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Abstract— Traffic signal control plays an essential role in the
Intelligent Transportation Systems (ITS). Due to the intrinsic
uncertainty and the significant increase in travel demand, in
many cases, a traffic system still has to rely on human engineers
to cope with the complicated and challenging traffic control
and operation problem, which cannot be handled well by the
traditional methods alone. Thus, imitating the good working
experience of engineers to solve traffic signal control problems
remains a practical, smart, and cost effective approach. In this
paper, we construct a modelling framework to imitate how
engineers cope with complex scenarios through learning from
the historical record of manipulations by traffic operators.
To extract spatial-temporal traffic demand features of the
entire road network, a specially designed mask and a graph
convolutional neural network (GCNN) are employed in this
framework. The simulation experiments results showed that,
compared with the original deployed control scheme, our
method reduced the average waiting time, average time loss
of vehicles, and vehicle throughput by 6.6%, 7.2%, and 6.85%,
respectively.

I. INTRODUCTION

Over the past few decades, more and more vehicles have
come into our lives. As a consequence, traffic congestion
and traffic accidents are worsening [1]. Solving the problem
of traffic congestion has become an urgent task. Obviously,
an efficient and intelligent traffic signal control system is a
necessary and critical part of any solution to current traffic
congestion problems [2], [3].

In most cases, a traffic signal control scheme can be
divided into two parts: signal phase and signal timing. Since
a signal phase is stable, most developed traffic signal control
methods aim at optimizing signal timing. In engineering
practice, most traffic signal lights are still controlled by pre-
defined fixed-time plans [4]. This kind of methods performs
well when the traffic demand is steady. But they cannot
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handle the increasingly complex and changing traffic de-
mands. To tackle the problem, modelling-based methods
are proposed to reduce traffic congestion [5], [6]. But the
modelling-based methods rely heavily on the model. Whether
the model can accurately describe the environment seriously
affects the performance of the method. Nowadays, the traffic
scene is becoming more and more complicated, accurate
modelling of traffic scene costs much and still remains a
big challenge [6]. Aiming at difficult modelling problems,
parallel intelligence provides us with some new methods to
deal with modelling complex system and has been used to
solve traffic control problems [7], [8].

The simulation-based traffic control method is another
widely used approach and it has received more and more
attention. Since data in the simulation environment is cheap
and the traffic demand can be changed according to our
requirements, it has been used to verify different methods.
Deep reinforcement learning (DRL) methods develop rapidly
[9], [10] and with the development of traffic simulation
software, deep reinforcement learning methods have been
applied to traffic signal control problems [11], [12]. These
methods take the traffic signal light as an agent and the agent
interacts with the traffic scenarios to get a higher reward.
However, at present, these methods also assume a relatively
stable traffic flow and a small road network scale, which is
far from the actual traffic scene [13].

The adaptive traffic signal control method adjusts the
control scheme by detecting the changes of traffic state [14].
It is more intelligent than the fixed-time schemes and has
spawned many new methods. The behaviour of vehicles
in the road network has a great influence on the traffic
conditions and the vehicle-actuated method [14] could make
use of real-time traffic state information. But this method
needs hand-craft rules for different traffic states, and the rules
need human engineers to update when the pattern of traffic
demand changes. Thus, it is hard for the traffic control system
to cope with the changing situation. The coming of Internet
of Things (IoT) and big data era has done a great help to
many different problems [15], [16]. With the help of different
kinds of data, social transportation [17] can generate more
flexible and robust traffic control strategy. Nevertheless, this
approach also faces many challenges, such as dependence on
data, failure in a complex scenario and so on.

In some metropolis, human engineers have been moni-
toring traffic conditions for saturated urban traffic networks.
When traffic congestion occurs, human engineers will take
the place of the original control strategy and manually
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control the traffic signal lights [3]. According to a long-
term operation experience, human engineers are required to
handle extremely complex traffic situation, which is hard to
be handled by the original methods. Fortunately, obtaining
data has become much easier nowadays [18] and how human
engineers deal with traffic jams can also be documented.
Learning some useful information from the historical data
and imitating the experience of human engineers is a feasible
method to cope with complex and mutable traffic demands.
We hope such hybrid-augmented human-like methods learn
and think like human engineers [19] and could replace human
engineers to some extent.

Therefore, we propose a deep imitation learning method
to model complex traffic phenomena using the Graph Con-
volution Neural Networks (GCNNs) technique [20], [21],
and complete the traffic signal control operation task. We
focus on a road network that consists of more than ten
connected intersections. Since the change of traffic state
in a single intersection can influence its neighbourhoods
even the entire region, we try to alleviate traffic jams in
the road network and improve traffic efficiency by utilizing
the topology property of the road network. A deep neural
network model, which contains GCNNs, has been adopted
to extract spatial-temporal traffic demand features and imitate
traffic engineers to control the traffic signal lights in the road
network. Due to the data comes from actual traffic scenarios,
there is no guarantee that all detectors are functioning at
every moment. In fact, the worst case we have encountered
is that only 3 of the 16 detectors are working correctly. Such
an issue is also addressed in the processed approach by a
specially designed mask and it allows incomplete data to be
used by the model.

The main contributions of this paper are summarized as
follows.

« We propose a deep imitation learning model to control
the traffic signal lights. This model includes a graph
convolution neural network, and utilizes the topology
property of the road network. Our deep imitation learn-
ing model can learn from the experience of human
traffic engineers.

o The data obtained from the actual traffic scenarios is not
perfect and we solve this problem by using a specially
designed mask and preprocess network. We believe that
such a method is not only suitable for traffic data, but
also other tasks.

e We compare the proposed method with the original
deployed methods in actual traffic scene, the simulation
experiments results show that the proposed method has
superior performance.

The rest of this paper is organized as follows: Section
IT introduces the details of our method used in this paper.
Section IIT presents the experimental configuration, results
and analysis. Finally, we conclude the paper in section IV.

II. DEEP IMITATION LEARNING METHOD

To imitate the experience of traffic engineers, we estab-
lished a deep neural network model, which contains a graph

convolutional neural network and preprocessed the original
data. In this section, we first have a brief introduction to
GCNN:s. It is one of the most essential parts of our deep
imitation learning model. Then, we describe the detail about
how to deal with missing data. After that, the model struc-
ture is deccribed, and finally, we clarify how our imitation
learning model learns from human engineers.

A. Graph Convolutional Neural Networks (GCNNs)

GCNNs are proven to be suitable for dealing with the
variable input data (e.g., signal or feature values) given on
general graphs [22], which is different from the structural
graph, for example, a picture. A graph is a pair G = (N, E),
where NV is a set whose elements are called vertices or nodes,
and FE is a set of links between any two nodes, called edges.
Graphs can be used to represent knowledge and many other
discrete structures. The road network can be regarded as a
graph, every intersection can be considered as a node and
the traffic volume and other information in the intersection
comprise the feature value for the node. If there is a road
between two intersections, it can be regarded as an edge
between nodes. We established a connected undirected graph
for all intersections within the study, shown as Fig. 1.

\
/

The node of
the graph

+ The location of
intersections

The edge of
the graph

Fig. 1: The road network and the graph

GCNNs help the model to capture some critical informa-
tion behind the historical data of the whole road networks.
Vehicles travel from the upstream intersections to the down-
stream intersections, making the state of the road network
change. This process is very similar to the dissemination
of information in a graph. Eq.(1) shows how information is
transmitted between different layers of GCNNs.

HWY = (D=2 AD~ 2 HOW®) (1)

The output of [ 4 1-th layer, H (+1) " is calculated with the
output of the I-th layer H), where o is the non-linearity
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function, W is the weight matrix for this layer. D represents
the degree matrix of the graph, A is the adjacency matrix and
D=D+ITand A= A+1. Adding a self-connection to each
node of the graph and building the corresponding degree and
adjacency matrix are renormalization tricks. H(®) is N x D,
where IV is the number of nodes and D is the number of
input features. In this paper, the number of nodes equals the
number of intersections and the number of features is one of
the hyperparameters.

B. Mask for missing data

Poor data quality is a problem we need to address in
engineering practice. But this problem is not easy to be
solved. Due to sensor failures, data transmission errors, and
other issues, some of the information we need was lost.
Data quality changes dynamically. Common data cleaning
methods choose to drop dirty samples. But the number of
samples is vital for the generalization of the deep learning-
based method. Although we can train the model with a
dataset consisting of perfect samples, the missing data always
exists in the actual situation. The model has to adapt to real
traffic scenarios.

A mask is used to reduce the impact of missing data. In
actual traffic scenarios, which sensors fail are not fixed and
the dimension of the data changes often. The model needs
to know where it has changed and take the changes into
consideration. Moreover, the number of lanes and detectors
at an intersection keep stable for a long time. Therefore, we
assume that all the sensors are working properly and fill the
return values of all the non-functioning sensors with zero.
At the same time, a flag bit number is generated for each
sensor to indicate whether the sensor is working correctly.
The flag bits numbers consist of a mask vector for current
sensor data, and its value can influence the output of the
model. Thus, the data dimensions are twice the number of
sensors and every intersection has a certain feature number.

True data: [5] Jo[7]
[ |

+
Mask: [1]o]1]1]
]

Complete data = [5,0,0,7,1,0,1,1]

(a) (b)

Fig. 2: Mask for incomplete data sample. (a) An intersection
with four detectors and the second detector in red does not
work; (b) The true data is obtained from the detectors, the
mask data is the corresponding set of flag bits and zero in
second bit represents the data is missing.

Fig. 2 shows an example of how to handle missing data in
this method. If a sensor works well, it will return the correct
information (such as the speed of a vehicle, and the value

is allowed to be zero). The corresponding flag bit will be
set to one; if it does not work, it will return nothing. We
replace the empty value with zero to keep the shape of the
data. Simultaneously, the corresponding flag bit will be set to
zero. All these flag bit data constitutes a mask vector, and it
will be part of the final complete data. By concatenating the
original data and the mask vector, we get the final complete
data and the deep imitation learning model uses it as the
input data. Such a vector can describe the traffic state and
sensor working state at the same time.

C. The model structure

Fig. 3 shows the structure of the deep imitation learning
model. In order to deal with the difference in the number of
lanes at different intersections, multiple deep neural networks
are constructed at the beginning and end of the model to
process the data and generate a specific signal control scheme
for each intersection. The outputs of the beginning part have
the same shape, which could be accepted by the GCNNs.
The final outputs of the model are restored to a different
shape to meet the requirements of a single intersection.

Intersection 1 | [ Intersection 1 ‘

LSTM . | / DNN |/
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|
|
|
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e —

Fig. 3: Deep imitation learning model structure, n is the
number of intersections.

Short-term actual traffic conditions have a greater impact
on congestion. Therefore, we use the data of the past 30
minutes to control the traffic light. Another troublesome fact
is that the actual historical data is not collected according to
a fixed time step length, so the length of the sample sequence
is not fixed. Fortunately, there are some methods to overcome
difficulty. In the header of the model, we use the long-
short term memory (LSTM) [23] network, which can handle
variable-length sequences to extract temporal feature from
historical data. GCNNs use the output of LSTM networks
as input feature data. The GCNNs can link the intersections
and analyze the data of the entire network as a whole. At the
end of the model, the different intersection has different deep
neural networks to generate a unique traffic signal control
scheme.

D. Deep imitation learning method for traffic signal control

Imitation learning provides a way to find a better strategy
by learning the knowledge of human experts in a certain
field [24]-[27]. In the field of traffic signal control, human
engineers can directly control the traffic lights when the
performance of the deployed method is not good enough.
Engineers determine when and how to adjust control strate-
gies by observing current traffic state and analyzing historical
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data, even making some prediction for the traffic situation.
The operation records provide a large number of learnable
samples for imitation learning model.

With the help of a variety of sensors, we are able to obtain
various data on traffic status. It is natural to divide the data
into two parts: state data and strategy data. State data s; con-
tains the number of vehicles in each lane, speed, delay time
and other available information. It describes the traffic scene.
The strategy data a; decides how to control the traffic signal
lights and it includes the phase split and cycle length. There
is a sequence < Si1,a1, S2, a2, ..., Si,a; >, which record the
dynamic change and response, ¢ is the time step. If we con-
struct a set like D = {(s1,a1), (32, a2), (83,a3), ..., (8i,a;)},
we can call the state data s; feature and call the strategy
data a; label. In this paper, s; and a; are both vectors but
the length of the vectors varies from each other because
the number of lanes at different intersections is different.
Thus, our traffic signal control problem becomes a classical
supervised learning problem here. And the target of our deep
imitation learning model is to finish a regression problem
[24]. After the model has been well trained, the state data is
the only requirement to use the model to control the traffic
lights.

The state data used in this paper contains traffic flow data,
which was collected from the SCATS (Sydney Coordinated
Adaptive Traffic System [4]) system. And the strategy data
is a historical control scheme record that includes the split
and cycle length (seconds) for every intersection in the
road network. Our training loss function is the mean square
error (MSE), as shown in Eq.(2). Split and cycle time have
different value range, so we divide them into two parts in
the loss function.

1 & 1 &
MSE = N Z(Pz —pi)? + ays Z((h -d)?

i=1 i=1
where p;, q; represent the true historical phase split data and
cycle time, p;, ¢; represent the split and cycle time given
by the imitation learning model. Because the value range of
phase split and cycle time varies from each other, the penalty

factor, «, is necessary to balance the difference.

III. EXPERIMENTS AND ANALYSIS

In this section, we conduct simulation experiments using
real-world traffic data collected in Hangzhou, China and
show great improvement in some criteria compared with
the original employed scheme, which was based on the
fixed-time method. We construct our whole experiments
on a simulation platform SUMO 1.1 (Simulation of Urban
Mobility) [28]. The python API of SUMO helped us to
simulate the operation of traffic control and microscopic
vehicles in the road network.

A. Dataset and evaluation criteria

Traffic demand data is of great significance for traffic
control. To make our approach more practical, we use
data which is collected from real traffic scenes to generate
the simulation traffic demand. By adjusting the relevant

parameters, which determine how to generate vehicles in
the simulation environment, we make the traffic demand
generated in SUMO and the real traffic flow as consistent
as possible.

The demonstration data set comes from traffic engineers.
In this paper, we mimic the historical traffic signal control
data of weekdays during 2018.7.1-2018.7.31 in Hangzhou,
Zhejiang province. In real data, the time interval is uncertain,
ranging from 1 minute to 3 minutes. All historical traffic state
data and historical control data are processed using the same
0-1 normalization method. Since there will be a large amount
of missing data in the dataset, we use the method proposed
in section II to generate a mask that can describe the missing
data, and finally get a data set that contains 7686 effective
samples for training the deep imitation learning network. In
the test stage, we also used the same method to preprocess
the data obtained from the simulation environment.

The performance of our method is evaluated under three
different criteria. The first one is the average waiting time
as Eq.3. It is an important criterion that can evaluate the
time each vehicle has spent in halting speed on the road on
average. The longer the waiting time, the more serious the
traffic congestion.

N
Twait =B [ > TO0 (3)
=0

The second criterion is the average time loss. This crite-
rion, shown as Eq.(4), describes the gap between the ideal
time and actual time the vehicle spends to arrive at its
destination. The time it takes for a vehicle to travel from
start to end at a free-flow speed is the ideal time. If the
speed of vehicles is higher than the halting speed but lower
than the free-flow speed, the time loss will increase but
waiting time holds. Using more than one criterion can be
more comprehensive.

Tloss = IAE

N
> (x| e
=0

Another criterion is the vehicle number in the road
network. It describes the occupation of road resources by
vehicles. More vehicles in the road network, vehicles have
fewer road resources on average and higher risk of traffic
jam.

B. Hyperparameters set

Hyperparameters play an essential role in the experiments
and they have a direct impact on the final experimental re-
sults. A suitable set of hyperparameters can shorten training
time and improve model performance. All hyperparameters
used in this paper are listed in Table L.

There are 12 interconnected intersections within the scope
of this work, so we use the same number of nodes in the
GCNNs, and other parameters are specified by grid search.
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TABLE I: hyperparameters setting

Hyperparameters Experiment value

Activation function Relu
Number of hidden layers in LSTM 2
Number of units in LSTM layers 10
Number of GCNN layers 2
Number of feature numbers for GCNN 64

Learning rate 0.001
Penalty factor 10

C. Results and analysis

We compare the performance of the imitating learning
model with the method actually used in the field. Fig. 4
shows the average waiting time and average time loss of two
different schemes with the different simulation end time. In
the cases of four different simulation end times, the imitating
learning scheme has all achieved better performance than
the original scheme in these two indexes. In the case of 6
hours simulation, the number of vehicles in the road network
was relatively small and the change was relatively stable.
The average waiting time and average time loss decreased
by 42.8% and 30.6%, respectively. In the case of full-day
simulation, the morning and evening traffic peaks and other
periods are simulated. The average waiting time and average
time loss decreased by 3.42 seconds and 6.25 seconds,
respectively, and the performance increased by 6.6% and
7.2%, respectively. The other two cases showed the same
comparison results.

Decreased waiting time means less time in a congested
state, and less time loss means vehicles travel faster in
the road network. Since the traffic demand in the simula-
tion environment is highly consistent with the actual traffic
scenario, different simulation end time represents different
flow patterns. The 6-hour simulation represents low traffic
demands, while the 24-hour is close to real-world scenarios.
The experiment results show that our deep imitation learning
model performs better in both situations. Our method can
greatly reduce waiting time and time loss when the situation
is relatively simple; when the situation becomes complicated,
it can also effectively improve traffic efficiency.

Fig. 5 shows the vehicle numbers in the road network.
Under the original scheme, the total number of vehicles in net
throughout the day is 2,728, which is 2,541 under the deep
imitation learning scheme, a decrease of 6.85%. Fewer in-net
vehicles mean fewer vehicles occupy the road, resulting in
less crowding. This phenomenon also means higher travel
efficiency. Among the data counted every two hours, the
number of vehicles under the deep imitation learning method
is significantly fewer than the original method, except the
18:00-20:00, which is almost equal to each other. Such a
result suggests that the peak time is more difficult to handle.
According to the truth that evening peak congestion often
occurs in Hangzhou, one of the possible reason is the number
of vehicles is too much for the system. The adaptive system
has lost room for adjustment.
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Fig. 4: Performance of original scheme and imitation learn-
ing scheme with different simulation end time. The original
scheme is used in the actual traffic scenes and the deep imi-
tation learning scheme comes from our method. (a) Average
waiting time of different schemes. (b) Average time loss of
different schemes.

IV. CONCLUSION AND PROSPECT

In this paper, we proposed a deep imitation learning
method for traffic signal control problems. Inspired by the
excellent performance of the GCNNs on the data with the
graph structure, we combined GCNNs and traffic scenarios
to mine the information in the topological property of
the road network. We also proposed a specially designed
mask to handle the missing data in engineering practice.
By learning the experience of human engineers, we can
integrate human knowledge and experience into artificial
intelligence methods, so that our method can adjust traffic
control strategies in real-time according to traffic conditions.
In this way, we are able to control complex traffic scenarios
better while reducing the workload of human engineers.
Experiments verified the effectiveness of our method and
it showed superior performance than the original deployed
sheme.

In this study, we found that the existing intelligent traffic
signal control methods usually only focus on the traffic state
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data, but ignore the human experience. Although human
experts can handle some complicated traffic control problems
well, there are few studies about how to mimic their expe-
rience. We believe that building a hybrid-augmented smart
approach will bring about tremendous change. This article
has made some attempts and shown good prospects. In the
future, we plan to improve the performance of our method in
peak time and combine our method with deep reinforcement
learning algorithms to get better results.

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

REFERENCES

D. Zhao, Y. Dai, and Z. Zhang, “Computational intelligence in urban
traffic signal control: A survey,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4,
pp. 485494, 2012.

T. Chu, J. Wang, L. Codeca, and Z. Li, “Multi-agent deep reinforce-
ment learning for large-scale traffic signal control,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1086-1095,
2020.

J. Jin, H. Guo, J. Xu, X. Wang, and F. Wang, “An end-to-end
recommendation system for urban traffic controls and management
under a parallel learning framework,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1-11, 2020.

J. C. Aydos and A. O’Brien, “Scats ramp metering: strategies, arterial
integration and results,” in 17th international IEEE conference on
intelligent transportation systems (ITSC). IEEE, 2014, pp. 2194—
2201.

B. Ye, W. Wu, K. Ruan, L. Li, T. Chen, H. Gao, and Y. Chen, “A
survey of model predictive control methods for traffic signal control,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 3, pp. 623-640,
May 2019.

L. Li, D. Wen, and D. Yao, “A Survey of Traffic Control With Vehicu-
lar Communications,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 1, pp. 425-432, Feb. 2014.

L. Li, Y. Lin, D. Cao, N. Zheng, and F. Wang, “Parallel learning
— a new framework for machine learning,” Acta Automatica Sinica,
vol. 43, no. 1, pp. 1-8, 2017.

G. Xiong, X. Dong, H. Lu, and D. Shen, “Research progress of parallel
control and management,” IEEE/CAA Journal of Automatica Sinica,
vol. 7, no. 2, pp. 355-367, 2019.

Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy, “Deep re-
inforcement learning for sequence-to-sequence models,” IEEE Trans-
actions on Neural Networks and Learning Systems, pp. 1-21, 2019.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

T. Liu, B. Tian, Y. Ai, and F. Wang, “Parallel reinforcement learning-
based energy efficiency improvement for a cyber-physical system,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 617-626,
2020.

Y. Lin, X. Dai, L. Li, and F-Y. Wang, “An Efficient Deep
Reinforcement Learning Model for Urban Traffic Control,”
arXiv:1808.01876 [cs, stat], Aug. 2018, arXiv: 1808.01876. [Online].
Available: http://arxiv.org/abs/1808.01876

L. Li, Y. Lv, and F. Wang, “Traffic signal timing via deep reinforce-
ment learning,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3,
pp. 247-254, July 2016.

M. Guo, P. Wang, C. Chan, and S. Askary, “A reinforcement learning
approach for intelligent traffic signal control at urban intersections,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
Oct 2019, pp. 4242-4247.

B. Pratama, J. Christanto, M. T. Hadyantama, and A. Muis, “Adaptive
traffic lights through traffic density calculation on road pattern,” in
2018 International Conference on Applied Science and Technology
(iCAST), Oct 2018, pp. 82-86.

L. Cheng, J. Liu, G. Xu, Z. Zhang, H. Wang, H.-N. Dai, Y. Wu,
and W. Wang, “SCTSC: A Semicentralized Traffic Signal Control
Mode With Attribute-Based Blockchain in IoVs,” IEEE Transactions
on Computational Social Systems, vol. 6, no. 6, pp. 1373-1385, Dec.
2019.

R. Munjal, W. Liu, X. J. Li, and J. Gutierrez, “Big data offloading
using smart public vehicles with software defined connectivity,” in
2019 IEEE Intelligent Transportation Systems Conference (ITSC), Oct
2019, pp. 3361-3366.

F.-Y. Wang, P. Wang, J. Li, Y. Yuan, and X. Wang, “Social Transporta-
tion: Social Signal and Technology for Transportation Engineering,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 1,
pp. 2-7, Feb. 2019.

W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen,
“Internet of vehicles in big data era,” IEEE/CAA Journal of Automatica
Sinica, vol. 5, no. 1, pp. 19-35, Jan 2018.

N. Zheng, Z. Liu, P. Ren, Y. Ma, S. Chen, S. Yu, J. Xue, B. Chen, and
F. Wang, “Hybrid-augmented intelligence: collaboration and cogni-
tion,” Frontiers of Information Technology & Electronic Engineering,
vol. 18, no. 2, pp. 153-179, 2017.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
Z.Li, G. Xiong, Y. Chen, Y. Lv, B. Hu, F. Zhu, and F. Wang, “A hybrid
deep learning approach with gcn and Istm for traffic flow prediction*,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
Oct 2019, pp. 1929-1933.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional net-
works on graphs for learning molecular fingerprints,” in Advances in
neural information processing systems, 2015, pp. 2224-2232.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov 1997.

S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in Proceedings of the thirteenth international conference on artificial
intelligence and statistics, 2010, pp. 661-668.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems, 2016, pp. 4565—
4573.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, p. 21, 2017.

P. M. Kebria, A. Khosravi, S. M. Salaken, and S. Nahavandi, “Deep
imitation learning for autonomous vehicles based on convolutional
neural networks,” IEEE/CAA Journal of Automatica Sinica, vol. 7,
no. 1, pp. 82-95, January 2020.

D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent de-
velopment and applications of SUMO-Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, 2012.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 06,2021 at 09:28:55 UTC from IEEE Xplore. Restrictions apply.



