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Abstract

Weakly supervised semantic segmentation with only image-
level labels saves large human effort to annotate pixel-level
labels. Cutting-edge approaches rely on various innovative
constraints and heuristic rules to generate the masks for every
single image. Although great progress has been achieved by
these methods, they treat each image independently and do
not take account of the relationships across different images.
In this paper, however, we argue that the cross-image relation-
ship is vital for weakly supervised segmentation. Because it
connects related regions across images, where supplementary
representations can be propagated to obtain more consistent
and integral regions. To leverage this information, we pro-
pose an end-to-end cross-image affinity module, which ex-
ploits pixel-level cross-image relationships with only image-
level labels. By means of this, our approach achieves 64.3%
and 65.3% mIoU on Pascal VOC 2012 validation and test
set respectively, which is a new state-of-the-art result by only
using image-level labels for weakly supervised semantic seg-
mentation, demonstrating the superiority of our approach.

Introduction

Semantic segmentation provides per pixel predictions for a
given image. Recently, fully convolutional network (FCN)
based methods (Long, Shelhamer, and Darrell 2015; Chen
et al. 2018; 2017) have achieved impressive performance.
However, these deep methods need large scale datasets with
precise pixel-level annotations for training (Everingham et
al. 2010; Lin et al. 2014), which is quite expensive to ob-
tain. To alleviate the difficulty of collecting data for training,
weakly supervised learning (WSL) (Zhou 2017) is proposed
for semantic segmentation. It makes use of weak annotations
for training, e.g. bounding boxes (Dai, He, and Sun 2015;
Khoreva et al. 2017), sparse scribbles (Lin et al. 2016;
Vernaza and Chandraker 2017), and image-level class la-
bels (Kolesnikov and Lampert 2016; Wei et al. 2017a; 2018;
Ahn and Kwak 2018; Huang et al. 2018). In this paper, we
focus on the most challenging problem by only using image-
level labels for semantic segmentation.
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Figure 1: Illustration of the cross-image affinity. (a) the raw
activation of a given image. (b) the activation of a reference
image of the same class. (c) the affinity map from the marked
query pixel in a) to reference b). (d) the activation after re-
trieving supplementary information according to the affinity.

The main difficulty of weakly supervised semantic seg-
mentation is to recover the precise spatial information from
only image tags. To this end, existing works usually rely on
attention mechanisms, e.g. CAM (Zhou et al. 2016). How-
ever, these attention maps are derived from classification
networks, which focus on the classification precision instead
of the targets’ integrity, thus only the most discriminative re-
gions are obtained, which are sparse and incomplete.

To tackle this problem, Wei et al. (Wei et al. 2017a) adopt
an iterative erasing strategy to mine complementary seeds.
In the following works (Wei et al. 2018), they also apply
multi-dilation convolution blocks to expand the seeds. Ahn
and Kwak (Ahn and Kwak 2018) train additional pixel-level
affinity net to complete the seeds. Huang et al. (Huang et al.
2018) dynamically fill in the undefined regions by seed re-
gion growing algorithm. Kolesnikov et al. (Kolesnikov and
Lampert 2016) and Briq et al. (Briq, Moeller, and Gall 2018)
take advantage of additional constraints to regularize the
predictions. A common characteristic of these methods is
that the images are treated independently of each other.

Contrastingly, we propose that the cross-image relation-
ship is also vital for mining complete regions for weakly
supervised segmentation. To intuitively understand this con-
cept, see Fig. 1, there are two images of the same class, and
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only partial regions are activated for each of them. We lever-
age the pixel-wise affinities and retrieve complementary in-
formation from one image to another, then more integral re-
gions can be obtained. More formally, there are three major
benefits of introducing the cross-image relationships:

Firstly, the cross-image relationship helps to provide sup-
plementary information for identifying the pixels. Based
on the supplementary components, related features can be
refined and amplified to address some of the ambiguity
and/or false predictions. Secondly, this explicit relationship
helps the network to learn more consistent representations
across the whole dataset. This is because the affinity module
propagates related representations across different images,
and a consistent one will be approached finally. Thirdly,
through the cross-image relationship, the labels can be di-
rectly shared across a group of images, making better use of
the valuable weak supervision.

Based on the motivation of building cross-image relation-
ships, we propose an end-to-end cross-image affinity mod-
ule, which can be directly plugged into existing segmenta-
tion networks. We name it cross-image affinity net (CIAN).
CIAN explicitly models the pixel-level relationships among
different images, efficiently leverages the relationships to re-
fine the original representations and obtains more integral
regions for segmentation. We conduct thorough experiments
to demonstrate the effectiveness of the proposed approach.
Our approach achieves new state-of-the-art results of weakly
supervised semantic segmentation by only using image-level
labels, with 64.3% mIoU on Pascal VOC 2012 (Everingham
et al. 2010) validation set, and 65.3% on the test set. In sum-
mary, the main contributions are as follows:

• We firstly propose to explicitly model the cross-image re-
lationship for weakly supervised semantic segmentation.
An end-to-end cross-image affinity module is proposed to
provide supplementary information from related images.
By means of this, more integral regions can be obtained
for weakly supervised segmentation.

• Extensive experiments demonstrate the usefulness of
modeling cross-image relationships. Besides, we show
that our approach is orthogonal to the quality of the seeds,
which continually improves the training with even bet-
ter seeds. Thus it can be potentially combined with future
works that generate better seeds to further boost the per-
formance.

• With the naive seeds generated by CAM, our CIAN
achieves 65.3% mIoU on the VOC 2012 test set, which
is a new state-of-the-art result by only using image-level
labels for semantic segmentation, demonstrating the su-
periority of the approach.

Related Work

Weakly Supervised Semantic Segmentation. In this paper,
we focus on the image-level label based weakly supervised
semantic segmentation. State-of-the-art approaches follow a
pipeline of first generating pseudo-masks (seeds) then train-
ing segmentation networks. The CAM (Zhou et al. 2016)
is widely adopted as the cornerstone for generating seeds.

However, CAM only activates the most discriminative re-
gions, which is incomplete for segmentation.

To alleviate this problem, Wei et al. (Wei et al. 2017a)
propose to adopt an iterative erasing strategy. MDC (Wei
et al. 2018) proposes to merge multiple CAMs with dif-
ferent dilation rates. DSRG (Huang et al. 2018) proposes
to dynamically fill in the sparse seeds by region growing.
Wang et al. (Wang et al. 2018) propose to alternately train
a superpixel based classification network and the segmen-
tation network. Other works (Briq, Moeller, and Gall 2018;
Kolesnikov and Lampert 2016) propose some heuristic con-
straints. The concurrent work FickleNet (Lee et al. 2019)
randomly drops connections in each sliding window. Al-
though these methods are effective, they ignore the rich re-
lationships across different images, while we prove that the
cross-image relationship is effective for obtaining consistent
and integral regions for weakly supervised segmentation.
Co-segmentation. Co-segmentation aims to predict the
common objects’ masks for a given group of images (Chen,
Huang, and Nakayama ; Li, Jafari, and Rother 2018; Li et
al. 2018; Hsu, Lin, and Chuang 2018; Hsu et al. 2018).
This task is related to ours since we also operate on a
group of images to learn and utilize the cross-image rela-
tionship. The main difference between co-segmentation and
weakly supervised segmentation is that co-segmentation fo-
cuses on finding class-agnostic masks for universal objects.
When testing, it takes as input a group of images, so that
common object can be defined. While our weakly super-
vised segmentation infers single images for known classes.
Besides, many co-segmentation approaches are trained by
strong pixel-level masks (Chen, Huang, and Nakayama ;
Li et al. 2018). There is also weakly supervised segmenta-
tion by adopting co-segmentation to generate seeds (Shen et
al. 2017), but it is different from ours that our affinity mod-
ule is an end-to-end component for segmentation networks
instead of the seeds.
Pixel-Level Affinity. Recent work AffinityNet (Ahn and
Kwak 2018) samples sparse points by CAM seeds and trains
an additional affinity net by metric learning. It is different
from ours that our affinity module is an end-to-end com-
ponent for dynamically sharing information across differ-
ent images. In form, our method is closely related to the
Non-local approaches (Wang et al. 2017; Fu et al. 2019;
Yuan and Wang 2018), since pixel-level affinity is incorpo-
rated. However, Non-local networks focus on the long-range
intra-image contexts to discover the hidden structures of a
single image, while our approach aims at highlighting com-
mon objects and share complementary information across
different images to combat the weak label problem.

Our Approach

In this section, we elaborate on all the components
of the proposed approach. Following common practice,
(Kolesnikov and Lampert 2016; Wei et al. 2018; Huang et
al. 2018; Hou et al. 2018), we firstly generate initial seeds
from image labels, then use them to train the segmentation
network which is equipped with our proposed CIAN mod-
ule. The framework is illustrated in Fig. 2.
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Figure 2: Left: the framework of CIAN. For simplicity, only one pair is drawn. Embedded features are obtained by a siamese
backbone for both query and reference images, following with the cross-image affinity module to augment the features. For
testing, reference images are unavailable, thus the query image only pairs to itself. Right: the proposed cross-image affinity
module (CIAN module). The affinity is derived from the query and the reference features, then the query retrieves supplementary
information from the reference accordingly.

Initial Seeds

Following the common practice (Kolesnikov and Lampert
2016; Wei et al. 2018; Huang et al. 2018; Hou et al. 2018),
we adopt on-the-shelf CAM (Zhou et al. 2016) approach
to generate initial seeds. It trains a classification network,
which has a global-pooling layer right before the last classi-
fication layer. After training, it removes the global-average
pooling layer and directly applies the classification layer to
every pixel in the feature map to obtain the score map. How-
ever, because the classification tasks only focus on the most
discriminate regions, only sparse and incomplete regions are
highlighted. Our proposed CIAN can effectively alleviate
the influence of the incomplete seeds with the help of cross-
image relationships.

The Cross-Image Affinity Module

The affinity module models pixel-wise relationships be-
tween two images upon high-level representations. For sim-
plicity, we use the term pixels to refer spatial-wise vectors
of the feature map. Let Sq and Sr denote the sets of pixel
indices of query image q and reference r, respectively. For
any pair of pixels {(xi, xj)|i ∈ Sq, j ∈ Sr} from the two
images, the affinity score kij is modeled by:

kij = exp (ϕq(xi) · ϕr(xj)) (1)

where ϕq and ϕr are learnable functions implemented by
neural network layers, which can be seen as generalized ker-
nel functions to enhance the encoding flexibility.

The next step is to retrieve supplementary information
from reference xj to query xi. To this end, we first com-
press useful information by function ϕc, and weight it by
the corresponding affinity score to get the message mij :

mij = k̄ijϕc(xj) (2)

where, k̄ij is the normalized version of affinity kij , to ensure
that the sum of all the weights of the reference pixels is a
unit, k̄ij = kij/

∑
j∈Sr

kij .

Finally, all the messages from different reference pixels to
the query xi are summed together, normalized by function
ϕo, and merged into the original representation xi:

mi =
∑

j∈Sr

mij (3)

x̂i = xi + ϕo(mi) (4)

The above x̂i is the so-called cross-affinity augmented
representation. This process is repeated for all the pixels in
the query image. The final classification layer takes as input
augmented representations and outputs the segmentation re-
sults. The whole process is illustrated in Fig. 2.

On the one hand, meaningful affinity is forced to be
learned to fit the existing seed supervision. On the other
hand, the learned affinity bridges different images together
to provide supplementary and/or complementary informa-
tion. By means of this, the augmented representation and
the affinity prompt each other and can be learned simultane-
ously.

Multiple Pairs

The above affinity module operates on a pair of two images.
It can be easily extended to formulate relationships among
multiple reference images and a single query image.

Given the query image q and its N reference partners
{r(h)|h = 1, ..., N}, we compute all the messages from the
reference images to q according to Eq. 3, which are denoted
as {m(h)

i |i ∈ Sq;h = 1, ..., N}. Then, before adding them
into the corresponding raw representation xi, we merge all
the messages from the multiple pairs. For example, it can be
implemented by maximum function:

mi = max
h∈{1,...,N}

m
(h)
i (5)

Finally, mi is normalized by ϕo and added to the orig-
inal xi, as in Eq. 4. Other merging functions, e.g. average
function, are also available.
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Training Loss

Cross-Entropy Loss. Following the common practice of
semantic segmentation (Chen et al. 2014; 2018; Long, Shel-
hamer, and Darrell 2015), we adopt the pixel-wise cross-
entropy loss to train the segmentation network. Use fc to
denote the final softmax classification layer of the segmen-
tation network, the class probability of pixel x̂i is then ob-
tained by fc(x̂i) ∈ R

C , where C is the number of classes.
For image q : x̂ = {x̂i|i ∈ Sq}, the cross entropy loss is
defined as:

Lce(x̂) = − 1

|S′
q|

∑

i∈S′
q

yTi log fc(x̂i) (6)

where yi is the onehot pseudo-label for pixel xi obtained
from the initial seeds. We use S′

q to denote the set of valid
pixels for training in image q, since there are may pixels not
assigned with labels by the seeds. The unassigned pixels are
just ignored during training.

Completion Loss. As discussed above, the cross-affinity
module augmented representations can provide more com-
plete object estimations. Thus, it can be utilized to online
generate pseudo-masks to compensate the sparsity of the ini-
tial seeds. To this end, we generate the online pseudo-label
ŷi ∈ R

C from the prediction fc(x̂i):

ŷi,l = I [(argmax fc(x̂i) = l)AND (l ∈ Lq)] (7)

where, Lq is the set of image-level labels for image q, I[·]
is the index function and equals 1 if the statement is true.
The meaning of Eq. 7 is that the l-th element of ŷi is 1 iff it
matches the prediction fc(x̂i) and the image-level labels.

Finally, we use ŷ to optimize all the pixels in the query
image q, and the whole procedure is named completion loss:

Lcp(x̂) = − 1

|S′′
q |

∑

i∈S′′
q

ŷTi log fc(x̂i) (8)

where, S′′
q is the set of effective pixels according to ŷ.

The Overall Loss. To ensure there do exist usable in-
formation across images, we need common-class pairs for
training. However, it is hard to sample pairs with identi-
cally the same classes, since there can be multiple classes
in a single image thus faces a combinatorial explosion prob-
lem. Therefore, we relax to sample images with at least one
common class as pairs. To reduce the influence of possibly
unmatched classes, we utilize the self-affinity, which sim-
ply adopts the above affinity module to the image itself, i.e.
xq = xr. We denote the representations augmented by the
cross-affinity and the self-affinity as x̂c and x̂s, respectively.
The overall loss is computed as:

L = Lce(x̂
c) + Lce(x̂

s) + Lcp(x̂
c) + Lcp(x̂

s) (9)

Another important reason to use the self-affinity is that
during testing we cannot make pairs since the deployed

model should be able to address single images. Directly re-
moving the affinity residual incurs heavy distribution change
of representations, thus is unfeasible. Instead, we address
this problem by augmenting the representation with the self-
affinity during testing. To this end, Lce(x̂

s) and Lcp(x̂
s) are

minimized to further reduce the training and testing gap.

Experiments and Analysis

Datasets

We evaluate our proposed method on Pascal VOC 2012
segmentation benchmark (Everingham et al. 2010). This is
the standard dataset for weakly supervised semantic seg-
mentation. It has 20 foreground classes and one back-
ground class. A single image may contain multiple classes.
Following the common practice (Wei et al. 2017a; 2018;
Huang et al. 2018), we use the expanded set collected by
Hariharan et al. (Hariharan et al. 2011), i.e., there are 10582
training images, 1449 validation images, and 1456 testing
images. In our experiments, only the image class labels are
used for training. The performance is evaluated by mean in-
tersection over union (mIoU) of all the 21 classes.

Implementation Details

Initial Seeds. As aforementioned, we adopt CAM to gen-
erate initial seeds. Specifically, it uses ImageNet pre-trained
VGG16. To obtain larger maps, we replace the last two pool-
ing layers with stride 1 and use dilation rate 2 in the Conv5
block. We train the CAM with the multi-class sigmoid loss
with learning rate 1e−3. We normalize the CAM into range
[0, 1] and generate foreground regions by threshold 0.3.
Following related works (Kolesnikov and Lampert 2016;
Wei et al. 2018; Huang et al. 2018; Hou et al. 2018), we use
an off-the-shelf saliency model (Jiang et al. 2013) to gener-
ate background seeds by threshold 0.06. Finally, all the re-
maining unassigned pixels and conflictual assignments are
abandoned and marked as ignored.

CIAN Module. We choose Deeplab-V2-Largefov (Chen
et al. 2018) framework for segmentation. The CIAN module
takes as input the feature maps right before the classification
layer. ϕq , ϕr and ϕc are all implemented by single 1 × 1
convolution layers. To speedup the computation, ϕq and ϕr

halve the feature dimensions, ϕr(x) and ϕc(x) are spatially
downsampled by max-pooling with stride 2. During train-
ing, we randomly sample reference images for each query
image. We experimentally find that a single reference image
for each query is adequate for learning cross-image relation-
ships, more pairs bring negligible improvement. This may
because the pairs are randomly sampled and all the poten-
tial combinations can be visited along the training process.
To stabilize the training, the image to itself is also adopted
as a pair and merged by Eq. 5. Since the affinity is unreli-
able during the initial training stage, a zero-initialized batch
normalization layer is attached to ϕo before adding it to orig-
inal representations. Following (Huang et al. 2018), we also
adopt the retraining strategy, i.e. generate predictions by cur-
rently trained network, and take these predictions as pseudo-
labels to train the network with another round.
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# Params # FLOPs
Vanilla Deeplab 42.4 M 72.5 G
Baseline 50.8 M 88.2 G
Ours 50.8 M 89.7 G

Table 1: Comparison of the number of parameters and com-
putation complexity. The values are based on ResNet101.

Figure 3: Visualization of the affinity. Two typical pairs are
illustrated. The first two columns are the query and refer-
ence respectively. The third column is the average affinity
map for the self- and the cross-affinity respectively. The last
three columns show the activation and predictions of the raw,
residual, and augmented representations, respectively.

Reproducibility. All the backbones are pre-trained by Im-
ageNet, and the newly added layers are initialized by ran-
dom Normal with the standard deviation 0.01. We adopt the
SGD optimizer with an initial learning rate 5e−4 and mo-
mentum 0.9, which is poly-decayed by power 0.9. We use
batch size 16 to train 20 epochs with randomly cropped im-
ages of size 321. Standard data augmentation, i.e., random
cropping, scaling, and horizontal flipping are adopted. CRF
(Krähenbühl and Koltun 2011) with default parameters for
post-processing. Codes are implemented with MXNet (Chen
et al. 2015), and are available at: https://github.com/js-
fan/CIAN.

Computation Complexity

Our CIAN module works at the top layer with relatively
small spatial size, thus the overhead is marginal compared
with the standard segmentation networks, as shown in Table
1. Besides, the computation complexity of our CIAN is the
same as the self-affinity augmented baseline during testing,
and the overhead only happens during training.

An Intuitive View of The Cross-Image Affinity

To help the reader further understand how the cross-image
affinity helps, we visualize the learned maps in Fig. 3. Since
the affinity component is an addable residual to the raw
representation, we visualize the activation of the raw rep-
resentation, the cross-affinity residual, and the final aug-

mented representation, respectively, as shown in the last
three columns in Fig. 3.

We can see that the affinity maps (in the third column)
focus on correlated target object regions. The first exam-
ple shows that the spatial distribution of the retrieved resid-
ual’s activation is similar to the raw. After merging, the rep-
resentation is further strengthened, thus some of the false
predictions can be avoided. The second example shows that
the cross-image residual retrieves complementary activation,
and thus makes more integral final predictions. This case il-
lustrates that different images may be activated with differ-
ent parts, and the learned cross-image affinity can help to
share complementary information among images to achieve
more complete and consistent estimations.

Ablation Studies

We conduct thorough experiments to demonstrate the advan-
tage of the CIAN module. By default, ResNet101 is adopted
as the backbone, and results are evaluated on Pascal VOC
2012 validation set.

The Effect of The CIAN Module. We first prove that the
learned cross-image relationship benefits the weakly super-
vised segmentation task. For fair comparisons, the baseline
model is also augmented by the affinity module, with the
limitation that no cross-image pairs are available, i.e., only
self-affinity is applied for the baseline. By means of this, the
capacity of the baseline model is the same as our CIAN, and
we can conclude that the improvement actually comes from
the cross-image relationships exploited during training.

The ablation results are shown in Table 2. Starting with
the baseline, with the naive cross-entropy loss for the cross-
image representations (+CE), the model achieves 0.8% im-
provement. By further adopting the completion loss with the
cross-image representations (+CP), the model achieves an-
other 3.4% improvement. This improvement is much more
than the former because the cross-affinity augmented rep-
resentations provide more complete pseudo-masks than the
initial seeds. Even though the cross-affinity can directly re-
fine the representations, with only sparse regions from the
initial seeds, much useful information will be abandoned
and does not participate in the optimization due to the enor-
mous number of ignored pixels. Thus, the completion loss
is necessary for mining cross-image relationships and fully
utilizing the retrieved complementary information. Finally,
the retraining strategy recovers boundaries by the CRF re-
finement when generating predictions, thus the result is fur-
ther improved by 1.8% (+RT) and achieves the cutting-edge
performance, as shown in Table 5.

The Query-Reference Pairs In our CIAN, the query-
reference pairs are sampled that there is at least one common
class. If not, e.g. assume that we randomly sample reference
images to the query without any class label constraint, reli-
able relationships would not be learned. From this point of
view, we can also demonstrate the usefulness of valid cross-
image relationships.
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Baseline 85.0 73.7 33.5 74.6 49.1 63.0 77.5 68.6 65.9 22.7 63.0 40.2 58.4 64.5 69.9 57.1 35.9 74.3 34.5 61.1 50.9 58.3

+ CE 84.9 75.6 34.1 72.4 45.1 65.8 79.1 67.6 68.7 21.1 66.9 39.7 62.4 72.5 71.4 58.7 34.4 75.8 32.5 61.2 52.0 59.1
+ CP 87.1 76.0 34.1 73.1 49.7 69.5 83.5 73.9 77.5 27.2 70.9 37.1 72.4 74.6 73.6 62.5 42.7 76.6 34.2 63.6 53.5 62.5
+ RT 88.2 79.5 32.6 75.7 56.8 72.1 85.3 72.9 81.7 27.6 73.3 39.8 76.4 77.0 74.9 66.8 46.6 81.0 29.1 60.4 53.3 64.3

Table 2: Comparison on the VOC 2012 val set for ablation study. The baseline is only augmented by self-affinity. (+ CE) denotes
to adopt cross-image affinity with the cross-entropy loss. (+ CP) denotes to further adopt the completion loss. (+ RT) denotes
to adopt the retraining strategy.

Method Common-class Random-class
+ CE 59.1 58.5
+ CP 62.5 59.7

Table 3: Comparison on the VOC 2012 val set between the
random-class pairs and our common-class pairs. In random-
class pairs, images may not have any common classes, while
in our common-class pairs they have at least one common
class.

Ratio ResNet101 ResNet50
baseline ours Delta baseline ours Delta

C
R

F 0 58.3 62.5 + 4.2 57.5 60.4 + 2.9
0.05 61.4 65.8 + 4.4 60.2 63.5 + 3.3
0.10 62.2 67.3 + 5.1 61.6 65.7 + 4.1

no
C

R
F 0 53.8 58.1 + 4.3 52.7 56.0 + 3.3

0.05 57.7 61.2 + 3.5 56.4 59.4 + 3.0
0.10 60.3 64.1 + 3.8 58.4 62.1 + 3.7

Table 4: Comparison on the VOC 2012 val set with differ-
ent ratios of strong supervision. The larger ratio corresponds
to better seeds. Our approach continually improves over the
baseline with different seeds. Results both with or without
CRF post-processing are given.

To this end, in contrast to the proposed common-class
sampling strategy, we train the CIAN model with random-
class pairs. The results are summarized in Table 3. It shows
that with random-class pairs, the performance is in line with
the baseline model, which is much worse than our common-
class counterpart.

We notice that with random-class pairs and completion
loss, there is still 1.4% improvement compared with the
baseline. This is because although there are no valid cross-
image pairs, the network’s online predictions still provide
better pseudo-masks than initial sparse seeds. However,
without valid cross-image relationships, the completion is
limited and inferior. As a comparison, our CIAN with reli-
able common-class pairs outperforms the baseline by 4.2%,
which is much better than the random-class pair’s 1.4%. This
result also reveals that only adopting the online completions
(as in Eq.8) without available cross-image relationships does
not fully utilize the information.

Orthogonal to The Seed Quality We prove that our ap-
proach does not rely on occasionally generated initial seeds.
Indeed, the CIAN module consistently improves over the

baseline with even stronger seeds. Therefore, our approach
is orthogonal to those state-of-the-art approaches (Wei et al.
2018; 2017a; Hou et al. 2018), which generate better initial
seeds. To quantitatively assess the orthogonality, we imitate
a group of better seeds by randomly substituting a portion of
the seeds with the ground truth, which is similar to the set-
ting of semi-supervised learning. Specifically, 5% or 10% of
the 10582 training seeds are substituted, respectively.

As shown in Table 4, with 5% and 10% of the seeds sub-
stituted, our CIAN outperforms the baseline by 4.4% and
5.1% respectively. Similar improvements are achieved with
the ResNet 50 backbone. Our approach consistently brings
significant improvement with better seeds. Therefore, this
approach can be potentially fused with those works generat-
ing stronger seeds.

Comparison with State-of-The-Art

It should be careful to make comparison with other ap-
proaches, because they may leverage additional supervi-
sion, different pre-trainings, or adopt different backbones.
We summarize the state-of-the-art results and list their dif-
ference in Table 5.

Our approach with ResNet101 achieves mIoU score of
64.3% and 65.3% on VOC12 val and test set respectively,
outperforming all of the previous results by only using
image-level labels. It is surprising that our result outper-
forms some early fully supervised works like FCN (Long,
Shelhamer, and Darrell 2015). In spite of the different back-
bones, our result is comparable with some works with
stronger supervisions, e.g. box-supervised (Dai, He, and
Sun 2015) and scribble-supervised (Lin et al. 2016) ap-
proaches. With the same backbone and training set, our ap-
proach outperforms AISI (Fan et al. 2018), which relies
on a well-trained instance saliency network. Note that in-
stance saliency is trained by pixel-level annotated instance
masks, which is quite costly to obtain. Besides, our re-
sult with ResNet50 is comparable with the state-of-the-arts
with ResNet101 (Wang et al. 2018; Huang et al. 2018;
Hou et al. 2018), demonstrating the advantage of leveraging
cross-image relationships.

Qualitative Results

To help better understand the final effect of the cross-image
affinity module to the predictions, we visualize some of the
typical predictions of both the baseline and our CIAN, as
shown in Fig. 4. The first two rows show that by the CIAN
module that borrows information from other images, some
of the missing parts can be completed. The next two rows
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Methods Sup. val test
Fully supervised
FCN†(Long, Shelhamer, and Darrell 2015) F. - 62.2
Deeplab†(Chen et al. 2014) F. 67.6 70.3
Weakly supervised
BoxSup†(Dai, He, and Sun 2015) L.+B. 62.0 64.6
ScribbleSup†(Lin et al. 2016) L.+S. 63.1 -
AISI (Fan et al. 2018) L.+I. 63.6 64.5
CCNN†(Pathak, Krähenbühl, and Darrell 2015) L. 35.3 35.6
EM-Adapt†(Papandreou et al. 2015) L. 38.2 39.6
STC†(Wei et al. 2017b) L. 49.8 51.2
SEC†(Kolesnikov and Lampert 2016) L. 50.7 51.7
AugFeed†(Qi et al. 2016) L. 54.3 55.5
AE-PSL†(Wei et al. 2017a) L. 55.0 55.7
GuidedSeg†(Oh et al. 2017) L. 55.7 56.7
DCSP (Chaudhry, Dokania, and Torr 2017) L. 60.8 61.9
AFFNet†(Ahn and Kwak 2018) L. 58.4 60.5
MDC†(Wei et al. 2018) L. 60.4 60.8
MCOF (Wang et al. 2018) L. 60.3 61.2
DSRG (Huang et al. 2018) L. 61.4 63.2
SeeNet (Hou et al. 2018) L. 63.1 62.8
Ours:
CIAN (res50) L. 62.4 63.8
CIAN (res101) L. 64.3 65.3

Table 5: Comparison of state-of-the-arts on VOC 2012.
Methods marked by † use VGG16, the others use
ResNet101. The supervision (Sup.) includes: image-level la-
bel (L.), instance saliency (I.), bounding box (B.), scribble
(S.) and full supervision (F.).

show that some false positive predictions can be inhibited
because they are never matched in any reference images.
The following two rows demonstrate that the module helps
to exclude clutter. This is because cross-image relationships
help the network to learn more consistent representations
across the whole dataset, and the related representations can
be strengthened by each other, thus reduces the noise. The
last row shows a typical failure case that interweaving ob-
jects with similar appearance and small spatial scale are con-
fused and wrongly optimized. We leave it for future studies
to address this problem.

Conclusion

In this paper, we propose to leverage cross-image relation-
ships for weakly supervised semantic segmentation. We pro-
pose an end-to-end CIAN module to build pixel-level affini-
ties across different images, which can be directly plugged
into existing segmentation networks. With the help of cross-
image relationships, incomplete regions can retrieve supple-
mentary information from other images to obtain more inte-
gral object region estimations and rectify the ambiguity. Ex-
tensive experiments demonstrate the advantage of utilizing
cross-image relationships. Besides, our approach achieves
state-of-the-art performance on VOC 2012 semantic seg-
mentation task with only image-level labels.
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Krähenbühl, P., and Koltun, V. 2011. Efficient inference in
fully connected crfs with gaussian edge potentials. In NIPS.
Lee, J.; Kim, E.; Lee, S.; Lee, J.; and Yoon, S. 2019. Fick-
lenet: Weakly and semi-supervised semantic image segmen-
tation using stochastic inference. In CVPR.
Li, M.; Dong, S.; Zhang, K.; Gao, Z.; Wu, X.; Zhang, H.;
Yang, G.; and Li, S. 2018. Deep learning intra-image and
inter-images features for co-saliency detection. BMVC.
Li, W.; Jafari, O. H.; and Rother, C. 2018. Deep dbject
co-segmentation. In Asian Conference on Computer Vision,
638–653. Springer.
Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick,
R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C. L.; and

Dollár, P. 2014. Microsoft coco: Common objects in context.
In ECCV. Springer.
Lin, D.; Dai, J.; Jia, J.; He, K.; and Sun, J. 2016. Scribble-
sup: Scribble-supervised convolutional networks for seman-
tic segmentation. In CVPR.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convo-
lutional networks for semantic segmentation. In CVPR.
Oh, S. J.; Benenson, R.; Khoreva, A.; Akata, Z.; Fritz, M.;
and Schiele, B. 2017. Exploiting saliency for object seg-
mentation from image level labels. In CVPR.
Papandreou, G.; Chen, L.-C.; Murphy, K.; and Yuille, A. L.
2015. Weakly- and semi-supervised learning of a dcnn for
semantic image segmentation. arXiv:1502.02734.
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