriever, our model can

directly use the retrieval results for generation. In this case,

we keep the retriever fixed, only fine-tuning the generator.

This provides convenience for replacing better retrievers or

adapting to different datasets.

Additionally, the retriever and generator can be jointly

trained end-to-end in an iterative manner for better per-

formance. However, updating the retriever directly dur-

ing training may decrease its performance drastically as the

generator has not been well trained to begin with. For a sta-

ble training, we add the ranking loss mentioned in Sec3.2

to the generation loss as a constraint i.e., L = Lret +Lgen.

Moreover, we periodically (per epoch in our work) per-

form the retrieval process because it is costly and frequently

changing the retrieval results will confuse the generator.

4. Experiments

4.1. Experimental Settings

Datasets. We carry out all the experiments on MSR-

VTT and recent VATEX, which are two large-scale video-

caption datasets. The MSR-VTT [31] contains 10,000

open-domain video clips from YouTube website. For each

clip, there are 20 human descriptions and one of 20 cate-

gories (music, sports, etc.). We follow the standard splits

with 6,573 videos for training, 497 videos for validation,

and 2,990 videos for testing. The most recent VATEX [29]

dataset reuses the videos from Kinetics-600 that contains

41,269 video clips with 10 English text sentences. Accord-

ing to the official splits, the dataset is divided into 25,991

training, 3,000 validation, and 6,000 public testing.

Due to the strict quality control, VATEX has enricher,

longer (average 16 tokens v.s. 9 tokens in MSRVTT) and

more accurate annotations. Therefore, we conduct and re-

port most of the experiments on this dataset. Other experi-

ments can be seen in the supplementary materials.

Evaluation Metrics. We use standard captioning met-

rics, i.e., BLEU-4, Meteor, Rouge-L, and CIDEr, to eval-

uate the performance of video captioning. We pay more

attention to CIDEr during experiments, since only CIDEr

weights the n-grams that relevant to the video content,

which can better reflect the capability on producing novel

expressions. Moreover, we introduce metrics in informa-

tion retrieval, including Recall at K (R@K), Median Rank

(MedR), and Mean Rank (MnR), to measure the perfor-

mance of the video-text retrieval. R@K measures the pro-

portion of correct targets retrieved from K samples. MedR

and MnR represent the median and average rank of correct

targets in the retrieved ranking list separately.

Implementation Details. For the extraction of visual

features, we use C3D pre-trained on Kinetics-400 and In-

ceptionResNetV2 pre-trained on ImageNet to extract mo-

tion and appearance features, respectively. We also con-

duct extra experiments for VATEX with other features,

e.g., the I3D motion features pre-trained on Kinetics-600

and ResNet152 appearance features pre-trained on Ima-

geNet. All the features above are extracted from 28 key-

frames/segments of video sampling at equal intervals. For
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Table 1. Performance of video-text retrieval and video captioning

tasks using fixed retrievers trained by different features.

# Methods
Video-Text Retrieval Video Captioning

R@1 R@5 MedR ↓ MnR ↓ C B-4 R M

1 w/o Retriever - - - - 49.2 31.3 48.5 21.9

2 Random 0.1 0.1 7002 10328 49.1 31.0 48.6 21.7

3 ResNet 17.2 37.7 11 126.8 51.5 32.2 49.4 23.1

4 I3D 24.9 51.0 5 48.8 54.7 33.2 49.7 23.3

5 ResNet+I3D 29.4 56.9 4 36.5 56.8 33.4 50.1 23.6

Table 2. Performance of training the model with different numbers

of retrieved sentences. The model is tested via top-10 sentences.

Fixed denotes whether the retriever is fixed or jointly trained.

#
# Retrievals

Training
Fixed CIDEr BLEU-4 Rouge-L Meteor

1
1

X 55.3 33.4 50.0 23.5

2 × 56.3 33.4 50.0 23.6

3
3

X 56.8 33.4 50.1 23.6

4 × 57.5 33.9 50.2 23.7

5
5

X 56.3 33.8 50.1 23.6

6 × 56.8 33.9 50.2 23.6

7
10

X 56.4 33.6 50.0 23.5

8 × 57.1 33.7 50.1 23.6

the textual embedding, the sentences longer than 40 words

are truncated and initialized the word embedding with

GloVe by spaCy toolkit.

For the setting of retriever, the joint embedding size of

Bi-encoders is 1024. We set the margin ∆ as 0.2, the batch

size as 128 and the learning rate as 2e−4. The retriever con-

verges in around 10 epochs, and the best model is selected

from the best results on the validation. Note that during

the training and testing phase of RCG, the sentences are re-

trieved only from the corpus of training set. Furthermore,

the sentences belonging to their own video should be ex-

cluded. Otherwise, the answer will be leaked, and the train-

ing will be destroyed.

For the setting of generator, we keep the features in

sync with the retriever. The hidden size of the hierarchical-

LSTMs is 1024, and the state size of all the attention mod-

ules is 512. The model is optimized by Adam. The learning

rate is initialized with 2e−4 and decayed 0.5 times every 3

epochs. The batch size is set to 64, and the training of the

model can be converged with no more than 20 epochs. Dur-

ing the validation, the beam-search (beam size is 3) is used

for a better generation.

4.2. Quantitative Analysis
The core of proposed open-book video captioning is to

assist the caption generation by introducing the cross-modal

retrieval. We elaborate the following Q&As to better illus-

trate the impact open-book captioning and prove the effec-

tiveness of our model. Unless otherwise specified, all the

experiments are carried out on VATEX.

Does the performance of the retriever affect the re-

sults? We leverage different features to train the retrievers

to simulate retrievers with different capabilities. We report

the performance of the video-text retrieval and correspond-

Table 3. Performance of testing the model with different numbers

of retrieved sentences. The model is trained via top-3 retrieved

sentences.

#
# Retrievals

Testing
CIDEr BLEU-4 Rouge-L Meteor

1 1 50.5 30.9 48.5 22.5

2 3 54.1 32.6 49.6 23.3

3 5 55.8 33.0 50.0 23.5

4 10 56.8 33.4 50.1 23.6

5 15 57.4 33.5 50.2 23.7

6 30 57.5 33.5 50.1 23.7

Table 4. Performance of using different qualities of the corpus for

testing. Different qualities are simulated through the corpus size.

#
Retrieval

Corpus

Corpus

Size
CIDEr BLEU-4 Rouge-L Meteor

1 TrainSet +0.1% 39.9 29.4 47.7 21.9

2 TrainSet +1% 48.9 31.4 49.0 22.9

3 TrainSet +10% 56.0 33.2 49.9 23.5

4 TrainSet +100% 56.8 33.4 50.1 23.6

5 TestSet +Oracle 58.9 34.3 50.5 23.9

ing generation using different retrievers in Tab.1. In lines 3

to 5. we see that the retriever with better performance can

significantly improve the generation. An intuitive explana-

tion is that a good retriever can find sentences closer to the

video content and provide better expressions. Moreover, we

find the results are similar between the model without re-

triever in line 1 and the model with a randomly initialized

retriever as the worst retriever in line 2. In the worst case,

the generator will not rely on the retrieved sentences reflect-

ing the robustness of our model.

Does the number of retrieved sentences affect the re-

sults? We analyze the effect of using different numbers of

retrieved sentences in training and testing phases. In train-

ing phase, we explore 1 ∼ 10 sentences for training, and 10

sentences are used for testing. As illustrated in Tab.2, we

find that a moderate number of retrieved sentences (3 for

VATEX) are helpful for generation during training. This is

because the retrieved sentence does not exactly correspond

to the video, and the noise is also introduced with useful in-

formation. In testing phase, we select a well-trained model

with fixed retriever trained on 3 sentences and test with var-

ious 1 ∼ 30 sentences retrieved from training set as hints.

Compared with the results in Tab.3 lines 4 to 6, it demon-

strates that more sentences may bring more hints for gen-

eration until saturation. In summary, too many retrieved

sentences with noise are not conducive to model training,

and a trained model can adaptively select useful cues from

multiple sentences.

Does the quality of the retrieval corpus affect the re-

sults? We conduct this experiment by randomly selecting

different proportions of sentences in training set to simu-

late retrieval corpora of different quality. In Tab.4 lines 1

to 4, it illustrates large scale retrieval corpus is conducive

to producing better generation, which may be because the
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Figure 3. Illustration of the words copied from the retrieved sentences and their probabilities during the generation process. Each block represents the

attention weights of the words in one retrieval sentence, and the first column of each block denotes the probability of copying.
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Figure 4. The CIDEr scores of different models during training

on VATEX. FixRet and TrainRet denote the fixed retriever and

jointly trained retriever separately. The number after Ret means

the number of sentences used for training. RetOnly means directly

selecting the top-1 retrieved sentence as the caption. w/o Ret is

our baseline model, which follows the standard generation model

without our proposed retriever.

higher quality corpus contains more semantically similar

sentences, and it provides more hints related to the video

content for generation. Furthermore, assuming that our re-

trieval corpus is good enough to contain sentences that cor-

rectly describe the video. It can be seen in Tab.4 line 5,

a significant improvement than ever before if we combine

training set and test set as the Oracle corpus for testing.

Note that the Oracle corpus is only intended to show that

our model can retrieve better sentences for generation and

is not involved in the training process.

Which is better, fixed or jointly trained retriever? We

choose CIDEr as the metric of caption performance since

it reflects the generation associated with video content. We

plot the real-time test scores of fixed retriever with differ-

ent sentences, jointly trained retriever and without retriever

during training. As shown in Fig.4, the accuracy is signif-

icantly improved, and the model converges faster after in-

troducing our retriever. The jointly trained retriever is also

better than fixed in the term of accuracy. The same conclu-

sion can be drawn from Tab.2. This may be because joint

Table 5. Experiments on cross-dataset video captioning. The

model is trained on VATEX training set and tested on MSRVTT

test set. The sentences are retrieved from training corpus. Ret and

Gen denote using retriever and using generator. ∗ means the re-

triever is trained on MSR-VTT.

#
Retrieval

Corpus
Ret Gen C B-4 R M

1 - × X 0.159 0.196 0.463 0.233

2 VATEX X × 0.099 0.082 0.359 0.185

3 VATEX X X 0.202 0.217 0.482 0.242

4 VATEX+MSRVTT X × 0.123 0.089 0.363 0.186

5 VATEX+MSRVTT X X 0.209 0.222 0.485 0.245

6 VATEX+MSRVTT X* X 0.241 0.232 0.495 0.252

trained retriever can increase the probability of sentences

that are more helpful for generation.

For efficiency, we profile the model speed on a server

with CPU E5-2650 v4 @ 2.20GHz, 128 GB memory and

GTX1080Ti. All tests are performed using a single GPU.

The retrieval speed is about 254 videos/sec, which is the

same for both retrievers. The fixed retriever’s training speed

is 137.6 videos/sec, which is slightly faster than the co-

trained retriever of 127.2 videos/sec by 8.2%.

How is the generalization of the model for cross-

dataset videos? In practical applications, the input video

distribution is not necessarily the same as that of training

data. This puts forward requirements for the generalization

of the model. For this experiment, we pre-train models on

VATEX and measure the performances on MSRVTT that

is unseen in training. As shown in Tab.5, the performance

of our RCG in line 3 is better than the baseline generation

model in line 1. The comparison to line 3,5 shows that

higher quality of the retrieval corpus leads to better perfor-

mance. Furthermore, we select a retriever trained on MSR-

VTT, and the comparison to line 5,6 shows a better retriever

can further improve performance. The above experiments

also show that our RCG can be extended by changing dif-

ferent retriever and retrieval corpus.

4.3. Comparison to StateoftheArts
After exploring of our proposed model, we compare it

with models published on the most recent conferences. For

a fair comparison, we use the standard motion and appear-

ance feature extractions used by most models. Reinforce-
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Ground
-Truth

 1-A man is shown rolling a ball at another person, the person kicks the ball 
 back 
 2-A man throws a ball to a boy, who kicks it back to the man, who catches   it
 3-a man wearing blue throws a red ball to a boy

Retrieved 
Sentences

Baseline  a group of people are playing a game of frisbee in a park

RCG  a man standing on the grass playing catch with a ball and a child looks him

Ground
-Truth

 1-A man is scube diving in the ocean while exploring sea creatures 
 2-A woman is scube diving deep in the red sea with someone else  
 3-A woman is under water with her breathing apparatus on

Retrieved 
Sentences

Baseline  a person is scuba diving in the ocean with a lot of fish

RCG  scuba divers are swimming at the base of the water and breathing out of 
 their masks

0.613

0.627
0.616

0.536
0.532

0.521

Figure 5. Visualizations of the proposed RCG. The attention weights and similarities between the video of top-3 retrieved sentences are shown. The

baseline model can generate some correct words and wrong words. Compared with it, our RCG can generate more diverse captions by copying the

expressions from retrieved sentences.

Table 6. Performance comparison with state-of-the-art methods on

MSR-VTT and VATEX testing set. +RL denotes reinforcement

learning, +Audio means introducing audio features.

Dataset Method Ref. CIDEr BLEU-4 Rouge-L Meteor

MSR-

VTT

POS-CG[28] ICCV19 48.7 42.0 61.6 28.2

POS-VCT[13] ICCV19 49.1 42.3 62.8 29.7

SAAT[37] CVPR20 49.1 40.5 60.9 28.2

+RL 51.0 39.9 61.2 27.7

STG-KD[22] CVPR20 47.1 40.5 60.9 28.3

PMI-CAP[3] ECCV20 49.4 42.1 - 28.7

+Audio 50.6 43.9 - 29.5

ORG-TRL[36] CVPR20 50.9 43.6 62.1 28.8

Baseline Ours 49.8 42.2 61.2 28.2

+FixRet Ours 52.3 43.1 61.9 29.0

+TrainRet Ours 52.9 42.8 61.7 29.3

VATEX

VATEX[29] ICCV19 45.6 28.7 47.2 21.9

ORG-TRL[36] CVPR20 49.7 32.1 48.9 22.2

NSA[8] CVPR20 57.1 31.0 49.0 22.7

Baseline Ours 49.2 31.3 48.5 21.9

+FixRet Ours 56.8 33.4 50.1 23.6

+TrainRet Ours 57.5 33.9 50.2 23.7

ment learning and audio features are not used. The baseline

model is a standard hierarchical-LSTMs. We list the re-

sults of the fixed retriever model and jointly trained retriever

model. For MSR-VTT, we choose top-3/10 retrieved sen-

tences for training/inference. For VATEX, top-3/10 sen-

tences are selected for training/inference. Both the pre-

training of the retriever and the fine-tuning of RCG are per-

formed on the training set. In Tab.6, compared with the

baseline, RCG achieves remarkable improvements, which

proves the effectiveness of our method. Moreover, it outper-

forms ORG-TRL model even without fine-grained object

features and external knowledge, which obtains 3.9% and

15.7% relative gains on CIDEr metric for MSR-VTT and

VATEX. We have a comparable performance for the other

metrics of MSR-VTT and have achieved the best results in

VATEX. In addition, compared to MSRVTT, the improve-

ment in VATEX is particularly obvious. It may be because

the videos in VATEX are collected by categories and have

a large number of videos with the same semantics. This is

more consistent with our motivation and practical industrial.

4.4. Qualitative Analysis
We visualize the heatmap of the words copied from the

retrieved sentences and their probabilities during the gen-

eration process, as illustrated in Fig.3. According to the

heatmap, whether the words come from the retrieved sen-

tences and each sentence’s contribution can be seen intu-

itively. In Fig.5, we also visualize the attention weights

of retrieved sentences during the process of video-text re-

trieval. Most of the weights are focused on keywords, e.g.,

“scuba diver”, “ocean water” and “masks”, which proves

the effectiveness of our retriever. Comparing the baseline

model, the proposed RCG can acquire more diverse ex-

pressions, e.g., “breathing out of their masks” benefit from

the coping mechanism, and correct the expressions from “a

game of frisbee” to “playing catch” under the guidance of

retrieved sentences.

5. Conclusion
In this paper, we have presented the RCG for open-book

video captioning. RCG efficiently retrieves video-content-

relevant sentences from text corpus through a cross-modal

retriever, jointly copies cues from multi-retrieved sentences

and generates through a copy-mechanism caption genera-

tor, and is optimized in a separately or end-to-end manner.

Our results suggest that it is practical to copy knowledge

not limited to retrieved sentences, e.g., video subtitles, text

from video and text from speech etc., for comprehensive in-

formation acquisition and better generation. In the future,

we will further explore the content above and use more ad-

vanced retrieval to improve model efficiency.
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