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Abstract: The integration of signals from physical, social and cyber spaces, known as Cyber-Physical-

Social systems (CPSS), is a new research paradigm for urban transportation, where the traffic control and 

management (C&M) is collaborative optimized among the three sub-systems. Though some technologies 

and optimization methods have been studied since its proposition, there is a lack of a systemic architecture 

as well as an overall implementation about how to efficiently exploit the social signals. For this reason, 

this paper proposes a general framework of CPSS for urban transportation and presents a feasible solution 

for traffic optimization based on knowledge automation. The specific implementation includes basic 

modeling of CPSS, knowledge evolution and reasoning, and collaborative optimization of C&P strategies. 

As a remarkable highlight, the influence of both individual activities and social learning is concerned 

during knowledge evolution and reasoning part. A case study from the application in the city of Dongguan 

is also given to validate our proposed framework and methods, showing that they can efficiently improve 

the average speed of the actual transportation. 
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1. INTRODUCTION 

As a representative of Cyber-Physical-Social systems 

(CPSS)[Wang, F. Y. 2010] , urban transportation involves 

three components: the actual traffic system (called the physical 

system), the human society (called the social system), and the 

information system (called the cyber system) that bridges the 

former two [Xiong, G., et al. 2017] . In such a traffic CPSS (T-

CPSS), traffic counts, and other traditional signals from the 

physical system are collected through physical sensor 

networks. Accidents, travel plans and other implicit traffic 

knowledge from the social system is detected by the social 

sensors such as micro blog, etc. By such way, the physical and 

social systems are equivalently and computationally mapped 

into the cyber system, which plays as a link to facilitate the 

interactions between traffic infrastructure and human 

travellers. Intelligent C&M for the traffic system based on 

perception, analysis and prediction can be completed via 

effective algorithms in the cyber system as well [Dong, X. 

2019] [Hussein, D., et al. 2015].  

The research on T-CPSS is proposed in 2014, when some 

preliminary studies have been already conducted by a group of 

pioneers. [Mitrea, O., et al. 2013] proposed to use value-added 

services to turn the buses into social places for travellers. 

[Pereira, F. C., et al. 2015] gathered data from traffic IC card, 

telecom carriers, and hotspots on social media in order to find 

patterns about people’s abnormal behavior and predict the 

related traffic flow  . Though fragmented, these researches 

have successfully explored how to exploit the social signals for 

traffic smart C&M. To get the topic focused, [Guo, W. 2015] 

gave an insightful discussion about the trend of T-CPSS. [Fu, 

K., et al. 2015] proposed an iterative search algorithm based 

on relevant rules to mine traffic events. [LI, Y. 2014] [Zhou, 

T. 2014] [Sang, C. 2014] studied microscopic traffic cognition 

based on CPS, traffic jam features and suppression methods 

based on driving behaviors, and multiple traffic flow clustering 

and evolution based on CPS. [Wang, H., et al. 2015] proposed 

a layered model for the traffic information physical system.  

The existing researches about T-CPSS mainly adopt the 

technological paradigm of data perception, data analysis and 

control strategies selection, but for the management of the 

social system, it still stays at a perceptual level and has no 

active guidance for the human participants. In 2015, Xiong 

proposed a new solution which consists of Artificial society, 

Computational experiments, and Parallel execution (named as 

the ACP approach), that can analyse the systemic dynamics 

and test control strategies for the physical system as well as the 

social system simultaneously [Xiong, G., et al. 2015] [Dong, 



 

 

     

 

X., et al. 2017] . Objectively, the ACP approach is applicable 

and feasible for T-CPSS from the perspective of complexity 

science. However, how to implement the evolution of CPSS to 

achieve an optimal C&M strategy still remains to be discussed. 

In this vein, this paper provided three contributions: 

1) Propose a framework for T-CPSS analysis and evolution 

based on knowledge automation; 

2) Propose the knowledge evolution framework both activity-

based and social-learning-based, and focus on Multi-agent 

reinforcement learning to improve; 

3) Take Dongguan urban transportation as study case, 

expounding feasibility and management efficiency of T-CPSS 

based on Knowledge Automation. 

2.COLLABORATIVE OPTIMIZATION OF CPSS FOR 

URBAN TRANSPORTATION BASED ON KNOWLEDGE 

AUTOMATION 

As mentioned before, the ultimate objective of T-CPSS is to 

optimize the C&M strategies for the actual urban traffic system. 

Achieving such a goal, however, needs to investigate the 

potential evolutionary trajectories of the actual system in the 

near future, given its current state. Here we propose to use 

knowledge automation to complete this process in the cyber 

space by considering both physical and social signals. As is  

shown in Fig.1,  the whole process can be divided into three 

steps: basic modeling of T-CPSS, knowledge evolution, and 

collaborative decision optimization.  

 

Fig. 1. Framework of CPSS for urban transportation 

2.1  Basic Modelling of CPSS 

The basic modelling of CPSS is to acquire corresponding 

computational models of urban population and traffic 

infrastructure. Its objective is to provide the participant 

elements as well as their initial states for the knowledge 

automation evolution.  

The modelling of human travellers in benchmark years usually 

uses multi-agent method. This method synthesizes a basic 

population database containing various individual attributes 

such as age, gender, and car ownership by using the data from 

census, travel surveys and urban geographic information, etc. 

[McElreath, R., et al. 2005]. In general, common synthetic 

methods include discrete copulas [Ye, P.  Wang, X. 2018], 

combinatorial optimization approach [Voas, D., Williamson, 

P. 2000], synthesis and reconstruction [Wilson, A. G., Pownall, 

C. E. 1976] , etc.. In discrete copulas, the input data can be 

categorized into two types. The first one is from census and 

urban statistical yearbooks, used to estimate the optimal core 

tensor. The second type is a small proportion of individual 

samples, called the disaggregate samples. In this dataset, each 

record represents an individual with all the attribute values 

given. These are utilized to estimate factor matrixes.  

A few of dynamic evolution rules should be added to deduce 

the population state in target year after synthesizing in base 

year, such as: 

•  The sum of the proportion of each age group equals 1. 

•  The age of each agent increases by 1 at each time step. 

•  The gender of agents is divided into male and female. 

A feasible way to model the traffic infrastructure in T-CPSS is 

to use knowledge graphs to realize the universal knowledge 

representation from multiple data sources. Generally, we use 

three item tuples to encode the basic knowledge of urban 

transportation, which will be explained more clearly in Part 3.1. 

The knowledge graph is composed as follows. First, based on 

open source database and online encyclopedia API, we collect 

the infrastructure data and traffic states from physical and 

social sensory networks. The raw data is structured to be 

further processed as well. Then, according to the online 

encyclopedias and expert knowledge databases, concepts, 

entities and relations are extracted from the structured input 

data to build primitive knowledge graphs. Finally, the 

primitive knowledge graphs from each data source are 

correlated and merged to generate a final universal consistent 

knowledge graph. The fusion of primitive knowledge graphs 

is based on the semantic matching where each property of the 

entities is investigated. The more similar entities it covers, and 

the more probable that the corresponding graphs merged. 

Property correlation is expressed as: 

   𝑆𝑖𝑚𝑖 =
∑ |{𝑒|𝑒(𝐴)=𝑎,𝑒(𝐵)=𝑏}|𝑎,𝑏

√∑ |{𝑒|𝑒(𝐴)=𝑎}|𝑎 ⋅√∑ |{𝑒|𝑒(𝐵)=𝑏}|𝑏
                   (1)        

Where 𝑎, 𝑏 are specific values of attribute𝐴, 𝐵  respectively, 

and |{𝑒| ∗}| represents the number of instances satisfying the 

condition *. 

2.2  Knowledge Evolution and Reasoning of T-CPSS 

For knowledge evolution and reasoning, agents’ travel 

behavior rules are to exact. On one hand, the travel behavior 

model should be able to describe the generative process of 

travel activities. In each travel activity, the agent will complete 

three selection procedure: travel start time, travel mode and 

travel route. The activity-based travel modelling method is to 

establish the activity plan of each type of synthetic population, 

and then objectively reflect the generation process of behavior 

based on individual travel needs. On the other hand, 

considering the sociality of the agent, social learning is 

proposed to T-CPSS to supplement travel behavior modelling. 
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(1) Activity-based travel behavior modelling 

Firstly, travel start time is closely related to agents’ activity 

types, which can be divided into 11 types, including staying at 

home, working, attending school, shopping, official activities, 

physical fitness, eating outside, cultural entertainment, visiting 

friends, sending children and receiving children. Among them: 

• Life activities--Occur with a certain probability, and start 

time is not strictly limited within allowable range. 

• Non-life activities--Official activities occur with a certain 
probability within working hours; Going for work, school, 
sending and receiving children have strict time limits. 

Except for the occasional time, the classification results listed 

above basically cover common travel purpose, and have a 

good corresponding relationship with travel start time. 

Secondly, travel mode selection depends drastically on 

travellers’ psychological demands. Safety, punctuality and 

economy are the most basic requirements of travellers. 

Furthermore, travellers will extend many higher requirements, 

such as convenience, comfort. Therefore, different factors can 

be considered to build a rule database of travel mode, e.g.: 

• Travel distance has a decisive influence on whether to 
choose motor vehicle. 

• The relationship between travel cost of car and public 
transport, 𝐶 ={Much higher, higher, nearly, lower}. 

Thirdly, the essential factors affecting driver's willingness to 

choose travel route contain: travel time, familiarity, the 

number of intersections need to pass and so on. Agents tend to 

choose the action that gain the highest cumulative revenue. We 

propose a route selection decision-making process based on 

Deep Reinforcement Learning (DRL) [Bloembergen, D., et al., 

2015]. Let 𝑆𝑡  denote all information that can be utilized to 

decide at time 𝑡. This mainly consists of its perception of the 

external environment, based on the current incomplete 

information acquired, and its internal attributes, including 

long-term knowledge, path preference, energy and so on. 

Based on the current state St, agent selects the optimal travel 

path 𝐴𝑡  for purpose of reaching destination safely and fast. 

Strategy 𝜋(𝑎|𝑠): 𝑠 → 𝑎 is the mapping of the current state to 

behavior. And the routine cognitive-decision model is equal to 

the learning of the optimal strategy 𝜋∗ . Fig 2 takes typical 

traffic data (e.g. weather data, real-time flow data and road 

distribution data) as input, and the optimal routine as the output 

of deep neural network. 

 

Fig. 2. Evolution diagram of single agent’s travel decision  

(2) Sociality -based travel behavior modelling 

Activity-based model is individual-based, without considering 

the social relationship between individuals. In practice, social 

interaction induces social learning through the exchange of 

information, and then influences their own travel behaviors. 

Therefore, here, social-learning theory is introduced into T-

CPSS, so as to consummate the knowledge evolution process.  

Observation is the basis of imitation. First, the observation 

mechanism of agent travel should be established. Suppose that 

the frequency of a certain travel behavior determines the 

observed probability. Let 𝑁(s, ∆𝑡) denote the total number of 

choices made by the artificial population in the state 𝑠 during 

the latest ∆𝑡  interval, and 𝑋(𝑠, 𝑑, ∆𝑡)  denote the number of 

choosing behavior 𝑑, then the observed probability of 𝑑 is:                      

𝑝0(𝑠, 𝑑) =
𝑋(𝑠,𝑑,∆𝑡)

𝑁(s,∆𝑡)
                                 (2) 

Second, based  on linear imitation model(LIM) [McElreath, R., 

et al. 2005], we assume that the total number of decisions the 

agent 𝑖  observed in state 𝑠  during the latest ∆𝑡   interval is 

𝑁𝑖(s, ∆𝑡), and the number that observed to select behavior 𝑑 is 

𝑋𝑖(s, d, ∆𝑡). The probability that agent 𝑖  selects 𝑑  in state 𝑠 

corresponds to: 

      𝑝𝑖
𝑛(𝑠, 𝑑) = (1 − 𝛽)𝐿𝑖

𝑛(𝑠, 𝑑) + 𝛽
𝑋𝑖(s,d,∆𝑡)

𝑁𝑖(s,∆𝑡)
               (3) 

Where 𝛽  is the rate of the social learning,  𝐿𝑖
𝑛(𝑠, 𝑑) is the 

probability involving only individual activity plan. 

Additionally, Multi-agent Deep Reinforcement Learning 

(MDRL) is applicable for routine planning [Bloembergen, D., 

Tuyls, K., et al. 2015]. The cumulative return of each agent 

also related to others due to mutual game and cooperative 

communication. It is proposed to take typical data sets of 

transportation as input of deep neural network to deduce the 

whole state S of current transportation system and then explore 

the optimal joint action. In T-CPSS, 𝑛 indicates the number of 

agents; 𝐴𝑖 indicates action space of the 𝑖𝑡ℎ traffic agent; 𝐴 =
𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛  indicates the joint action space;  𝑇 =
𝑆 × 𝐴1 × ⋯ × 𝐴𝑛 × 𝑆 → [0,1] denotes the system’s transition 

probability function; 𝑅  represents reward function; 

𝑅𝑖(𝑠, 𝑎1, ⋯ , 𝑎𝑛, 𝑠′)  represents the immediate reward of the 

𝑖𝑡ℎ agent if the whole system determine the joint action 

(𝑎1, ⋯ , 𝑎𝑛) at sate 𝑠, and then transmit to state 𝑠′. To simplify 

model, we define −𝑖 = 𝑛{𝑖} as all agents except the 𝑖𝑡ℎ agent. 

State value function when the 𝑖𝑡ℎ  agent performs strategy 

𝜋 can be expressed as: 

𝑉𝑖,𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎𝜖𝐴 ∙  

                  ∑ 𝑇(𝑠, 𝑎𝑖 , 𝑎−𝑖 , 𝑠′)[𝑅𝑖(𝑠, 𝑎𝑖 , 𝑎−𝑖) + 𝛾𝑉𝑖,𝜋(𝑠′)]𝑠′𝜖𝑆   (4)    

The optimal strategy of the agent also has something with 

others’ strategies: 

𝜋𝑖
∗(𝑠, 𝑎𝑖 , 𝜋−𝑖) = arg max

𝜋𝑖

∑ 𝜋𝑖(𝑠, 𝑎𝑖)𝜋−𝑖(𝑠, 𝑎−𝑖)

𝑎∈𝐴

∙ 

                      𝑇(𝑠, 𝑎𝑖 , 𝑎−𝑖 , 𝑠′)[𝑅𝑖(𝑠, 𝑎𝑖 , 𝑎−𝑖) + 𝛾𝑉𝑖,𝜋,𝜋−𝑖
(𝑠′)]  (5) 
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2.3   Collaborative optimization on decision-making 

The third step is to select the optimal decision scheme from 

various evolutionary control paths. We propose an optimal 

decision-making method based on the Evidence Theory (ET). 

Assume that knowledge evolution has been carried out 𝑁 

times, the distribution frequency of each result after clustering 

is {𝑟1: 𝑛1, 𝑟2: 𝑛2, ⋯ , 𝑟𝑚: 𝑛𝑚} ,  where  𝑛1 + ⋯ + 𝑛𝑚 = 𝑁 . 

Further assume that 𝑛1 ≥ ⋯ ≥ 𝑛𝑚, without loss of generality. 

Actually, in evolution experiments, a considerable part of the 

evolutionary results has very low frequency. To eliminate the 

effect of noise, it is proposed to set threshold 𝜂, and suppose 

that 𝑛1 ≥ ⋯ ≥ 𝑛𝑘 ≥ 𝜂 ≥ 𝑛𝑘+1 ≥ ⋯ ≥ 𝑛𝑚 . Then, the 

identification frame can be expressed as: 

 {𝑟1:
𝑛1

𝑁
, 𝑟2:

𝑛2

𝑁
, ⋯ , 𝑟𝑘:

𝑛𝑘

𝑁
, (𝑟1, 𝑟2, ⋯ , 𝑟𝑘): 1 −

𝑛1+⋯+𝑛𝑘

𝑁
} 

Next, according to ET: 

𝑏(𝑟𝑖) =
1

𝐾
∑ 𝑏(𝛼1) ⋅ 𝑏(𝛼2) ⋅ ⋯ ⋅ 𝑏(𝛼𝑛)𝛼1∩⋯∩𝛼𝑛=𝑟𝑖

    

                     =
1

𝐾
⋅

𝑛𝑖

𝑁
⋅ (1 −

𝑛1+⋯+𝑛𝑘

𝑁
)                                     (6) 

𝐾 = 1 − ∑ 𝑏(𝛼1) ⋅ 𝑏(𝛼2) ⋅ ⋯ ⋅ 𝑏(𝛼𝑛)𝛼1∩⋯∩𝛼𝑛=𝜙   

              = 1 −
1

𝑁𝑘
∏ 𝑛𝑖

𝑘
𝑖=1                                                       (7) 

The result with the largest distribution probability 𝑏 can be 

expressed as the expected evolution result of CPSS: 

      𝑟∗ = argmax
𝑟𝑖

𝑏(𝑟𝑖)                                                      (8) 

Finally, managers can formulate the optimal control strategy 

and feedback it to the actual system. This guides the actual 

system to approach the expected target state, and optimizes the 

management scheme.  

3. CASE STUDY IN DONGGUAN CITY 

To illustrate the rationality and feasibility of knowledge 

automation to realize the transportation CPSS, this part takes 

the transportation system of Dongguan City as an example. We 

construct the corresponding T-CPSS prototype system, and 

parallel computational experiments we set up covers the inner 

area of Dongguan Huancheng road, essentially covering the 

central area of Dongguan. The experiment area is about 150 

square kilometers, including 163 residential areas, 86 

workplaces, 59 schools, 19 shopping centers, 21 hospitals, 37 

hotels, and 13 entertainment places((Fig.3.). 

  

Fig.3. Experimental area and system structure of Dongguan 

T-CPSS 

3.1  Basic modelling of Dongguan T-CPSS 

The overall census data and micro samples (tax records, real 

estate registration in Dongguan, etc.) in 2010 can be acquired. 

First, we utilize Discrete Copulas for population synthesis in 

2010, with a population scale of 200,000. Then, based on the 

evolution rules such as growth rules, we deduce the population 

status of 200,000 people in 2020. 

The infrastructure modelling employs the actual road network 

and the information of schools, shopping centers and other 

places of activity in the research area, and uses the multi-

source knowledge graph in the form of triple. Table 1 is a 

knowledge graph segment of urban traffic infrastructure. The 

entities include roads, intersections and subway stations. 

Accordingly, the tuples are represented as <Station, Sation_id, 

varchar>, <road, Road_id, varchar>, et al. 

Table 1.  DATA STRUCTURE OF SUBWAY STATION 

D        x               

 tation_id    o  station varchar 

 oad_id  he road    where station entrance is located varchar 

 tart_id  he start intersection    o  the road where the 

station entrance is located 

varchar 

End_id  he end intersection    o  the road where the 

station entrance is located 

varchar 

3.2  Knowledge evolution of Dongguan T-CPSS 

The type of the activity plan has a great corresponding 

relationship with travel start time. For non-life activities, 

assume the time attributes obey normal distribution 𝑁(𝜇, 𝜎2), 

the value range is specified as 𝜇 ± 3𝜎 to ensure validity. For 

life activities, let  𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5 denote 5 varieties of life 

activities, the probability of occurrence is  𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5. 

Then generate a random number 𝑟  from 0-1 uniform 

distribution. If 𝑟 > ∑ 𝛼𝑖
5
𝑖=1 , all life activities are planned; else, 

randomly choose an activity 𝑑𝑘 . If ∑ 𝛼𝑖
𝑘−1
𝑖=1 < 𝑟 ≤ ∑ 𝛼𝑖

𝑘
𝑖=1   

where S- denotes the set of existed life activities, 𝑑𝑘  will be 

joined to the new set of planned activity plan. Finally, 

according to the distribution function of duration time of 𝑑𝑘, 

determine duration time. Table 2 gives an example of 

individual’s activity plan. 

Table 2. AN EXAMPLE OF ACTIVITY PLAN 

Order Activity Start time End time locale 

1 at home 00:00 06:10 habitation 

2 send children 06:50 07:10 kindergarten 

3 go to work 08:30 16:20 workplace 

… … … … … 

The attributes of travellers are different, the intensity of 

different travel modes is also different, the rule database of 

travel mode selection is established as follow(Fig.4). 

 

Fig.4. Rule database of travel mode selection 



 

 

     

 

The perception of external environment and inference of 

internal attributes of agents are ingredients for state inference. 

Let 𝑂𝑡 be perception of external environment at time 𝑡, which 

contains the observation o  others’ travel destination, tra  ic 

network and real-time traffic flow, etc. Due to the subjectivity 

of these attributes, we grade the internal attributes by e perts’ 

scoring. For e ample, agent’s energy can be e pressed by  -

10, in which 1 represents extremely tired and 10 vigorously 

well. Combine the inferred state with the goal of maximizing 

the cumulative return of RL, the optimal path can be output. 

Based on the preliminary activity-based agent travel rule, 

social learning is integrated to perfect the evolution rule. 

Social learning rate is set as 0.3 in Linear-Imitation. Moreover, 

the cooperation and game are further regarded, and the 

optimized joint action of multi-agents can be obtained through 

MDRL framework. Taking route planning of one agent within 

the study area an instance, where travel origin is Dongguan 

Science and Technology Museum and destination is 

Dongguan No.2 senior high school and this agent chooses self-

driving (Fig.5.). Table 3 lists three possible paths and some 

related information. 

Table 3. INFORMATION OF THREE PATHS 

 Path 1 Path 2 Path 3 

Path length(km) 4.8 5.3 5.0 

Number of traffic lights 4 4 5 

Current traffic volume heavy light light 

Historical congestion  Frequently sometimes rarely 

 

Fig.5. Changes in probability distribution of route selection 

Figure 5 demonstrates the probability distribution curve of 

selecting these three paths when adding sociality in the process 

of continuous learning. Time-0 represents the probability 

considering only its activity plan. With the increasing number 

of learning times, agent prefers to path 2, rather than path 1 in 

the initial stage. In other words, this agent pays more attention 

to the congestion situation and traffic volume of the route from 

communication, rather than its own activity preference. 

3.3  Collaborative optimization of Dongguan T-CPSS 

After N times of knowledge evolution, the most likely travel 

rules of 200,000 synthetic population are obtained through ET, 

so as to generate specific traffic scenarios. To obtain effective 

management and control strategy, Dongguan T-CPSS 

platform is constructed, where parallel experiments are 

conducted. DongGuan T-CPSS is deployed on the cloud 

platform in the way of cloud-edge integration and has three 

layers (Fig.3). The bottom layer is data perception layer, which 

is mainly used to collect two categories of information: social 

perception data (2010 census data, etc.), and physical 

perception data (road network information, etc.). These two 

types of information will be perceived, extracted, associated 

and fused both in physical space and in social space, then are 

saved in the middle layer–the model &knowledge layer in the 

form of various knowledge graphs. Further, taking these 

knowledge graphs as input, the generation and evolution of 

various situations are completed through activity-based and 

sociality-based evolution model. The fusion experiment layer 

can provide visual display of the results to traffic managers 

based on ET, and extract the corresponding optimal 

management plan for actual traffic system. The optimization 

results of parallel experiments at a single intersection and 

global urban traffic conditions are shown as follows: 

(1) Optimal control of traffic signal at a single intersection 

Taking the intersection of Dongcheng East Road and 

Dongzong Road as an example, Table 4 lists the release time 

comparison between the original scheme and the optimization 

scheme. The start time of optimal control scheme is April 15, 

2020. We select the traffic flow data the day before--April 14 

and the day after--April 21 for comparison, due to the same 

weekday and the traffic flow has certain similarity. Evaluation 

metric is the average speed of vehicles. 

Table 4. COMPARISON OF RELEASE TIME  

Release order 
   

Original 
Peak-time 40s 10s 20s 

Non-peak-time 35s 10s 15s 

Optimized 
Peak-time [40s,50s] [10s,30s] [20s,30s] 

Non-peak-time [35s,50s] [10s,30s] [15s,30s] 

 

Fig.6. Comparison of average speed after optimizing 

Fig.6 demonstrates that the average speed of vehicles has 

increased significantly: the average speed has increased from 

58.5kmph to 64.3kmph, with an increase of 11%. 

(2) Traffic conditions in Dongguan improve significantly 

 

 

Fig.7. Traffic flow on April 7-13 and April 21-27 



 

 

     

 

 

Fig.8. Comparison of queue length before and after 

The travel time of trunk road in Dongguan is reduced by 20% 

on average, and the number of parking is reduced by 45%. 

Through the implementation of traffic optimization scheme for 

core roads, the congestion mileage is reduced by 

approximately 30%, the traffic time is reduced by 25%, and 

the traffic efficiency is increased by 43.39%. For traffic flow 

from south direction to north direction at the intersection of 

Dongguan Avenue and Hongfu road, Fig.7 shows the 

comparison of traffic flow in the week before--April 7 to April 

13 and the week after--April 21 to April 27.  Fig.8 exhibits the 

comparison of queue length, indicating that the traffic situation 

has been significantly improved by implementing the T-CPSS 

system though the traffic demand has not been reduced. 

4.  CONCLUSIONS 

Knowledge automation has promoted the most aspects of 

knowledge generation, acquisition and application. While, 

though the research of T-CPSS based on ACP approach is 

consistent with the paradigm of complexity sciences, how to 

implement the evolution of CPSS in order to achieve an 

optimal C&M strategy still remains to be explored. Therefore, 

we combine knowledge automation with T-CPSS, and propose 

a framework for T-CPSS analysis and evolution based on 

knowledge automation system. 

T-CPSS focuses on three sequential tasks: basic modelling of 

CPSS, knowledge evolution and reasoning and the optimal 

C&M strategy from the cyber artificial systems to the actual 

physical systems. In knowledge evolution and reasoning, to 

the best of our knowledge, it is the first time to introduce both 

activity processive model and sociality-based model to T-

CPSS. Case study results in Dongguan by establishing 

Dongguan T-CPSS platform demonstrates this T-CPSS based 

on knowledge automation is effective to provide the optimal 

C&M strategy for mangers, and can improve the control of 

both single traffic signal and the traffic conditions of the whole 

city significantly. 
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