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ABSTRACT 

 

Schizophrenia (SCZ) patients typically vary significantly in 

symptom severity. Despite numerous studies demonstrate 

SCZ is linked to brain structure abnormalities, relationships 

are obscure. In this paper, we establish relationships 

between structural abnormalities and symptom severity. All 

analyses are performed in two datasets (discovery: 326 SCZ 

and 298 normal control (NC); replication: 216 SCZ and 173 

NC). We first build normative models in NC group, based 

on which we calculate atrophy values of cortical thickness, 

surface area, and gray matter volume in SCZ. Finally, we 

use atrophy values to predict symptom severity via 

generalized additive models and further evaluate the 

marginal effect of each structural feature. We found atrophy 

values could reliably predict symptom severity across two 

datasets (discovery: Pearson r = 0.29, P < 1 × 10-5; 

replication: r = 0.26, P = 3 × 10-5). Our findings could aid in 

understanding the pathogenesis of symptoms in SCZ. 

 

Index Terms— Schizophrenia, Prediction, Generalized 

Additive Models, Symptom Severity, Brain Atrophy 

 

1. INTRODUCTION 

 

Schizophrenia (SCZ) is a highly disabling mental disorder 

along with heterogeneous clinical manifestations. For 

example, patients with SCZ typically have different levels 

of symptom severity. Recently, structural magnetic 

resonance imaging (MRI) has been broadly adopted to 

examine brain anatomy in SCZ patients. Among various 

measures of structural MRI, cortical thickness, surface area, 

and gray matter volume (GMV) are widely used. A large-

scale neuroimaging meta-analysis study reported that 

patients with SCZ have extensive thinner cortex and smaller 

surface area in both hemispheres, primarily in frontal and 

temporal lobes regions[1]. Compared to normal controls, 

patients with SCZ have global GMV reductions, particularly 

in the subcortical thalamus and across cortical regions, 

including the ventral and medial prefrontal cortex[2,3]. 

Although numerous structural MRI studies have concluded 

that SCZ is associated with widespread abnormalities in 

brain structure[4], the neurobiological mechanisms inducing 

these structural alternations are unclear. Furthermore, the 

relationships between brain anatomical abnormalities and 

clinical phenotypes such as symptom severity are obscure. 

In most existing studies, Pearson correlation is 

generally used to investigate relationships between 

structural features and symptom severity. Specifically, two 

steps are included. First, identify abnormal brain regions in 

SCZ patients through case-control comparisons on structural 

features such as cortical thickness, surface area, and GMV. 

Second, calculate correlation coefficients between mean 

feature values in each of the detected regions and clinical 

symptoms. Studies have found that cortical thickness and 

GMV in frontal and temporal regions are inversely 

correlated with the positive symptom, whereas surface area 

in the right frontal regions is inversely correlated with the 

negative symptom[5,6]. 

Despite certain regional correlations being found, there 

are several concerns about the two-step method. First, only 

statistically significant brain regions from the first step are 

investigated. Since the significance level is highly 

dependent on sample size, effects of other potential brain 

regions are liable to be ignored. Second, the combined 

effects of structural features are not investigated. The 

overall contributions are neglected if examine brain regions 

individually, given these brain regions could be interrelated. 

Besides, different structural features are not taken together 

to evaluate integrative effects. Third, Pearson correlation 

can not identify nonlinear relationships, since it is a measure 

of linear correlation. 

In our study, we worked on the three concerns 

proposed. Considering anatomical features of cortical 

thickness, surface area, and GMV mainly show reductions 

in SCZ patients, we focused on brain regions with 



reductions of these features. We first built normative models 

in the NC group via general linear models (GLMs). Based 

on normative models, we then defined atrophy values of 

each structural feature in the SCZ group, indicating global 

mean feature reductions. We used atrophy values to predict 

symptom severity through generalized additive models 

(GAMs). GAM is an additive modeling technique, having 

advantages of flexibility, interpretability, and 

regularization[7,8]. Particularly, the impact of features is 

captured through smooth functions, and thus nonlinear 

effects are contained. From the view of performance, GAMs 

are competitive with other popular learning methods. Finally, 

to achieve interpretability, we evaluated the marginal effect 

of each feature in predictions. 

 

2. MATERIAL AND METHOD 

 

2.1. Participants 

 

The discovery dataset (n = 624, SCZ = 326, and NC = 298) 

was collected from four Chinese hospitals: Peking 

University Sixth Hospital, Beijing Huilongguan Hospital, 

Xijing Hospital, and Henan Mental Hospital. All patients 

with SCZ were diagnosed consensually by two qualified 

psychiatrists utilizing the Structured Clinical Interview for 

DSM-IV Axis I Disorders (SCID-I, Patient Edition). None 

of the included patients had a history of any other 

psychiatric disorders, neurological disorders, cognitive 

disabilities, serious physical diseases, severe head trauma, 

substance abuse or dependence, and electroconvulsive 

therapy within the last 6 months. All the engaged healthy 

subjects were clinically investigated with SCID-I Non-

patient Edition, who and their first- and second-degree 

relatives had no history of any mental disorders. Written 

informed consent was obtained from all participants or their 

guardians. The research protocol was approved by the 

Medical Research Ethics Committees of the local hospitals. 

SCZ and NC groups were statistically matched in age (two-

sample t-test: t = -0.01, P = .98) and gender (chi-squared 

test: χ2 = 0.08, P = .77). See Table 1 for the discovery 

dataset details. 

 
Table 1. Demographics and clinical assessments in the discovery 

and replication datasets. 

Dataset Category SCZ NC P 

Discovery 

Number 326 298 NA 

Age (y) 27.0 ± 6.1 27.1 ± 5.8 0.98 

Gender (M/F) 168 / 158 158 / 140 0.77 

PANSS Total 81.6 ± 11.1 NA NA 

Replication 

Number 216 173 NA 

Age (y) 28.2 ± 7.4 27.7 ± 6.3 0.46 

Gender (M/F) 114 / 102 88 / 85 0.78 

PANSS Total 87.6 ± 12.1 NA NA 

PANSS, Positive and Negative Syndrome Scale; NA, not 

applicable; y, year; M, male; F, female. Data were presented as 

mean ± standard deviation. 

 

The replication dataset (n = 389, SCZ = 216, and NC = 

173) was recruited from three hospitals in China: Renmin 

Hospital of Wuhan University, Zhumadian Psychiatric 

Hospital, and Henan Mental Hospital. The clinical inclusion 

criteria and evaluation were the same as the discovery 

dataset. All participants or their guardians provided written 

informed consent. The study was approved by the Medical 

Research Ethics Committees of the local hospitals. There 

were no statistically significant differences in age (two-

sample t-test: t = 0.72, P = .46) and gender (chi-squared test: 

χ2 = 0.07, P =.78) between SCZ and NC groups. See Table 1 

for the replication dataset details. 

The symptoms of the patients with SCZ were measured 

using the Positive and Negative Syndrome Scale 

(PANSS)[9]. Specifically, all the included patients had a 

PANSS total score greater than sixty. See Table 1 for the 

PANSS score details. 

 

2.2. MRI acquisition and processing 

 

In the discovery dataset, T1-weighted (T1w) images were 

acquired on 3.0T Siemens scanners. The 3D-MPRAGE 

sequence was performed with parameters: repetition time 

(TR) = 2530 ms; echo time (TE) = 3.5 or 2.43 ms; flip angle 

(FA) = 7o; inversion time (TI) = 1100 ms; voxel size = 1 × 1 

× 1 mm3; matrix size = 256 × 256 × 192. In the replication 

dataset, T1w images were obtained on 3.0T GE scanners. 

The 3D-GRE sequence was performed with parameters: TR 

= 7.8 or 6.8 ms; TE = 3 or 2.5 ms; FA = 7o; TI = 1100 ms; 

voxel size = 1 × 1 × 1 mm3; matrix size = 256 × 256 × 188. 

Voxel-based morphometry (VBM) processing was 

carried out using the VBM8 toolbox[10]. Specifically, it 

took native T1w images as inputs and generated differently 

segmented tissue compartments, namely gray matter (GM), 

white matter (WM), and cerebrospinal fluid (CSF) images. 

non-brain tissues were removed in the procedure. The 

outputs were registered to standard Montreal Neurological 

Institute (MNI) space with non-linear deformation using the 

high dimensional DARTEL algorithm[11]. Quality check 

was implemented by displaying slices for images and 

checking for sample homogeneity. All the segmented 

images were not smoothed and had a voxel size of 1.5mm3 

and a resolution of 121 × 145 × 121. 

Surface-based morphometry (SBM) analysis was 

performed using Freesurfer version 6.0[12]. The cortical 

reconstruction processes from T1w images were 

implemented using a single recon-all command, consisting 

of several stages including skull stripping, intensity 

normalization, white matter segmentation, and surface 

extraction. Cortical thickness was measured by the closest 

distance between white matter and pial surfaces[13]. The 

surface area was achieved from triangular surface faces and 

further converted to vertice representations. For accurate 

matching of cortical locations among subjects, each 

individual’s reconstructed cortex was finally resampled to 

an averaged space (fsaverage)[14], containing 163,842 



nodes in each hemisphere. Quality control was performed 

by visual examination for errors of segmentation, intensity 

normalization, and skull stripping. 

 

2.3. Creation of atrophy features 

 

Three types of brain measurements were used to create 

atrophy features, i.e. vertex-based cortical thickness and 

surface area, as well as voxel-based subcortical gray matter 

volume (GMV). Particularly, GMV in the cortex was not 

used, considering its interrelationships with another two 

measurements possibly led to feature redundancy. The 

subcortex mask applied in GM images was generated based 

on the Brainnetome atlas[15] by simply zeroing the whole 

cortex while setting all the subcortical regions to one. 

Particularly, the cortex-subcortex boundary is consistent 

with the Freesurfer Desikan–Killiany (DK) atlas[16]. 

We first built normative models[17,18] from the NC 

group in each dataset, given different MRI scanner protocols 

and site numbers. Specifically, we separately performed 

vertex-wise (or voxel-wise) general linear models (GLMs) 

for cortical thickness, surface area, and subcortical GMV. 

Age, gender, and dummied site variables were regarded as 

covariates (see equation 1). 

Y = β0+β1×Xage+β2×Xgender+β3×Xsite_dummy+ε       (1) 

Y represented the three measurements respectively, X were 

covariates, ε were residual maps. β maps were computed via 

the least-squares method. 

In each dataset, we calculated three different atrophy 

maps for each patient with SCZ based on the normative 

models derived from the NC group, following equation 2. 

Wamap = (Y’-β0-β1×X’
age-β2×X’

gender-β3×X’
site_dummy) / εstd   (2) 

Y’ represented the three measurements in the SCZ group 

respectively, X’ was the corresponding covariates. β0 to β3 

and εstd values were the results from the normative models, 

where εstd was the standard deviation of residual maps. 

Wamap was further binarized at a level of -2, indicating 2 

standard deviations below the mean of the NC group, 

controlling for age, gender, and site. We defined the atrophy 

value as the mean of binarized Wamap. Finally, for each 

patient with SCZ, three atrophy values were computed, 

representing atrophy degree relative to the NC group in the 

aspects of cortical thickness, surface area, and subcortical 

GMV respectively. 

 

2.4. Prediction of symptom severity 

 

Regression analyses were carried out to investigate whether 

atrophy values were associated with clinical symptoms in 

SCZ. Specifically, we built regression models to predict 

PANSS total scores from the three atrophy values. 

We built predictive models under the framework of 

Generalized Additive Models (GAMs)[7,8], which is a 

powerful yet simple technique combining several 

advantages, e.g. flexibility, interpretability, and 

regularization. In our analysis, linear GAMs were selected 

for simplicity and allowing nonlinear functions for predictor 

variables (feature functions) while maintaining additivity. 

Particularly, the feature functions can capture complex 

relationships but linear between predictor variables (atrophy 

values) and the response variable (PANSS total scores). We 

used penalized B splines[19] as feature functions, which 

have a penalty parameter to control smoothing to prevent 

overfitting. Besides, we also added a tensor term to create 

interactions between the three atrophy features. 

We trained models in the discovery dataset via nested 

5-fold cross-validation (CV)[20], an effective design to 

avoid bias in model selection[21]. The nested 5-fold CV 

structure contains inner and outer procedures, which are 

used for parameters tuning (i.e. penalty strength) and testing 

performance. Altogether, we had 6 independent penalty 

parameters to optimize, each of which had a wide range of 

possible values. Considering the high-dimensional search 

spaces, we applied a randomized search strategy[22] (more 

than 100,000 times) to estimate these parameters. To further 

evaluate the generalization performance, we choose the 

predictive model with the best testing performance and 

validated it in the replication dataset after retraining on the 

whole discovery dataset. We calculated the Pearson 

correlation coefficient and mean absolute error (MAE) 

between observed and predicted scores to quantify the 

prediction performance. To achieve the significance (P 

value) of predictions, we performed 100,000 times 

permutation test by randomly shuffling the response values. 

To evaluate the dependencies between the three 

features (atrophy values) and the target (PANSS total 

scores), we applied partial dependence plots (PDP) to 

characterize the marginal effect of atrophy values on the 

PANSS total scores. Particularly, PDP describes whether the 

relationship between a feature and the target is linear, 

nonlinear and monotonic, or more complicated. 

 

3. EXPERIMENT AND RESULT 

 

3.1. Multicollinearity of predictor variables 

 

Multicollinearity is a common problem in regression models 

when two or more predictor variables are correlated. It has 

been demonstrated that multicollinearity has an enormous 

influence on regression analysis since it probably leads to 

biased results and has unpredictable and inconsistent effects 

on parameter estimates and significance[23]. A generally 

accepted method to evaluate the degree of multicollinearity 

is by examining the variance inflation factor (VIF)[24] for 

each predictor variable. Specifically, VIF quantifies how 

much of the variance in the dependent variable explained by 

each of the predictor variables is inflated. Therefore, before 



performing regression analysis, we first detected whether 

high levels of multicollinearity exist in our predictor 

variables, i.e. the three types of atrophy values. The VIF 

values are given in Table 2. 
 

Table 2. VIF values of atrophy variables in the discovery and 

replication datasets. 

Dataset 
Cortical 

thickness 

Surface 

area 

Subcortical 

GMV 

Discovery 1.76 1.34 1.70 

Replication 1.72 1.55 1.51 

 

As the interpretation by previous studies[23–25], a VIF 

value of 1 represents there are no correlations between the 

predictor variable and any others. When the VIF value 

increases and falls in the range between 1 and 5, moderate 

correlations exist. If the VIF value is greater than 5, the 

predictor variable is highly correlated with some others. All 

our VIF values are slightly greater than 1 and less than 2, 

indicating that there are minor correlations between atrophy 

variables, and thus multicollinearity is not a matter of 

concern. 

We built linear GAMs to predict PANSS total scores 

from atrophy values of cortical thickness, surface area, and 

subcortical GMV in patients with SCZ. Model training and 

testing were implemented via nested 5-fold CV in the 

discovery dataset. The penalty parameters were randomly 

searched more than 100,000 times from 50 numbers evenly 

on a log scale from -4 to 2 with a base of 10. To lower the 

bias introduced by a single run of nested 5-fold CV[26], we 

repeated this procedure 100 times and calculated median 

testing performance in terms of Pearson’s r and MAE (see 

Table 3). 
 

Table 3. Testing results of nested 5-fold CV with median 

performance in the discovery dataset. 

 The outer fold of nested 5-fold CV  

 1 2 3 4 5 Mean 

Pearson r 0.39 0.25 0.17 0.37 0.28 0.29 

MAE 8.26 6.57 8.64 9.17 8.61 8.25 

 

To further evaluate generalization performance, we chose 

the model with the best testing performance, i.e. the model 

of outer fold 1 in Table 3. After retraining on the whole 

discovery dataset, we validated it in the replication dataset. 

See Fig.1 for model performance in the two datasets. 

 

 
Fig. 1. Atrophy values predicted PANSS total scores. Scatter plots 

with regression lines show the median testing performance in the 

discovery dataset (left) and the generalization performance in the 

replication dataset (right). r was the Pearson correlation between 

the observed score and predicted score. P value was the result of 

the 100,000 times permutation test. MAE was the mean absolute 

error. 

 

In brief, we found atrophy values of cortical thickness, 

surface area, and subcortical GMV could significantly 

predict PANSS total scores across two independent datasets 

(discovery dataset: MAE = 8.25, r = 0.29, P < 1 × 10-5; 

replication dataset: MAE = 11.51, r = 0.26, P = 3 × 10-5). 

The partial dependence plot (PDP) was plotted to show 

the marginal effect of cortical thickness, surface area, and 

subcortical GMV have on the PANSS total score in 

predictions. See Fig.2 for the PDP of each feature. 

 

 
Fig. 2. Partial dependence plot of cortical thickness (left), surface 

area (middle), subcortical GMV (right) in predictions. The two red 

lines were 95% confidence intervals. 

 

All of the three features had nonlinear and nonmonotonic 

effects on PANSS total score, particularly, the effect of 

surface area was more complex. However, in specific ranges, 

these effects could be monotonic or nearly linear. For 

example, the dependence of cortical thickness from -6 to -1 

increased monotonically, where the effect was almost 

linearly increased from -2 to -1, then the effect was 

decreased linearly from -1 to 0. 

 

4. CONCLUSION 

 

In this paper, we established relationships between structural 

brain abnormalities of cortical thickness, surface area, and 

subcortical GMV and symptom severity in patients with 

SCZ. Instead of performing between-group comparisons, we 

defined atrophy values for each of the three features to 

quantify structural alternations in the SCZ group. The 

atrophy values indicated global mean feature reductions and 

were calculated based on normative models, derived from 

the NC group through general linear models. Finally, we 

used the three atrophy values to predict symptom severity 

via generalized additive models. Results showed atrophy 

values could significantly predict PANSS total scores in 

SCZ patients across two independent datasets. Particularly, 

the marginal effect each feature had on PANSS total score 

was nonlinear and nonmonotonic. Our findings could aid in 

understanding the pathogenesis of symptoms in SCZ. 
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