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Background: Diffusion tensor imaging (DTI) has been widely used to identify structural integrity and to delineate 

white matter (WM) degeneration in Alzheimer’s disease (AD). However, the validity and replicability of the ability 

to discriminate AD patients and normal controls (NCs) of WM measures are limited due to the use of small cohorts 

and diverse image processing methods. As yet, we still do not have a clear idea of whether WM characteristics 

are biomarkers for AD. 

Methods: We conducted a competition with diffusion measurements along 18 fiber tracts as features extracted via 

the automated fiber quantification (AFQ) method based on one of the largest worldwide DTI multisite biobanks 

(862 individuals, consisting of 279 NCs, 318 ADs, and 265 MCIs). After quality control, 825 subjects (276 NCs, 

294 ADs, and 255 MCIs) were divided into a public training set (N = 700) and a private testing set (N = 125). 

Forty-eight teams submitted 130 solutions that were estimated on the private testing samples. We reported the 

final results of the top ten models. 

Results: The performance of white matter features in AD classification was stable and generalizable, which indi- 

cated the potential of WM to be a biomarker for AD. The best model achieved a prediction accuracy of 82.35% 

(with a sensitivity of 86.36% and a specificity of 78.05%) on the private testing set. The average accuracy of the 

top ten solutions was over 80%. 
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Conclusions: The results of this c  

dataset and additional independe  

eralization power of the classific  

with AD. For this purpose, we ha  

community, with the expectation
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a  
. Introduction 

Alzheimer’s disease (AD) is a chronic, progressive neurodegenera-

ive disease that is associated with cognitive dysfunction, psychiatric

ymptoms, and daily life disorders that seriously threaten the normal

ife of patients and place a significant burden on both society and the

amily [ 1 , 2 ]. The prevalence of AD could increase in parallel with the

rogressive aging of the population. Researchers have conducted nu-

erous studies on the identification of the pathogenic mechanism of

his disorder, and they have also been searching for methods for the di-

gnosis of AD, thus concluding that an early diagnosis and investigation

ould have a significant positive impact on disease control. Specifically,

arly diagnosis enables timely disease interventions (including pharma-

ological symptomatic treatments and psychosocial support etc.) that

ight slow down the progression of the disease, which makes the early

iagnosis of AD a research priority [3–5] . 

Considerable evidence has suggested that gray matter atrophy (as re-

ealed via the use of structural MRI) is one of the core biomarkers of AD

athology [see reviews by 6 , 7 ]. Furthermore, there is growing interest in

he application of artificial intelligence methods to functional alterations

as measured by the use of fMRI) [ 8 , 9 ] and the clinical application of the

erebral amyloid burden through the use of PET [ 10 , 11 ]. Some compe-

itions have demonstrated the effectiveness of structural and functional

hanges in AD classification [12–15] . For example, the best performance

as been shown to have an approximate accuracy of 85% with features

ased on multimodality images for the Alzheimer’s Disease Prediction Of

ongitudinal Evolution (TADPOLE) Challenge ( https://tadpole.grand-

hallenge.org/ ) [13] . However, white matter (WM) impairment has

een neglected as being an important part of the pathological cascade in

D [ 6 , 16–18 ]. In terms of WM, the most powerful tool is diffusion tensor

maging (DTI), which is a noninvasive in vivo imaging technique that

an demonstrate structural integrity and delineate white matter degen-

ration in AD through diffusion properties that can identify WM fiber

rends and the degree of damage [18–21] . Furthermore, several previ-

us studies have indicated that white matter alterations may be useful

or the early diagnosis of AD [22–27] . For example, in the AD versus NC

inary classification task, Dyrba and colleagues (2013) used whole brain

hite matter measures as characteristics and SVM and naive Bayes as

lassifiers, which achieved an accuracy of approximately 80% through

he use of SVM with pooled cross-validation [23] . Ebadi and colleagues

2017) used brain structural network graph metrics as characteristics

nd SVM as a classifier, with a mean accuracy of ~80% [28] . Dou and

olleagues (2020) explored the classification usability of fiber bundle

eatures that were extracted via automated fiber quantification (AFQ)

ith a mean accuracy of ~78% [17] , and the present competition is

he continuation of this study. The prediction of AD via brain diffusion

maging will provide additional biomarkers and will reveal the mecha-

isms of the pathology of AD. 

It is very important to use large datasets, unified image processing

ipelines, and independent data sets for cross-validation in the search

or biomarkers for AD. Specifically, studies based on small cohorts with

 single site are often unconvincing because of the insufficiency of rep-

esentativeness for the entire population and incredible accuracy that is

aused by possible overfitting (due to the absence of independent ex-

ernal validation). Furthermore, it is difficult to compare the various

tudies, due to site differences that are caused by machine manufac-

urers, acquisition parameters, and diverse image processing pipelines.

29–31] . Consequently, the use of multisite datasets with the same im-
2 
ompetition demonstrated that DTI is a powerful tool to identify AD. A larger

nt cohort cross-validation may improve the discriminant performance and gen-

ation models, thus revealing more precise disease severity factors associated

ve released this database ( https://github.com/YongLiuLab/AI4AD _ AFQ ) to the

 of new solutions for the accurate diagnosis of AD. 

ge processing pipeline can not only reduce confusion variance and im-

rove the clinical representation, but can also enable independent site

ross-validation, which is beneficial for reducing overfitting. 

Based on the previously mentioned considerations, we conducted

 competition with WM diffusion measurements to search for the best

odels for the potential early diagnosis of AD. To reduce the variance

f preprocessing steps, as well as to meet the rapid and convenient re-

uirement for large data sets, we selected the AFQ method to extract

hite matter attributes because of its advantages in overcoming the in-

onvenience of the hand-drawn region of interest and in automatically

nd efficiently detecting detailed information along 18 main fiber bun-

les [ 32 , 33 ]. This method has been widely used in brain development

nd aging [34] , as well as for several diseases, including AD [ 17 , 27 , 35–

7 ]. To test the generalization abilities of the models, we established

ne of the largest multisite DTI biobanks (containing 862 individuals,

ncluding 279 NCs, 318 ADs, and 265 MCIs). After quality control, 825

ubjects (276 NCs, 294 ADs, and 255 MCIs) were divided into the pub-

ic training set (N = 700) and the private testing set (N = 125) for model

valuation. All of the features and the codes of the top ten solutions are

vailable at GitHub ( https://github.com/YongLiuLab/AI4AD _ AFQ ). 

. Methods 

.1. Dataset and extraction of white matter features 

The present dataset combined data from 7 MRI scanners in 4 hos-

itals in China, which contained a total of 862 individuals (279 NCs,

18 ADs, and 265 MCIs) with DTI images, T1 images, and demographic

nd psychological information. Detailed information can be found in

ur previous study [ 17 , 38 , 39 ]. 

White matter feature extraction was performed through the use

f standard processing procedures. First, DICOM-formed images were

ransformed into Nifti-formed images. Subsequently, the dtiInit prepro-

essing pipeline in the VISTASOFT package (MATLAB toolkit, version

.0, https://github.com/vistalab/vistasoft ) was used to preprocess DTI

mages for routine preprocessing steps including an eddy current cor-

ection, head motion correction, rigid-body alignment to the T1 image,

esampling to 2-mm isotropic voxels, skull stripping, and tensor model

tting with a simple least-squares fit method. Second, we performed an

FQ pipeline (version 1.2, https://github.com/yeatmanlab/AFQ ) to ex-

ract diffusion measurements (FA, MD, RD, and AxD) and morphometric

eatures (fiber core linearity values, curvature, torsion, and volume) at

ultiple locations (100 points) along the trajectory of 18 major tracts,

ncluding the bilateral corticospinal, inferior fronto-occipital fasciculus

IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasci-

ulus (SLF), arcuate, cingulum cingulate, uncinate, thalamic radiation,

nd minor and major callosum forcep tracts. Specifically, there were

hree steps in the AFQ pipeline: fiber tract identification, cleaning, and

uantification. 1), whole-brain fibers were tracked by using the deter-

inistic streamlines tracking algorithm, after which fiber tracts were

egmented based on the waypoint ROI procedure and refined via fiber

ract probability maps. 2), the abnormal fibers that were longer or de-

iated far from the core of the fiber tract were iteratively cleaned. 3),

ach fiber was resampled to 100 equally spaced nodes between the two

OIs, and diffusion properties were calculated at each node of each fiber

33] . 

However, due to complicated factors such as heterogeneity and im-

ge quality, the AFQ method could not guarantee that all 18 fiber bun-

https://github.com/YongLiuLab/AI4AD_AFQ
https://tadpole.grand-challenge.org/
https://github.com/YongLiuLab/AI4AD_AFQ
https://github.com/vistalab/vistasoft
https://github.com/yeatmanlab/AFQ
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Fig. 1. Demographic statistics (diagnosis class, gender, age, and sites) distributions. (A) Diagnosis and gender ratio on the training set (N = 700) and the private 

testing set (N = 125). (B) Age distribution on the two datasets. (C). Site distribution on the two datasets. All of the statistical distributions were matched in the public 

training set and the private testing set; therefore, only the site distribution of the public dataset is shown in (C). 
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les could be tracked for every subject, and we had to balance feature

uality (fiber recognition rate) and the number of subjects. Our results

howed that the associated number of subjects was 502, 703, 779, 807,

nd 825 when the threshold at the fiber number was 18, 17, 16, 15, and

4, respectively. Hence, only the subjects with more than 14 identified

ber bundles were retained, which ensured both a high fiber recognition

ate (14/18 = 78%) and the large size of the dataset (N = 825, consisting

f 276 NCs, 294 ADs, and 255 MCIs). The WM feature dimension of each

ubject was 14,400 (18 fibers × 100 points × 8 metrics). 

.2. Classification competition 

The competition aimed to evaluate and develop an analysis frame-

ork for the optimal performance of AD binary classification (AD vs NC)

y using diffusion measurements along 18 major white matter tracts that

ere extracted via AFQ. We also encouraged the challengers to explore

riclassification (AD, MCI, and NC). 

We launched public training data and invited scientists to submit so-

utions to predict AD. Briefly, to ensure the matching category and site

roportion in the public training set and in the private testing set, we

isted all of the data according to the sequence of the diagnosis type

ithin sites. Subsequently, a uniform sampling method was used for

ach site, 125 individuals were selected for the private testing set, and

he remaining samples were selected for the public training set. The

ublic training dataset (containing WM features, age, gender, diagno-

is class, and site tag) was provided to the participants (available on a

ebsite), and the private testing dataset was unavailable to the partici-

ants (the challengers will never be able to obtain the diagnosis label)

o blindly evaluate all of the models at the end of the competition. The

istribution of the demographic statistics and sites in the public training

et and in the private testing set is shown in Fig. 1 . 

Each team had 48 hours to submit up to 5 different solutions for the

nal evaluation, and the top ten solutions were awarded money prizes.
3 
ll of the solutions were ranked according to the order of accuracy, F1

core, and area under the receiver operating characteristic curve (ROC)

urve (AUC) [ 40 , 41 ]. 

. Results 

The competition was conducted for three weeks and attracted 77 reg-

stered teams that originated from more than 40 universities/institutes

n China, the United States, and the United Kingdom. In total, 48 teams

ompleted the challenge, and 130 solutions were submitted for evalua-

ion. 

.1. The performance of AD prediction with white matter features 

Overall, as shown in Fig. 2 A, more than 50% of the solutions per-

ormed well in the AD and NC binary classifications, achieving a me-

ian accuracy of over 74.12%, a F1 score of over 0.73, and a AUC of

ver 0.83, although some solutions failed the prediction (with accura-

ies of under 50%). Table 1 lists the performances of the top ten so-

utions that exhibited excellent discrimination jobs, which obtained an

verage accuracy of 80.47% (F1 score = 0.80, sensitivity = 80.91%, and

pecificity = 80.00%), and an average AUC of 0.87 (ranging from 0.81 to

.89). The best solution achieved a prediction accuracy of 82.35% (with

 sensitivity of 86.36% and a specificity of 78.05%). The ROC curves of

he top ten models are shown in Fig. 2 C. 

In addition, 58 solutions of triclassification (AD, MCI, and NC) from

7 teams were submitted. The discrimination ability achieved anaccu-

acy of 46.46% (ranging from 21.60% to 55.20%), a macroaverage F1-

core of 0.44, and a macroaverage AUC of 0.64 (ranging from 0.41 to

.74). The best solution obtained an accuracy of 55.20%, a macroaver-

ge F1-score of 0.54, and a macroaverage AUC of 0.73. This result is

omparable with previous triclassification studies [ 17 , 42 ]. 
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Fig. 2. Performances of the submitted models. The performances of all of the solutions on the locked private test set, including accuracy, F1 score, AUC, sensitivity, 

and specificity, are shown in (A). The pie chart in (B) displays the usage ratios of the different types of models, among which SVM was most frequently selected. 

The scattergram in (B) plots the accuracy of the models on the locked private testing set, thus showing that XGBoost, SVM, and logical regression performed better. 

(C) ROC curves for the top ten models. (D) The accuracy distribution on the public training set and locked private testing set are shown in this figure. The models 

marked with red dots obtained far higher accuracies on the training set than on the testing set, thus illustrating a severe overfitting problem. The top ten models 

marked with black dots predicted well on both the training set and testing set. 

Abbreviations for (A): ACC – accuracy, SEN – sensitivity, SPE – specificity. Abbreviations for (B): XGB – XGBoost, LR – logistic regression, M-C – multiclassifier 

integration, DL – deep learning, Per – perceptron, RF – random forest, O – others. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 1 

Performance of the top ten models. 

Rank Accuracy F1 score Sensitivity Specificity AUC 

1 82.35% 0.81 86.36% 78.05% 0.88 

2 81.18% 0.82 75.00% 87.80% 0.88 

3 81.18% 0.81 79.55% 82.93% 0.87 

4 81.18% 0.80 81.82% 80.49% 0.88 

5 81.18% 0.80 84.09% 78.05% 0.86 

6 80.00% 0.79 81.82% 78.05% 0.87 

7 80.00% 0.78 84.09% 75.61% 0.81 

8 80.00% 0.78 86.36% 73.17% 0.89 

9 78.82% 0.80 72.73% 85.37% 0.88 

10 78.82% 0.79 77.27% 80.49% 0.85 

Average 80.47% 0.80 80.91% 80.00% 0.87 

3

 

(  

p  

d  

o  

o  

6  

f  

s  

e  

g

3

 

c  

p  

s  

m

 

s  

p  

t  

s  

t  

u  

a  

f  

l  

a  

b  

t  

o  

t

 

b  

S  

o  

t  

t  
.2. The generalization ability of the models 

From a general view, the performance on the public training dataset

average accuracy = 85.30%) was significantly higher than that on the

rivate testing set (average accuracy = 70.28%), but both were fairly pre-

ictable, as shown in Fig. 2 D. As displayed by the red points, some meth-

ds performed well on the public training dataset (with an accuracy of

ver 95%) but poorly on the private testing set (accuracy of less than

0%), thus indicating a serious overfitting problem. Some models per-

ormed stably on both the public training dataset and the private testing

et (with an accuracy of approximately 80%), such as the top ten mod-

ls (marked with black dots in Fig. 2 D), which demonstrated credible

eneralization abilities. 
4 
.3. Experience from the competing solutions 

A total of 130 solutions were received during the competition. Ac-

ording to the model descriptions that were provided by the partici-

ants, 86 (66%) of the solutions used feature reduction and feature

election, and 40 (30%) of the solutions used the ensemble learning

ethod. 

When concerning feature engineering, the commonly used feature

election and reduction algorithms included the F-score, principal com-

onent analysis, max-relevance and min-redundancy method, and sta-

istical methods (t-test or Pearson correlation). A few teams employed

ome advanced feature representations that were derived from encoding

he original features. In terms of the classification models, the widely

sed classifiers included SVM (32.31%), logistic regression (11.54%),

nd XGBoost (7.69%) ( Fig. 2 B), which could achieve relatively good per-

ormance when combined with feature dimensionality reduction. Deep

earning models, such as CNN and autoencoder (a total of 15.38%), were

lso selected but did not perform as excellent as was expected, with the

est accuracy of only 77.65%. Some teams adopted ensemble learning

o integrate the results of multiple classifiers, but it did not demonstrate

bvious advantages, even though only 2 models achieved a ranking in

he top ten. 

The top 10 solutions were not special, except in regards to the com-

ination of feature engineering and machine learning models, including

VM, logistic regression, and XGBoost. These were also conducted in

ther solutions with relatively poor performance, thus indicating that

he selection of hyperparameters is possibly one of the most significant

echniques that is affected by the division of the training set and the
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alidation set, as well as by the optimization method and selection bias

43] . 

. Discussion 

Based on one of the largest multisite DTI biobanks, a set of classi-

cation methods were collected by the competition. The classification

erformance between AD and NC of the obtained WM properties via

he AFQ method achieved the highest accuracy of 82.35% on the pri-

ate testing set, thus demonstrating that DTI is a powerful tool for the

arly detection of AD. 

Our results for the challenge are robust with high generalizability

ecause of the evaluation strategy on the private testing set that is both

navailable to the competitor and independent of the training process,

hus avoiding uncertain factors that can arise due to overfitting [44] ,

ircular analysis [45] , or the degrees of freedom of researchers [ 46 , 47 ].

 small sample size is insufficient for independent replication and re-

nalysis, and intercenter circular pooling cross-validation cannot pre-

ent overfitting on the reused training sets [ 44 , 48 ]. More importantly,

he adjustment of the training strategy (according to the performance

f the pooled-out testing subjects) can frequently also lead to overfit-

ing [44] . In both cases, the classifiers may be unable to generalize to

dditional data sets, and the results are often difficult to be replicated

 31 , 49 , 50 ]. In contrast, blind evaluations can provide a relatively ob-

ective and credible performance, as well as select highly generalized

odels [ 31 , 51 ]. We believe that the present challenge has a good gen-

ralization power, and we theorize that a larger training set and addi-

ional independent cohorts may be able to boost classification, as well

s the generalization performance. 

The bias between the performance of the submitted models in the

ompetition reinforces the fact that we must pay more attention to

odel selection and parameter adjustment. For overfitting models (the

ed points displayed in Fig. 2 D) that performed well on the public

raining dataset while performed poorly on the private testing set, the

ossible reason is that the models were so complex that they cap-

ured residual variation or noise as important features, thus decreas-

ng the overall generalizability [52] . Several teams with lower accu-

acies adopted similar (or even the same) classifiers as the top 10 so-

utions, but they did not work well, which partially indicates the im-

ortance of tuning parameters, which need to be treated with caution

o avoid both underfitting and overfitting through appropriate cross-

alidation and evaluation strategies [ 44 , 48 ]. Deep learning models have

een widely used in the computer-aided diagnosis of AD, due to their

bility to learn suitable features and robustness [ 41 , 53–55 ]. The rea-

ons for the unexpected mediocre performance of deep learning meth-

ds can be complicated. One possible reason may be that the challengers

id not use it correctly. Another reason is that, although deep learn-

ng models tend to fit the large sample size data well, this do not indi-

ate that they can perform and generalize well in a small sample size.

owever, there is no need to doubt the effectiveness of deep learning

ethods in neuroscience because they have been verified by numer-

us studies [56–59] . Thus, we aim to recruit more labs to join us in

earching for more independent cohorts and more solutions for the early

etection of AD. 

.1. Limitations, caveats, and future directions 

We found conclusive evidence that WM fiber measures based on DTI

an be used in the early diagnosis of AD. However, there are still some

imitations and additional considerations that need to be overcome and

chieved, such as post hoc analyses, data quantity and quality enhance-

ents, as well as better algorithm explorations, which are of great sig-

ificance for understanding white matter as being a biomarker in AD. 

First, we only presented the main results of the competition without

dequate interpretation, and a post hoc analysis for model explanation

nd pathological significance is not yet finished. Given the end-to-end
5 
achine learning design, these classifiers often appear to be black boxes

hat are difficult to interpret for disease severity-associated clinical sit-

ations. A post hoc detailed analysis based on the top models is one

ossible way to understand model results and disease-related patholog-

cal mechanisms, including the relationship between model output and

he cognitive ability score, as well as the degradation patterns of fiber

undles in AD. 

Second, the current dataset is far from sufficient, and a larger mul-

imodality multisite dataset is under preparation. The identification of

athological heterogeneity in AD is challenging, and previous results

emain inconclusive [ 60 , 61 ]. Hence, the dataset has to be further ex-

anded for the competition to more thoroughly introduce MRI features

nto the early diagnosis of AD. Furthermore, we need more samples

rom more sites with high-quality images to enhance the power of cross-

alidation to improve the generalization performance of the models,

hich is of great significance to the progression of the results from pure

aboratory research to clinical application. In addition, diverse types

f radiological features are required to more sufficiently describe the

haracteristics of AD. For DTI, more WM features, such as FA, MD of

he whole brain, and morphological features of fiber bundles, can be

sed to more comprehensively express the characteristics of white mat-

er [ 16 , 21 , 62 , 63 ]. Additionally, the use of multimodality data that com-

ines structural and functional features is a mainstream trend to facil-

tate not only a better understanding of pathology but also the precise

dentification of early AD [ 38 , 64 ]. 

Finally, better algorithms are strongly expected. Our data are charac-

erized by typically high dimensions and low sample sizes, which could

ot be effectively overcome via traditional feature selection and reduc-

ion, thus resulting in the need for more specific algorithms that can

dapt to this type of characteristic or that can directly deal with the

riginal features with good performance [ 65 , 66 ]. In addition, it is still

nevitable and difficult to deal with the heterogeneity in data from mul-

iple sites that arise from complicated factors, which causes the inap-

ropriateness of directly mixing data for analysis [67–69] . In this com-

etition, some participants entered the site tags into the classifiers as

 feature, but this strategy is not applicable for unknown sites. There

re many harmonization methods for DTI images [ 50 , 70 , 71 ], and it

as been proven that the adoption of harmonization methods can par-

ially reduce the sites’ effects while also maintaining biological content

 69 , 72 , 73 ], which may be beneficial for AD classification and may be

orth further explorations, based on our dataset. 

The identification of the details of the methods and algorithm codes

s valuable for reproducibility and expansibility. To benefit community

fforts, we hereby make the data and codes of the top-ranked mod-

ls openly available ( https://github.com/YongLiuLab ) and expect new

odels for the accurate diagnosis of AD. 

In summary, the ultimate purpose of conducting and improving this

ompetition is to evaluate the generalization performance of classifica-

ion methods to promote the progression of laboratory research to clin-

cal practice. For the present challenge, we focused on AD diagnosis,

ut the classification of multiple mental illnesses would be more valu-

ble for clinical applications in the future, thus providing benefits for

oth the revelation of pathology differences between diseases and for

mproving the accuracy of a precise diagnosis. Due to the challenges

f large multiple disease datasets and complicated classification mod-

ls, this large research area needs to be further explored. For example,

abuncu and colleagues (2015) performed a simple binary classifica-

ion (patients versus healthy people) based on six sMRI datasets, includ-

ng AD, schizophrenia, autism, attention deficit, and hyperactivity dis-

rder [74] . Some studies have explored the classification performance

etween similar diseases, such as schizophrenia, bipolar disorder, and

orderline personality disorder [ 75 , 76 ]. To date, some mature multi-

isease datasets, such as ENIGMA, and single-disease datasets (such as

DNI, ABIDE, and OASIS, among others) have been released, which can

e conveniently and rapidly used for future relevant multiple mental

llness studies. 

https://github.com/YongLiuLab
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. Conclusion 

In conclusion, we successfully built a multisite DTI image platform

nd verified the feasibility of white matter measurements for AD diag-

osis through a competition. The data set and portions of the codes are

vailable as open sources. The project we present in this study would

enefit from having more researchers involved for sharing data or ma-

hine learning models, as well as for framing biomarker extraction as

n open, international challenge to predict AD with the largest avail-

ble DTI dataset biobank. 

eclaration of Competing Interest 

The authors declare no competing financial interests. 

unding 

This work was partially supported by the Beijing Natural Science

unds for Distinguished Young Scholars (No. JQ200036 ), and the

ational Natural Science Foundation of China (grant nos. 81871438 ,

1901101 ), and the Foundation Strengthening Programme (No. 2019-

CJQ-JJ-151 ), and the Medical Big Data R & D project of PLA general

ospital (No. 2018MBD-028 ). 

Data collection and sharing for this project were funded by the

ational Natural Science Foundation of China (Grant Nos. 61633018 ,

1571062 , 81400890 , 81471120 , 81701781 ). 

cknowledgments 

The authors express appreciation to Prof. Dong Ming and Prof. Liang

an from Tianjin University for their kind help with the competition.

e gratefully acknowledge the financial support of Shenzhen Hanix

nited, Ltd. for awards to the winners. 

eferences 

[1] L Jia, M Quan, Y Fu, T Zhao, Y Li, C Wei, et al., Dementia in China: epidemiology,

clinical management, and research advances, Lancet Neurol. 19 (1) (2020) 81–92,

doi: 10.1016/S1474-4422(19)30290-X . 

[2] J Jia, C Wei, S Chen, F Li, Y Tang, W Qin, et al., The cost of Alzheimer’s disease

in China and re-estimation of costs worldwide, Alzheimers Dement. 14 (4) (2018)

483–491, doi: 10.1016/j.jalz.2017.12.006 . 

[3] BP. Leifer, Early diagnosis of Alzheimer’s disease: clinical and economic

benefits, J. Am. Geriatr. Soc. 51 (5 Suppl Dementia) (2003) S281–S288,

doi: 10.1046/j.1532-5415.5153.x . 

[4] A Burns, S. Iliffe, Alzheimer’s disease, BMJ 338 (feb05 1) (2009) b158,

doi: 10.1136/bmj.b158 . 

[5] JM Long, DM. Holtzman, Alzheimer disease: an update on pathobiology and treat-

ment strategies, Cell 179 (2) (2019) 312–339, doi: 10.1016/j.cell.2019.09.001 . 

[6] S Rathore, M Habes, MA Iftikhar, A Shacklett, C. Davatzikos, A review on

neuroimaging-based classification studies and associated feature extraction methods

for Alzheimer’s disease and its prodromal stages, Neuroimage 155 (2017) 530–548,

doi: 10.1016/j.neuroimage.2017.03.057 . 

[7] GB Frisoni, NC Fox, CR Jack Jr., P Scheltens, PM Thompson, The clinical use

of structural MRI in Alzheimer disease, Nat. Rev. Neurol. 6 (2) (2010) 67–77,

doi: 10.1038/nrneurol.2009.215 . 

[8] A Khazaee, A Ebrahimzadeh, A Babajani-Feremi, Alzheimer’s disease neuroimaging

I. Classification of patients with MCI and AD from healthy controls using directed

graph measures of resting-state fMRI, Behav. Brain Res. 322 (Pt B) (2017) 339–350,

doi: 10.1016/j.bbr.2016.06.043 . 

[9] W Li, XF Lin, X. Chen, Detecting Alzheimer’s disease based on 4D fMRI: an ex-

ploration under deep learning framework, Neurocomputing 388 (2020) 280–287,

doi: 10.1016/j.neucom.2020.01.053 . 

10] Y Ding, JH Sohn, MG Kawczynski, H Trivedi, R Harnish, NW Jenkins, et al., A deep

learning model to predict a diagnosis of alzheimer disease by using (18)F-FDG PET

of the brain, Radiology 290 (2) (2019) 456–464, doi: 10.1148/radiol.2018180958 . 

11] Ou YN, Xu W, Li JQ, Guo Y, Cui M, Chen KL, et al. FDG-PET as an independent

biomarker for Alzheimer’s biological diagnosis: a longitudinal study. Alzheimer’s

research & therapy 2019; 11(1): 57; https://doi.org/ 10.1186/s13195-019-0512-1. 

12] EE Bron, M Smits, WM van der Flier, H Vrenken, F Barkhof, P Scheltens, et al.,

Standardized evaluation of algorithms for computer-aided diagnosis of dementia

based on structural MRI: the CADDementia challenge, Neuroimage 111 (2015) 562–

579, doi: 10.1016/j.neuroimage.2015.01.048 . 

13] RV Marinescu, NP Oxtoby, AL Young, EE Bron, AW Toga, MW Weiner, et al.,

TADPOLE challenge: accurate Alzheimer’s disease prediction through crowd-

sourced forecasting of future data, Predict. Intell. Med. 11843 (2019) 1–10,

doi: 10.1007/978-3-030-32281-6_1 . 
6 
14] GI Allen, N Amoroso, C Anghel, V Balagurusamy, CJ Bare, D Beaton, et al.,

Crowdsourced estimation of cognitive decline and resilience in Alzheimer’s disease,

Alzheimers Dement. 12 (6) (2016) 645–653, doi: 10.1016/j.jalz.2016.02.006 . 

15] A Sarica, A Cerasa, A Quattrone, V. Calhoun, Editorial on special is-

sue: machine learning on MCI, J. Neurosci. Methods 302 (2018) 1–2,

doi: 10.1016/j.jneumeth.2018.03.011 . 

16] Y Jin, C Huang, M Daianu, L Zhan, EL Dennis, RI Reid, et al., 3D tract-specific local

and global analysis of white matter integrity in Alzheimer’s disease, Hum. Brain

Mapp. 38 (3) (2017) 1191–1207, doi: 10.1002/hbm.23448 . 

17] X Dou, H Yao, F Feng, P Wang, B Zhou, D Jin, et al., Characterizing white matter

connectivity in Alzheimer’s disease and mild cognitive impairment: an automated

fiber quantification analysis with two independent datasets, Cortex 129 (2020) 390–

405, doi: 10.1016/j.cortex.2020.03.032 . 

18] Y Zhang, N Schuff, AT Du, HJ Rosen, JH Kramer, ML Gorno-Tempini, et al., White

matter damage in frontotemporal dementia and Alzheimer’s disease measured by

diffusion MRI, Brain 132 (Pt 9) (2009) 2579–2592, doi: 10.1093/brain/awp071 . 

19] SE Rose, AL Janke, JB. Chalk, Gray and white matter changes in Alzheimer’s dis-

ease: a diffusion tensor imaging study, J. Magn. Reson. Imag. 27 (1) (2008) 20–26,

doi: 10.1002/jmri.21231 . 

20] D Medina, L DeToledo-Morrell, F Urresta, JD Gabrieli, M Moseley, D Fleis-

chman, et al., White matter changes in mild cognitive impairment and AD:

a diffusion tensor imaging study, Neurobiol. Aging 27 (5) (2006) 663–672,

doi: 10.1016/j.neurobiolaging.2005.03.026 . 

21] E Horgusluoglu-Moloch, G Xiao, M Wang, Q Wang, X Zhou, K Nho, et al., Systems

modeling of white matter microstructural abnormalities in Alzheimer’s disease, Neu-

roImage Clin. 26 (2020) 102203, doi: 10.1016/j.nicl.2020.102203 . 

22] M Dyrba, F Barkhof, A Fellgiebel, M Filippi, L Hausner, K Hauenstein, et al., Pre-

dicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment

using machine learning classification of multimodal multicenter diffusion-tensor

and magnetic resonance imaging data, J. Neuroimaging 25 (5) (2015) 738–747,

doi: 10.1111/jon.12214 . 

23] M Dyrba, M Ewers, M Wegrzyn, I Kilimann, C Plant, A Oswald, et al., Robust auto-

mated detection of microstructural white matter degeneration in Alzheimer’s disease

using machine learning classification of multicenter DTI data, PLoS One 8 (5) (2013)

e64925, doi: 10.1371/journal.pone.0064925 . 

24] SJ Teipel, M Wegrzyn, T Meindl, G Frisoni, AL Bokde, A Fellgiebel, et al., Anatomical

MRI and DTI in the diagnosis of Alzheimer’s disease: a European multicenter study,

J. Alzheimers Dis. 31 (Suppl 3) (2012) S33–S47, doi: 10.3233/JAD-2012-112118 . 

25] G Prasad, SH Joshi, TM Nir, AW Toga, PM Thompson, Alzheimer’s dis-

ease neuroimaging I. Brain connectivity and novel network measures for

Alzheimer’s disease classification, Neurobiol. Aging. 36 (Suppl 1) (2015) S121–S131,

doi: 10.1016/j.neurobiolaging.2014.04.037 . 

26] CY Wee, PT Yap, W Li, K Denny, JN Browndyke, GG Potter, et al., Enriched white

matter connectivity networks for accurate identification of MCI patients, Neuroim-

age 54 (3) (2011) 1812–1822, doi: 10.1016/j.neuroimage.2010.10.026 . 

27] H Chen, X Sheng, R Qin, C Luo, M Li, R Liu, et al., Aberrant white matter microstruc-

ture as a potential diagnostic marker in Alzheimer’s disease by automated fiber quan-

tification, Front. Neurosci. 14 (956) (2020), doi: 10.3389/fnins.2020.570123 . 

28] A Ebadi, JL Dalboni da Rocha, DB Nagaraju, F Tovar-Moll, I Bramati, G Coutinho,

et al., Ensemble classification of Alzheimer’s disease and mild cognitive impairment

based on complex graph measures from diffusion tensor images, Front. Neurosci. 11

(2017) 56, doi: 10.3389/fnins.2017.00056 . 

29] F Wang, LP Casalino, D. Khullar, Deep learning in medicine-promise, progress, and

challenges, JAMA Intern. Med. 179 (3) (2019) 293–294, doi: 10.1001/jamaintern-

med.2018.7117 . 

30] BA Richards, TP Lillicrap, P Beaudoin, Y Bengio, R Bogacz, A Christensen, et al.,

A deep learning framework for neuroscience, Nat. Neurosci. 22 (11) (2019) 1761–

1770, doi: 10.1038/s41593-019-0520-2 . 

31] CW Woo, LJ Chang, MA Lindquist, TD. Wager, Building better biomarkers: brain

models in translational neuroimaging, Nat. Neurosci. 20 (3) (2017) 365–377,

doi: 10.1038/nn.4478 . 

32] JD Yeatman, A Richie-Halford, JK Smith, A Keshavan, A. Rokem, A browser-based

tool for visualization and analysis of diffusion MRI data, Nat. Commun. 9 (1) (2018)

940, doi: 10.1038/s41467-018-03297-7 . 

33] JD Yeatman, RF Dougherty, NJ Myall, BA Wandell, HM. Feldman, Tract profiles

of white matter properties: automating fiber-tract quantification, PLoS One 7 (11)

(2012) e49790, doi: 10.1371/journal.pone.0049790 . 

34] S Teubner-Rhodes, KI Vaden Jr., SL Cute, JD Yeatman, RF Dougherty, MA Eck-

ert, Aging-resilient associations between the arcuate fasciculus and vocabulary

knowledge: microstructure or morphology? J. Neurosci. 36 (27) (2016) 7210–7222,

doi: 10.1523/JNEUROSCI.4342-15.2016 . 

35] X Zhang, Y Sun, W Li, B Liu, W Wu, H Zhao, et al., Characterization

of white matter changes along fibers by automated fiber quantification in

the early stages of Alzheimer’s disease, NeuroImage Clin. 22 (2019) 101723,

doi: 10.1016/j.nicl.2019.101723 . 

36] H Sun, S Lui, L Yao, W Deng, Y Xiao, W Zhang, et al., Two patterns of white matter

abnormalities in medication-naive patients with first-episode schizophrenia revealed

by diffusion tensor imaging and cluster analysis, JAMA Psychiatry 72 (7) (2015)

678–686, doi: 10.1001/jamapsychiatry.2015.0505 . 

37] MD Sacchet, G Prasad, LC Foland-Ross, SH Joshi, JP Hamilton, PM Thompson, et al.,

Structural abnormality of the corticospinal tract in major depressive disorder, Biol.

Mood Anxiety Disord. 4 (1) (2014) 8, doi: 10.1186/2045-5380-4-8 . 

38] D Jin, P Wang, A Zalesky, B Liu, C Song, D Wang, et al., Grab-AD: generalizability

and reproducibility of altered brain activity and diagnostic classification

in Alzheimer’s Disease, Hum. Brain Mapp. 41 (12) (2020) 3379–3391,

doi: 10.1002/hbm.25023 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.1016/S1474-4422(19)30290-X
https://doi.org/10.1016/j.jalz.2017.12.006
https://doi.org/10.1046/j.1532-5415.5153.x
https://doi.org/10.1136/bmj.b158
https://doi.org/10.1016/j.cell.2019.09.001
https://doi.org/10.1016/j.neuroimage.2017.03.057
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1016/j.bbr.2016.06.043
https://doi.org/10.1016/j.neucom.2020.01.053
https://doi.org/10.1148/radiol.2018180958
https://doi.org/10.1016/j.neuroimage.2015.01.048
https://doi.org/10.1007/978-3-030-32281-6_1
https://doi.org/10.1016/j.jalz.2016.02.006
https://doi.org/10.1016/j.jneumeth.2018.03.011
https://doi.org/10.1002/hbm.23448
https://doi.org/10.1016/j.cortex.2020.03.032
https://doi.org/10.1093/brain/awp071
https://doi.org/10.1002/jmri.21231
https://doi.org/10.1016/j.neurobiolaging.2005.03.026
https://doi.org/10.1016/j.nicl.2020.102203
https://doi.org/10.1111/jon.12214
https://doi.org/10.1371/journal.pone.0064925
https://doi.org/10.3233/JAD-2012-112118
https://doi.org/10.1016/j.neurobiolaging.2014.04.037
https://doi.org/10.1016/j.neuroimage.2010.10.026
https://doi.org/10.3389/fnins.2020.570123
https://doi.org/10.3389/fnins.2017.00056
https://doi.org/10.1001/jamainternmed.2018.7117
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/nn.4478
https://doi.org/10.1038/s41467-018-03297-7
https://doi.org/10.1371/journal.pone.0049790
https://doi.org/10.1523/JNEUROSCI.4342-15.2016
https://doi.org/10.1016/j.nicl.2019.101723
https://doi.org/10.1001/jamapsychiatry.2015.0505
https://doi.org/10.1186/2045-5380-4-8
https://doi.org/10.1002/hbm.25023


Y. Qu, P. Wang, B. Liu et al. Brain Disorders 1 (2021) 100005 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

[  

 

[  

 

[  

 

 

 

[  

 

 

39] J Li, D Jin, A Li, B Liu, C Song, P Wang, et al., ASAF: altered spontaneous activ-

ity fingerprinting in Alzheimer’s disease based on multisite fMRI, Sci. Bull. 64 (14)

(2019) 998–1010, doi: 10.1016/j.scib.2019.04.034 . 

40] K Zhao, YH Ding, Y Han, Y Fan, AF Alexander-Bloch, T Han, et al., Independent and

reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease:

diagnosis, longitudinal progress and biological basis, Sci. Bull. 65 (13) (2020) 1103–

1113, doi: 10.1016/j.scib.2020.04.003 . 

41] D Jin, B Zhou, Y Han, J Ren, T Han, B Liu, et al., Generalizable, reproducible, and

neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease, Adv.

Sci. 7 (14) (2020) 2000675, doi: 10.1002/advs.202000675 . 

42] R Cuingnet, E Gerardin, J Tessieras, G Auzias, S Lehéricy, M-O Habert, et al., Au-

tomatic classification of patients with Alzheimer’s disease from structural MRI: a

comparison of ten methods using the ADNI database, Neuroimage 56 (2) (2011)

766–781, doi: 10.1016/j.neuroimage.2010.06.013 . 

43] AF Mendelson, MA Zuluaga, M Lorenzi, BF Hutton, S Ourselin, Alzheimer’s disease

neuroimaging I. Selection bias in the reported performances of AD classification

pipelines, NeuroImage Clin. 14 (2017) 400–416, doi: 10.1016/j.nicl.2016.12.018 . 

44] M Hosseini, M Powell, J Collins, C Callahan-Flintoft, W Jones, H Bowman,

et al., I tried a bunch of things: the dangers of unexpected overfitting in

classification of brain data, Neurosci. Biobehav. Rev. 119 (2020) 456–467,

doi: 10.1016/j.neubiorev.2020.09.036 . 

45] N Kriegeskorte, WK Simmons, PS Bellgowan, CI. Baker, Circular analysis in systems

neuroscience: the dangers of double dipping, Nat. Neurosci. 12 (5) (2009) 535–540,

doi: 10.1038/nn.2303 . 

46] JP. Ioannidis, Why most published research findings are false, PLoS Med. 2 (8)

(2005) e124, doi: 10.1371/journal.pmed.0020124 . 

47] KS Button, JP Ioannidis, C Mokrysz, BA Nosek, J Flint, ES Robinson, et al., Power

failure: why small sample size undermines the reliability of neuroscience, Nat. Rev.

Neurosci. 14 (5) (2013) 365–376, doi: 10.1038/nrn3475 . 

48] G. Varoquaux, Cross-validation failure: small sample sizes lead to large error bars,

Neuroimage 180 (Pt A) (2018) 68–77, doi: 10.1016/j.neuroimage.2017.06.061 . 

49] SA Iqbal, JD Wallach, MJ Khoury, SD Schully, JP. Ioannidis, Reproducible research

practices and transparency across the biomedical literature, PLoS Biol. 14 (1) (2016)

e1002333, doi: 10.1371/journal.pbio.1002333 . 

50] M Yu, K Linn, P Cook, M Phillips, M McInnis, M Fava, et al., Statistical harmonization

corrects site effects in functional connectivity measurements from multi-site fMRI

data, Hum. Brain Mapp. 39 (11) (2018) 4213–4227, doi: 10.1002/hbm.24241 . 

51] RA Poldrack, G Huckins, G. Varoquaux, Establishment of best practices for

evidence for prediction: a review, JAMA Psychiatry 77 (5) (2020) 534–540,

doi: 10.1001/jamapsychiatry.2019.3671 . 

52] S Mutasa, S Sun, R. Ha, Understanding artificial intelligence based ra-

diology studies: what is overfitting? Clin. Imaging 65 (2020) 96–99,

doi: 10.1016/j.clinimag.2020.04.025 . 

53] C Lian, M Liu, J Zhang, D. Shen, Hierarchical fully convolutional network

for joint atrophy localization and Alzheimer’s disease diagnosis using struc-

tural MRI, IEEE Trans. Pattern Anal. Mach. Intell. 42 (4) (2020) 880–893,

doi: 10.1109/TPAMI.2018.2889096 . 

54] D Shen, G Wu, HI. Suk, Deep learning in medical image analysis, Annu. Rev. Biomed.

Eng. 19 (2017) 221–248, doi: 10.1146/annurev-bioeng-071516-044442 . 

55] S Qiu, PS Joshi, MI Miller, C Xue, X Zhou, C Karjadi, et al., Development and vali-

dation of an interpretable deep learning framework for Alzheimer’s disease classifi-

cation, Brain 143 (6) (2020) 1920–1933, doi: 10.1093/brain/awaa137 . 

56] J Sui, M Liu, JH Lee, J Zhang, V. Calhoun, Deep learning methods and

applications in neuroimaging, J. Neurosci. Methods 339 (2020) 108718,

doi: 10.1016/j.jneumeth.2020.108718 . 

57] MA Schulz, BTT Yeo, JT Vogelstein, J Mourao-Miranada, JN Kather, K Kord-

ing, et al., Different scaling of linear models and deep learning in UKBiobank

brain images versus machine-learning datasets, Nat. Commun. 11 (1) (2020) 4238,

doi: 10.1038/s41467-020-18037-z . 

58] G Martensson, D Ferreira, T Granberg, L Cavallin, K Oppedal, A Padovani,

et al., The reliability of a deep learning model in clinical out-of-distribution

MRI data: a multicohort study, Med. Image Anal. 66 (2020) 101714,

doi: 10.1016/j.media.2020.101714 . 
7 
59] Y Liu, A Jain, C Eng, DH Way, K Lee, P Bui, et al., A deep learning system

for differential diagnosis of skin diseases, Nat. Med. 26 (6) (2020) 900–908,

doi: 10.1038/s41591-020-0842-3 . 

60] M Habes, MJ Grothe, B Tunc, C McMillan, DA Wolk, C. Davatzikos, Disentangling

heterogeneity in Alzheimer’s disease and related dementias using data-driven meth-

ods, Biol. Psychiatry 88 (1) (2020) 70–82, doi: 10.1016/j.biopsych.2020.01.016 . 

61] M Ten Kate, E Dicks, PJ Visser, WM van der Flier, CE Teunissen, F Barkhof, et al.,

Atrophy subtypes in prodromal Alzheimer’s disease are associated with cognitive

decline, BrainBrain 141 (12) (2018) 3443–3456, doi: 10.1093/brain/awy264 . 

62] R Mito, T Dhollander, Y Xia, D Raffelt, O Salvado, L Churilov, et al., In vivo

microstructural heterogeneity of white matter lesions in healthy elderly and

Alzheimer’s disease participants using tissue compositional analysis of diffusion MRI

data, NeuroImage Clin. 28 (2020) 102479, doi: 10.1016/j.nicl.2020.102479 . 

63] R Raja, G Rosenberg, A. Caprihan, Review of diffusion MRI studies

in chronic white matter diseases, Neurosci. Lett. 694 (2019) 198–207,

doi: 10.1016/j.neulet.2018.12.007 . 

64] M De Marco, L Beltrachini, A Biancardi, AF Frangi, A. Venneri, Machine-learning

support to individual diagnosis of mild cognitive impairment using multimodal MRI

and cognitive assessments, Alzheimer Dis. Assoc. Disord. 31 (4) (2017) 278–286,

doi: 10.1097/WAD.0000000000000208 . 

65] CF Tsai, YT. Sung, Ensemble feature selection in high dimension, low sample size

datasets: parallel and serial combination approaches, Knowl.-Based Syst. 203 (2020)

106097, doi: 10.1016/j.knosys.2020.106097 . 

66] SJ Raudys, AK. Jain, Small sample-size effects in statistical pattern-recognition -

recommendations for practitioners, IEEE Trans. Pattern Anal. Mach. Intell. 13 (3)

(1991) 252–264, doi: 10.1109/34.75512 . 

67] H Ni, V Kavcic, T Zhu, S Ekholm, J. Zhong, Effects of number of diffusion gradient

directions on derived diffusion tensor imaging indices in human brain, AJNR Am. J.

Neuroradiol. 27 (8) (2006) 1776–1781, doi: 10.1080/02841850600816331 . 

68] C Vollmar, J O’Muircheartaigh, GJ Barker, MR Symms, P Thompson, V Kumari,

et al., Identical, but not the same: intra-site and inter-site reproducibility of fractional

anisotropy measures on two 3.0T scanners, Neuroimage 51 (4) (2010) 1384–1394,

doi: 10.1016/j.neuroimage.2010.03.046 . 

69] C Wachinger, A Rieckmann, S Polsterl, Alzheimer’s disease neuroimaging I,

the Australian imaging B, lifestyle flagship study of a. Detect and correct

bias in multi-site neuroimaging datasets, Med. Image Anal. 67 (2021) 101879,

doi: 10.1016/j.media.2020.101879 . 

70] JP Fortin, D Parker, B Tunc, T Watanabe, MA Elliott, K Ruparel, et al., Harmoniza-

tion of multi-site diffusion tensor imaging data, Neuroimage 161 (2017) 149–170,

doi: 10.1016/j.neuroimage.2017.08.047 . 

71] MS Pinto, R Paolella, T Billiet, P Van Dyck, PJ Guns, B Jeurissen, et al., Harmoniza-

tion of brain diffusion MRI: concepts and methods, Front. Neurosci. 14 (2020) 396,

doi: 10.3389/fnins.2020.00396 . 

72] C. Davatzikos, Machine learning in neuroimaging: progress and challenges, Neu-

roimage 197 (2019) 652–656, doi: 10.1016/j.neuroimage.2018.10.003 . 

73] JP Fortin, N Cullen, YI Sheline, WD Taylor, I Aselcioglu, PA Cook, et al., Harmoniza-

tion of cortical thickness measurements across scanners and sites, Neuroimage 167

(2018) 104–120, doi: 10.1016/j.neuroimage.2017.11.024 . 

74] MR Sabuncu, E Konukoglu, Alzheimer’s disease neuroimaging I. Clinical prediction

from structural brain MRI scans: a large-scale empirical study, Neuroinformatics 13

(1) (2015) 31–46, doi: 10.1007/s12021-014-9238-1 . 

75] HG Schnack, M Nieuwenhuis, NEM van Haren, L Abramovic, TW Scheewe,

RM Brouwer, et al., Can structural MRI aid in clinical classification? A ma-

chine learning study in two independent samples of patients with schizophre-

nia, bipolar disorder and healthy subjects, Neuroimage 84 (2014) 299–306,

doi: 10.1016/j.neuroimage.2013.08.053 . 

76] I Perez Arribas, GM Goodwin, JR Geddes, T Lyons, KEA. Saunders, A signature-

based machine learning model for distinguishing bipolar disorder and border-

line personality disorder, Transl. Psychiatry 8 (1) (2018) 274-https://doi.org/,

doi: 10.1038/s41398-018-0334-0 . 

https://doi.org/10.1016/j.scib.2019.04.034
https://doi.org/10.1016/j.scib.2020.04.003
https://doi.org/10.1002/advs.202000675
https://doi.org/10.1016/j.neuroimage.2010.06.013
https://doi.org/10.1016/j.nicl.2016.12.018
https://doi.org/10.1016/j.neubiorev.2020.09.036
https://doi.org/10.1038/nn.2303
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1038/nrn3475
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1371/journal.pbio.1002333
https://doi.org/10.1002/hbm.24241
https://doi.org/10.1001/jamapsychiatry.2019.3671
https://doi.org/10.1016/j.clinimag.2020.04.025
https://doi.org/10.1109/TPAMI.2018.2889096
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1093/brain/awaa137
https://doi.org/10.1016/j.jneumeth.2020.108718
https://doi.org/10.1038/s41467-020-18037-z
https://doi.org/10.1016/j.media.2020.101714
https://doi.org/10.1038/s41591-020-0842-3
https://doi.org/10.1016/j.biopsych.2020.01.016
https://doi.org/10.1093/brain/awy264
https://doi.org/10.1016/j.nicl.2020.102479
https://doi.org/10.1016/j.neulet.2018.12.007
https://doi.org/10.1097/WAD.0000000000000208
https://doi.org/10.1016/j.knosys.2020.106097
https://doi.org/10.1109/34.75512
https://doi.org/10.1080/02841850600816331
https://doi.org/10.1016/j.neuroimage.2010.03.046
https://doi.org/10.1016/j.media.2020.101879
https://doi.org/10.1016/j.neuroimage.2017.08.047
https://doi.org/10.3389/fnins.2020.00396
https://doi.org/10.1016/j.neuroimage.2018.10.003
https://doi.org/10.1016/j.neuroimage.2017.11.024
https://doi.org/10.1007/s12021-014-9238-1
https://doi.org/10.1016/j.neuroimage.2013.08.053
https://doi.org/10.1038/s41398-018-0334-0

	AI4AD: Artificial intelligence analysis for Alzheimer's disease classification based on a multisite DTI database
	1 Introduction
	2 Methods
	2.1 Dataset and extraction of white matter features
	2.2 Classification competition

	3 Results
	3.1 The performance of AD prediction with white matter features
	3.2 The generalization ability of the models
	3.3 Experience from the competing solutions

	4 Discussion
	4.1 Limitations, caveats, and future directions

	5 Conclusion
	Declaration of Competing Interest
	Funding
	Acknowledgments
	References


