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Abstract— Networked Traffic Signal Control (NTSC) has
become an essential component in Intelligent Transportation
Systems (ITS). To satisfy both scale and coordination chal-
lenging requirements for large-scale networked traffic signal
control, this paper proposes a Communication-Qmix (CQmix)
approach based on Qmix and Long Short-Term Memory
(LSTM) communication module correspondingly. Firstly, we
apply Qmix as the foundation for balancing large-scale and
effective optimization, benefiting from its centralized-training
and decentralized-execution mechanism. Then a communication
module based on LSTM is implemented for effective global co-
ordination. Further, random origin-destination demands (ODs)
about different maximum traffic flows and occurrence times are
performed to adapt the actual traffic flow pattern in practice.
We conduct experiments on both synthetic and complicated
real Zhongguancun road networks, and the proposed CQmix
demonstrates its superiority over the baseline methods.

I. INTRODUCTION

AS the consequence of urbanization, the increasing num-
ber of vehicles induces traffic congestion inevitably

and terribly [1]. Improving infrastructure construction is
an effective measure to enlarge traffic network capacity.
However, only by combining it with the optimization of
management can realize sustainable development of traffic
system [2], [3]. One valid optimization strategy is networked
traffic signal control (NTSC), assisting to improve traffic
conditions and shorten travel time [4], [5].

When considering approaches for traffic signal control
(TSC) under large-scale scenes, whether it satisfies both
large-scale and coordination requirements is of great essence.
On one hand, the large-scale increase of networked con-
trolled subjects and control scope may cause the curse
of dimensionality [6] due to unbelievable joint state-action
space for algorithms which may fail to operate with the

*This work was supported in part by National Natural Science Foundation
of China under Grants 61773381, U1909204, U1811463&61872365; Chi-
nese Guangdong’s S&T project (2019B1515120030, 2020B0909050001);
Dongguan’s Innovation Talents Project (Gang Xiong).

Xiaoyu Chen, Yisheng Lv and Bing Song are with the State Key
Laboratory for Management and Control of Complex Systems, Institute of
Automation, Chinese Academy of Sciences, Beijing, 100190, China. They
are also with the School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing, 100049, China.

Gang Xiong is with The Beijing Engineering Research Center of
Intelligent Systems and Technology, Institute of Automation, and also
with The Guangdong Engineering Research Center of 3D Printing and
Intelligent Manufacturing, The Cloud Computing Center, Chinese Academy
of Sciences, China.

Yuanyuan Chen and Fei-Yue Wang are with the State Key Laboratory
for Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China.

Xiaoyu Chen and Gang Xiong are the co-first authors.
†Corresponding Author. E-mail: yisheng.lv@ia.ac.cn

guarantee of control effectiveness. On the other hand, dealing
selfishly with local intersections may cause global conges-
tion. Thus, communication between multiple traffic signals is
indispensable to ensure the optimization effect and stability
for the overall traffic condition.

To date, the taxonomy of NTSC can be charactered by
two categories. One is traditional methods, including fixed-
time control [7], actuated methods [8], [9], etc.. These
methods rely on traffic knowledge or specific assumptions,
but cannot adjust the control strategy rapidly [10]. Another
category of methods relies on AI techniques. Recently, deep
reinforcement learning(DRL) algorithms are introduced into
traffic signal control problems, where intelligent traffic signal
agents can sense traffic states through real-time interaction
with the traffic environment. The maximum cumulative re-
ward in DRL forces agents to focus on long-term payoffs
rather than immediate traffic reward [11]–[13].

For the scale requirement in NTSC, many scholars at-
tempted to use DRL under the multi-agent system. However,
existing work tends to focus on the decentralized-training and
decentralized-execution mechanism, which means that each
intersection is isolated whenever in offline training or online
executing [14], causing the nonstationarity of the environ-
ment. MARL with the decentralized-training and centralized-
execution mechanism is an improvement to maintain control
effectiveness, such as Qmix algorithm [15]. Meanwhile, there
is still less work following coordination in NTSC [16], [17],
which is meaningful to ensure the control effect and stability
for the overall traffic condition.

In view of the challenges, we propose a novel approach
for NTSC called CQmix, and contributions are threefold:
• We model NTSC as a Decentralized Partial-observation

MDP (Dec-POMDP) process, and utilize the Qmix
algorithm to balance large-scale and effective opti-
mization with a decentralized-training and centralized-
execution mechanism.

• For coordination, we design an effective communication
module based on Long Short-Term Memory (LSTM),
which integrates historical observations and actions
simultaneously. Meanwhile, messages are compressed
into the same dimension.

• We design a dynamic generation method of the origin-
destination (OD) set for simulating various traffic flows,
and develop parallel-scene sampling and segmented
training mechanisms. Experiment results in both the
synthetic network and the real Zhongguancun road net-
work verify the feasibility and effectiveness of the pro-
posed CQmix compared with the baseline algorithms.



The remainder of this paper is organized as follows. Dec-
POMDP modeling for NTSC is formulated in section II.
Section III introduces the proposed approach CQmix based
on Qmix and LSTM communication module. In section
IV, experiments under the synthetic road network and the
real Zhongguancun road network are conducted. Section V
concludes the paper.

II. PROBLEM DEFINITION AND DEC-POMDP MODELING

A. Problem Definition

Consider a large-scale traffic road network G(A,E),
where A is the set of controlled intersections, and E is the
set of roads. If there is a physical road connection directly
between intersection i and intersection j, they are neighbors
to each other. Note the neighborhood of i is Ei. Each traffic
signal controller of an intersection is modeled as an agent,
and networked traffic conditions as a global state. At each
interval ∆T , every agent is response for four processes,
i.e. perceiving the environment, obtaining local observation,
making decision, and getting the timely feedback reward. A
typical 4-leg intersection is shown in Fig. 1. Page 1 of 1
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Fig. 1: A typical 4-leg intersection with traffic movements
and traffic signal phases

B. Dec-POMDP Modeling

In this section, we formulate the NTSC as Dec-POMDP
[18], which is

G =< A,S, {Ui}i∈A , P, {ri}i∈A , {Oi}i∈A , γ >, (1)

while the terms are detailed as follows.
1) A = {1, 2, ..., N}: The set of controlled intersections,

and N is the total number.
2) Oi: Observation space of agent i. Local observation of

agent i at time t taking no consideration on communication
between agents is expressed as õi,t. Based on [16], we define

õi,t = {wait(m)t, f low(m)t}m∈Li
in

(2)

where Liin denotes the set of incoming lanes of agent i,
wait(m)t and flow(m)t refer to the maximum waiting time
and the number of vehicle flow in the mth incoming lane.
And after adding communication message for coordination,
local observation transfers to oi,t, which will be introduced
in detail in section III.

3) S: Global state space of whole agents. State st ∈ S
can be regarded as simple combination of õi,t, i ∈ A.

4) Ui: Action space of agent i. ui,t denotes the action
agent i decides at time t, and joint action at time t is

ut = ×i∈Aui,t ∈ {Ui}i∈N (3)

Actions for traffic signal control are usually set as: whether
or not to converse phase, setting the duration of the current
phase, or selecting the phase selection at the next interval.
In this paper, the last one is chosen for the action.

5) ri,t: The local reward agent i obtained. The global
reward of the whole network Rt is expressed as the sum
of local rewards of all intersections at time t. Referring
to settings in [17], here we define local reward ri,t as the
weighted sum of the queue length and the maximum waiting
time of all incoming lanes observed at time t+ ∆T .

ri,t = {queue(m)t+∆T , wait(m)t+∆T }m∈Li
in

(4)

6) γ: the discount factor. To ensure the long-term optimal
traffic conditions, the discount factor prefers to be larger. We
set it as 0.95.

7) P : State transition probability. Generally, the environ-
ment is opaque thus P is not clear. Consequently, the model-
free approach CQmix is proposed in the subsequent section.

III. METHODOLOGY

This section presents the proposed CQmix algorithm for
NTSC. Firstly, we introduce the overall architecture of the
proposed method. Then, we will explain Qmix module and
LSTM communication module, respectively. Further, gener-
ation method of ODs is briefly described by a parallel-scene
sampling mechanism.

A. Overall Architecture of CQmix

As is shown in Fig.2, CQmix mainly has three networks:
an agent network for each agent to take action independently
using its local value function, a para-generator network for
generating weights and biases to bridge each local value
function and global value function, and a communication
network for generating messages.

In centralized training, the three networks above need to
make contributions to ensure global optimization. Firstly,
each intersection agent i receives its own local observation
õi,t, message from its neighbors generated in communication
network and last action ui,t−1 as the input of its agent
network, and local value function Qi(τi, ui,t) as output. τi =
(ui,0, oi,1, ..., ui,t−1, oi,t) denotes action-observation history
of agent i, and τ = (τ1, τ2, ...τN ) expresses joint-history of
all agents. Secondly, the para-generator network generates
weights and biases to mix local value function nonlinearly
to a global shared value function Qtotal(τ, ut) under joint-
history τ and current joint-action ut. The objective is to
maximize the global value function,

max Qtotal = g({Qi}i∈A , ·) (5)

where g(·) denotes the relationship between global function
and each local value functions. Loss function is the sum
of TD error for b size of transitions, which is a traditional
Value-based update,
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Fig. 2: The overall architecture of CQmix for NTSC

{
L(θ) =

∑b
k=1

[(
yktotal −Qtotal(τ, u, s; θ)

)2]
yktotal = R+ γmaxu′ Qtotal(τ

′, u′, s′; θ′)
(6)

While in the decentralized execution, only the first step is
executed for the optimal strategy to ensure the feasibility of
the large-scale network.

B. Qmix Network for Large-scale and Global Optimization

The requirements of both large scale and global opti-
mization in NTSC are often in the clash, so we propose
Qmix to balance, which satisfies the following monotonicity
constraints and conclusion [15],

if :
∂Qtotal
∂Qi

=
∂(
∑
i∈V wi ·Qi + bi)

∂Qi
≥ 0,∀i ∈ A

⇒ arg max
u

Qtotal(τ, u) =


argmaxu1

Q1(τ1, u1)

...
argmaxuN

QN (τN , uN )


(7)

Thus, the Qmix network contains two main components:

• Agent network: Taking observation oi,t and last action
ui,t as input of DRQN (Deep Recurrent Q-Learning
Network), and local value function Qi(τi, ui,t) under
action ui,t is generated. Theoretically, each agent owns
an agent network separately supposing input or output
dimensions is inconsistent.

• Para-generator network: Generate weights W and bi-
ases B of Mixing network based on the global network
state st. Absolute function | · | in para-generator net-
work guarantees nonnegativity of weights W and the
monotonicity constraints.

C. LSTM Communication Module for Coordination

The unified communication module is based on LSTM to
encode each agent’s historical observations and actions.

Page 1 of 1
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Fig. 3: LSTM Communication Module

• Message generation
As is shown in Fig.3, agent i can encode its history

information and current observation through the communi-
cation module, and send message Mi to other intersections.
Formally, the coding mode of the communication module is

Mi,t−1 = hi,t−1 = LSTM(hi,t−2, õi,t−1, ui,t−1;φ) (8)

• Message receiving
Accordingly, intersection i obtains historical information

from others to supplement self-observation. Simply, only
messages from adjacent intersections are added based on the
assumption that the impact from non-adjacent intersections
can be negligible. That is,

oi,t = concat
(
õi,t, {Ma,t−1}a∈Ei

)
(9)

The proposed communication module can not only realize
coordination between other agents, but also share the fol-
lowing superiorities: (1) It realizes the fusion of historical
information based on the LSTM network; (2) The message
dimensions generated are consistent; (3)The delay of com-
munication makes the gain of others’ current information at
time t impossible in reality, thus using Mi,t−1 to supplement
current observation is reasonable.

D. Random Generation of ODs for Generalization

Previous studies often train and test the control methods
under the same ODs, while these strategies learned under



fixed ODs often fail for another. We design the double normal
distribution to obey the flow pattern in reality, while ran-
domly generate random ODs about different maximum traffic
flows and occurrence times to enhance the generalization.
Taking T/2 as the partition, X (ori, dest) demand pairs are
generated individually, and the traffic flow from each OD
fx(t) of demand x at time t is fitted by a normal distribution.
Take it in (0, T/2) as an example,

fx(t) = max
(

Ax√
2πσx

exp
(
− (t−µx)2

2σ2
x

, 0
))

0 < µx < T/2, Ax > 0, σx > 0
x = 1, 2, .., X; t = 0, 300, ..., bT/300c

(10)

where Ax, µx, σx determine the maximum traffic flow, the
peak time, and the changing scope respectively. For random-
ness, it is reasonable to set these three parameters to meet
Uniform Distribution in a particular range and randomly
sampled in each training episode.

According to the Principle of large numbers, with training
epochs increases, all ODs tend to be consistent. Therefore,
multi-episodes parallel sampling for each training episode is
recommended, and the trend of average cumulative reward
in P epoch AvgGj(πθ,ρ) indicates the gradual optimization.
We present the whole process of CQmix in Algorithm 1.

Algorithm 1 Pseudo-Code of CQmix approach

Input: The observation of each agent
output: θ = [θ1, ..., θN ] for agent networks; ρ for the

communication network.
1: Initialize the parameters θ for agent networks; φ for para-

generator network; ρ for the communication network.
2: Initialize the replay buffer B for storing τ .
3: for each epoch do
4: for each episode(multi-scenes parallel sampling) do
5: Generate a random set of ODs based on (10)
6: % Decentralized execution.
7: Initial message hi,0, t = 0 (i ∈ A).
8: for t = 1, 2, ..., T do
9: for each agent i ∈ A do

10: Receive local observation oi,t

11: Obtain all optional actions’ value Qi

12: Choose action ui,t = π(Qi)(ε-greedy).
13: Generate message Mi,t and communicate.
14: end for
15: Store joint episode history τ in replay buffer.
16: end for
17: % Centralized training.
18: Sample b episode histories from replay buffer.
19: for t = 1, 2, ...T do
20: Obtain all Qi(τi, ui,t) and Qtotal at time t.
21: Update the parameters θ, ρ, φ with TD error.
22: end for
23: end for
24: end for
25: return The trained agent networks, and the communica-

tion network

IV. EXPERIMENTS

In this section, we introduce the specific experimental
settings, and demonstrate results in two networks.

A. Experimental Settings

1) Experimental scenes: For convincing, we carry out
experiments both on the synthetic network and the real
Zhongguancun road network. The synthetic road network
structure is a 5 ∗ 5 traffic grid, as is shown in Fig.4. The
real network is extracted from the existing road network
in Zhongguancun, Haidian, Beijing, China, including 27
intersections, as Fig.5 shows. The traffic simulation platform
is Simulation of Urban Mobility (SUMO). Page 1 of 1
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Fig. 4: 5 ∗ 5 traffic grid of the synthetic network

Fig. 5: Real road network in Zhongguancun

2) Baseline methods: To evaluate the effectiveness and
efficiency of the proposed algorithm, we compare it with
some baseline methods. Fixed-time control is a traditional
control method, which is the most common method in
practice yet for simple operation. IA2C and IQL are methods
based on MARL with decentralized training and decentral-
ized execution mechanism, and the former is policy-based,
and the latter is value-based. MA2C is similar to IA2C except
for adding some proposed stabilizing methods, like simple
communication.

To intuitively reflect the Qmix network’s effectiveness,
the DNN network for IQL adopts the same structure as
the agent network in CQmix. Meanwhile, to compare the
difference in whether to use the proposed communication



TABLE I: Evaluation results in the simple synthetic network
Method Average reward Average queue(veh) Average waiting time(s) Average speed(m/s)

Fixed-time Control -16.96 0.86 60.84 3.32
IQL -1.76 0.11 2.10 7.02

IA2C -15.29 0.73 28.04 2.88
MA2C -8.81 0.57 13.52 3.71

Qmix-Base -1.80 0.09 3.68 7.49
CQmix(ours) -1.54 0.07 2.47 7.85

module, Qmix-Base ignores the information generation and
interaction module.

Set T = 3600s in each episode, and decision interval
∆T is 5s. The behavioral strategy is ε − greedy. And the
segmented training mechanism splitting the history from 0-T
as multiple records is used to accelerate training.

3) Evaluation Metrics in testing: Evaluation results focus
on the congestion at each intersection and the driving ef-
ficiency of vehicles, thus including four primary metrics in
NTSC: the average reward, the average queue length of each
intersection, and the average waiting time and average speed
of each vehicle in the whole network.

B. Experimental Results of the Synthetic Network

Fig.6 shows training curves of all DRL algorithms. The
horizontal axis represents the number of training epochs,
and the vertical axis represents the average total cumulative
rewards of 10 episodes in an epoch with random ODs. It is
demonstrated that these algorithms are all convergent while
CQmix converges to the maximum rewards.
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Fig. 6: Learning curves in the synthetic network

The randomly generated ODs are also applied to ensure the
inconsistency between training and evaluation. Table I shows
the results in evaluation episodes of the following metrics in
NTSC. As can be seen from the evaluation table, CQmix has
advantages over IA2C, MA2C, and the fixed-time control
from all metrics’ perspective. Might due to the simplicity
of the synthetic scene, IQL can obtain a similar control
effect as Qmix-Base. However, there is still a lag compared
with CQmix. More obviously, compare Qmix-Base with
CQmix, (1) from the perspective of convergence, though
the final convergence rate is almost the same – achieving
convergence around 120 epochs, the convergence of CQmix
is more stable; (2) from the perspective of evaluation results,

CQmix performs better on all metrics benefiting from its
coordination between agents. Thus agent can achieve more
additional information to assist decision-making.
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Fig. 7: Average speed in the synthetic network in evaluation

More intuitively, Fig.7. shows the average traveling speed
of all vehicles in evaluation episodes, vehicles traveling in
the scene controlled by CQmix have the most excellent speed
in the most time of the episode, significantly shortening
vehicles’ traveling time and improving operation efficiency.

C. Experimental Results of the Real Network

Similarly, Fig.8 demonstrates that all algorithms converge
after 800 epochs training except IA2C. While in terms
of the convergence stability and convergence results, the
proposed CQmix approach shows a significant improvement
over others. For the former, CQmix tends to convergence at
300 epochs, sightly faster than others. Compared with Qmix-
Base, CQmix shows a more stable convergence trend. For the
convergence results, CQmix also performs best.
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Fig. 8: Learning curves in the real Zhongguancun network



TABLE II: Evaluation results in the real Zhongguancun network
Method Average reward Average queue(veh) Average waiting time(s) Average speed(m/s)

Fixed-time Control -18.38 1.28 40.28 6.67
IQL -17.17 1.61 31.01 6.76

IA2C -21.19 2.00 38.56 5.35
MA2C -14.75 1.07 18.07 6.99

Qmix-Base -10.57 0.56 20.71 9.30
CQmix(ours) -8.95 0.33 12.01 10.13

Table II shows evaluation results in test episodes. CQmix
demonstrates the biggest power than others at whatever met-
ric in the more complicated scene, and Qmix-Base follows.
Comparison between IQL and Qmix-Base shows the great
power of Qmix network to balance large-scale requirements
and global effectiveness, and comparison between CQmix
and Qmix-Base shows the significance of communication
module for coordination.
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Fig. 9: Average queue length in the real Zhongguancun
network in evaluation

Fig.9. shows the average queue length changing curves
of all approaches in evaluation episodes. In all, the average
queue length levels off to zero in CQmix and Qmix, showing
the powerful effects in improving congestion at intersections
and traveling efficiency of vehicles.

V. CONCLUSION

In this paper, we propose a Communication-Qmix ap-
proach for NTSC problem. The proposed method contributes
to address two issues: the Qmix network of the concentrated-
training and decentralized-execution mechanism for large-
scale; the communication module for coordination. We
evaluate the performance of the proposed method on both
the simple synthetic scenario and real Zhongguancun road
network, and compare it with the traditional method and
other DRL methods. For generalization, we use a random
generation strategy of ODs in experiments with the parallel-
scene sampling mechanism. Experimental results show that
the proposed method outperforms the baseline algorithms.

In the future, we will infuse prior knowledge, such as
combining it with traditional transportation theory, to further
accelerate the convergence speed and control effect of the
proposed method.
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