
     

Cyber-Physical-Social Systems for Smart City: An Implementation Based on 

Intelligent Loop   

 
Gang Xiong

*,***
. Xiaoyu Chen

*,**
. Nan Shuo

*,****. Yisheng Lv
*
. Fenghua Zhu

*,***
. Tianci Qu

*
. Peijun Ye† 

 
* State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of 

Sciences, Beijing 100190, China 

(Email:{gang.xiong, chenxiaoyu2019, yisheng.lv, fenghua.zhu }@ia.ac.cn,  

southshuo@outlook.com, tcq1027@163.com) 

** School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.  

*** Guangdong Engineering Research Center of 3D Printing and Intelligent Manufacturing, The Cloud Computing Center, 

Chinese Academy of Sciences, Dongguan 523808, China. 

**** Graduate School of System Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan.  

†State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of 

Sciences, Beijing 100190, China 

(Email:peijun.ye @ia.ac.cn) 

Abstract: Cyber-Physical-Social Systems (CPSS) provides a novel perspective for constructing “Smart 

City”, which is also known as the Human-Machine-Things-System (HMTS), focusing on the fusion of 

ternary space: social network of human society, network of machines and the Internet of things. In this 

paper, we propose a specific implementation framework of CPSS for Smart City based on intelligent loops, 

including basic modeling and interactive fusion, state perception and cognition, and adaptive learning. On 

this basis, an overall architecture of the CPSS platform is designed, which is applied in the urban 

transportation management in Hangzhou. The application results demonstrate that the intelligent loop could 

optimize the control and management strategies for actual urban transportation. 
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1. INTRODUCTION 

In recent years, the rise of Internet and social media has 

fundamentally changed the management, control, and 

operation modes of modern engineering and social systems.  

The integration of engineering complexity and social 

complexity induced various Cyber-Physical-Social Systems 

(CPSS) with uncertain, diverse and complex features [Wang, 

F. Y. 2010]. Thus, how to achieve the integration of human, 

machine, and things has become one of the hotspots. 

Up to now, many well-known scholars and research 

institutions have explored this issue and outlined the overall 

roadmap. In 2009, the Chinese Academy of Sciences 

concluded that Human-Machine-Things ternary computing is 

the general trend of information technology [Chinese 

Academy of Sciences. 2009], and made a special research 

report on “Information Technology: Accelerating the Trinity 

Fusion of Human-Machine-Things in 2013, where related 

concepts include Internet of Everything (IoE), Seamless 

Intelligence (SI) [Alkhatib, H. S., et al. 2015], Cyber-Physics 

System (CPS) [Rajkumar R., et al. 2010], Inclusive 

Calculation [Fang, J., et al. 2013]. Academician Y. H. Pan 

proposed the core concept and development suggestions of 

Artificial Intelligence 2.0[Pan, Y.  2016], explaining that the 

world is moving from the original binary space–including 

social space and physical space to the new ternary space. G. J. 

Li believed that the most leading new technology to promote 

economy is the intelligent technology of CPSS in 2017 [Li, G., 

Xu, Z. 2017]. In the same year, the Journal of Information and 

Electronic Engineering of the Chinese Academy (English), 

described in depth the Big Data Intelligence, Group 

Intelligence, Cross-media Intelligence, Hybrid-enhanced 

Intelligence [Pan Y. 2017][Zhuang, Y. T., et al. 2017][Zheng, 

N. N., et al. 2017]. In terms of application, CPSS is applied 

mainly to the collaborative management in Smart City’s 

transportation system. Xiong studied the application of parallel 

transportation system for subways and bus rapid transit [Dong, 

X., et al.  2017][Xiong, G., et al. 2017]. He et al. utilized social 

signals to issue guidance information such as shortest and 

fastest traffic path for travellers [He, K. 2016]. Ye et al. 

presented the modelling method of urban population synthesis 

and its application in population calculation and emergency 

evacuation [Ye, P., et al. 2016] [Ye, P., et al. 2018].  

Summarizing the research above, current achievements in 

CPSS mainly focus on two aspects: from the perspective of the 

overall situation, the top-level design of CPSS is characterized 

to grasp strategic direction but lack of specific implementation; 

from the perspective of specific technologies and applications, 

intelligent information system for local area can be developed, 

characterized by one-sided attention to a single field and lack 

of integration means. In all, It seems to be still lacking a unified 

framework in terms of model, algorithm and other software 

levels, to achieve the integration of specific applications. In 

summary, this paper has the following contributions: 



 

 

     

 

•We propose a CPSS framework based on intelligent loop for 

the fusion of three spaces, and analyse problems of basic 

model and fusion, perception and cognition, and learning. 

•We further design a CPSS cloud platform, and example urban 

transportation to demonstrate the whole integration process. 

• Empirically, we demonstrate the effectiveness of our 

proposed T-CPSS model based on intelligent loop. 

2. BASIC MODELING AND FUSION METHOD IN 

HUMAN-CYBER-PHYSICAL SPACE  

Social space for human studied in this paper refers to the 

participants of various activities in the city. Physical space for 

things includes infrastructures, such as vehicles, traffic signals, 

etc. in traffic. Cyber space for machines refers to the 

information system connecting the human and physical space, 

including communication channels, algorithms, software.  

2.1  Urban population modelling for human based on Multi-

Agent in social space 

For the modelling of social space, multi-agent method is 

proposed, which can be divided into two steps: static 

population synthesis and dynamic model calibration (Fig.1). 

 

Fig. 1. Framework of urban population model 

Static population synthesis, takes multi-source data such as 

census, statistical yearbook as input, is to generate a basic 

population database containing various social relationships 

such as families, enterprises, and schools. Firstly, based on 

original input data, we obtain the micro-population sample and 

the marginal distribution. Then use Bayesian network [Sun L., 

Erath, A. 2015] and JDI (Joint Distribution Inference) [Ye, P., 

et al. 2017] to synthesize the joint distribution containing all 

attribute variables. Next, individual population and various 

social entity pools are exacted by Monte Carlo simulation. 

Finally, based on the population-social relationship allocation 

algorithm [Ye, P., et al. 2020], individual records and social 

entity records are associated according to the composition 

relationship, and a static population database containing all-

round social relationships is obtained. 

The second step is the establishment and calibration of agent's 

dynamic behavior model. This aims to build a full-process 

perception-cognition-decision model, involving explicit and 

inexplicit human behavior rules such as travel motivation, 

attention, planning, and actions. After the behavior rules are 

determined, the calibration of the rule parameters determines, 

which is the key to ensure that the evolution of the population 

system can truly reflect on the operating rules of the actual 

system. Let the state transition equation of the agent be 

                               𝐍(𝑘 + 1) = 𝐓 ⋅ 𝐍(𝑘)                          (1) 

And observation equation of the system: 

       �̂�(𝑘 + 1) = 𝐖 ⋅ 𝐍(𝑘 + 1)                      (2) 

Where 𝐍(𝑘) denotes the state vector of agents in different 

states in step 𝑘; 𝐓 denotes state transition matrix to be solved; 

�̂�(𝑘 + 1)  denotes the observation vector observed by the 

actual system, 𝐖  denotes the observation matrix. With 

recurrence of calculation, the number of available equations 

increases, which eventually converts to an optimization 

problem of higher-order Markov chain: 

𝐓∗ = 𝑎𝑟𝑔min
𝐓

∑ 𝛾𝑙‖�̂�(𝑘 + 𝑙) − 𝑾 ⋅ 𝐓𝑙 ⋅ 𝐍(𝑘)‖
2

𝑛
𝑙=1 , 𝑘 = 1,2, …  (3)  

𝑛 is the order of error considered, 𝛾𝑙 ∈ (0,1) is the discount 
factor for each step. Except for the state transition matrix to be 
sought, the rest are all known. Therefore, each summation term 
can be regarded as an equation group with |𝐓| unknown 

numbers and |�̂�(𝑘 + 𝑙)| equations. The number of equations 

increases with 𝑛  increases, and  𝐓∗  can be obtained with 
assistance of ample observation data. Finally, calibration can be 
completed by reversing parameters of the agent behavior model 
based on the state transition rule under  𝐓∗. 

2.2  Basic resources modelling for things based on 

Knowledge Graphs in physical space 

The modelling of urban basic resources is established in the 

form of Knowledge Graph, which expresses the relationship 

between different objects in the form of triple: <Subject, 

Predicate, Object>. We abstract each pair relationship of the 

Subject and Object as nodes, and the Predicate as connected 

sides. The Knowledge Graph can be transformed from existing 

datasets, or can be constructed by semi-automatic or fully 

automatic Data Mining methods. Here we take the semi-

automatic method as an example. Firstly, the original 

knowledge data are obtained and structured based on open 

source databases and network query APIs, and then the 

attribute concept is extracted from the structured datasets. 

Finally, make semantic matching to generate the relationship 

between data and attributes. The calculation method of the 

attribute relationship is to use the text similarity comparison in 

information retrieval, that is 

            𝑆𝑖𝑚𝑖 =
∑ |{𝑒|𝑒(𝐴)=𝑎,𝑒(𝐵)=𝑏}|𝑎,𝑏

√∑ |{𝑒|𝑒(𝐴)=𝑎}|𝑎 ⋅√∑ |{𝑒|𝑒(𝐵)=𝑏}|𝑏
                 (4) 

Where 𝑎, 𝑏 are corresponding specific values of attribute 𝐴, 𝐵, 
|{𝑒| ∗}| are the number of instances meeting condition∗. In the 

case of multiple data sources, each source can generate a small 

Knowledge Graph. The fusion of Knowledge Graph is mainly 

accomplished through the unification of conceptual terms and 

pattern link point matching. This process generally uses 

semantic matching to link data entities and known knowledge 
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under manual guidance, the association fusion will be realized 

by the matching of pattern link point. 

2.3  Information system modelling for machines based on 

Edge Computing in cyber space 

We propose Edge Computing (EC) to divide the center-edge 

two layers to implement information system model (Fig.2). 

 

Fig. 2. Information system modelling scheme in cyber space 

Edge nodes are oriented to local application scenarios, 

completing simple perception. Its composition includes three 

parts: data, model knowledge and intelligent algorithm. Data 

component relies on a distributed database to store physical 

and social perception data in local scenes. Model knowledge 

component stores descriptive knowledge of human and things. 

Intelligent algorithm component includes perceptual algorithm 

database, learning algorithm database and knowledge 

reasoning database: the former is used to format, extract and 

correlate the perception results of multiple data sources; the 

middle is used to incrementally learn and calibrate the basic 

model of human and physical objects more completely; the 

latter is used to generate the optimal service and management 

plan, and send instructions to basic resources to deliver 

guidance information. 

The central computing node is oriented to urban-level 

scenarios, and completes the overall regional collaborative 

optimization. Similar to edge nodes, the central node contains 

two parts: global model knowledge and intelligent algorithm. 

Global model knowledge part records the behavior rules of 

groups and Knowledge Graphs of urban resources more 

generally. The management plan database is used to store 

typical urban management strategies in different conditions. 

Intelligent algorithm part includes global perception, global 

learning, and global reasoning. The evaluation algorithm 

library is used to conduct computational experiments. 

2.4 Interactive fusion of Intelligent Loop in CPSS 

The fusion of ternary space involves intelligent loop on two 

levels—edge-level local intelligent loop and urban-level 

global intelligent loop (see Fig.3), which aims to clarify the 

logic relationship of the ternary space in the interactive fusion 

from the perspective of information flow, and study the entire 

process of information processing.  

First, EC is to form an edge-level local intelligent loop, which 

is used to solve the local optimal control at a lower level. 

Second, the modelling of the cyber space is improved through 

the fusion and evolution of human modelling and Knowledge 

Graph. Third, for large-scale and city-level coordination and 

optimization, demarcate dynamically the parameters and real-

time state of the behavior model in artificial system through 

perception in social and physical space, and carry out reliable 

CPSS fusion experiments in cyber system to deduce the 

dynamic evolution rules and characteristics of the system. 

Finally, complete the construction of the Smart City's global 

intelligent loop by determining the optimized management 

plan, and completing the precise management of the actual 

infrastructure and the visual guidance of the social population. 

 

Fig. 3. Fusion of Intelligent Loop in ternary space 

3. PERCEPTION OF INTELLIGENT LOOP 

Perception and cognition can be regarded as the dynamic 

evolution of CPSS in time dimension. The Edge-Cloud Fusion 

is used to study the cognitive theory of intelligent loop in 

Smart City CPSS. Similarly, we propose the cognitive theory 

of CPSS on two levels: (1) on the level of local scenes: to study 

the edge-level intelligent loop of the social and physical 

space.(2) on the overall macro level of the city: to study the 

urban-level complex intelligent loop(Fig.4). 

3.1  Local scene perception based on region division and 

time slicing 

For the edge-level Intelligent Loop, we propose division of 

spatial-physical areas and time slicing, to realize the scene 

description in specific time of local areas. First, in the 

geographical space, the fine-grained division of urban areas 

will be carried out considering the EC platforms as the logical 

center. Within local region, the fusion, filtering, and storage of 

heterogeneous multi-source data in CPSS is completed. Then 

data are sliced in time dimension. The EC platform can 

dynamically adjust the time slice interval according to 

different demands, data in which is the abstract description in 

the local area within the time interval. Finally, data in local 

scene is visualized and described digitally, including the 

specific geographic location, time and occurrence of events. 

Reinforcement Learning (RL) is designed and adopted for 

local perception and cognitive requirements, where agent 

adjusts its strategy through interaction with environment. 

Suppose 𝑆𝑡  denotes environment state at time 𝑡 . The EC 

platform selects an action 𝐴𝑡 with a reward 𝑅𝑡+1 ∈ 𝑅 ⊂ ℝ at 

time 𝑡 + 1. When given state 𝑠 and reward 𝑟 at time 𝑡 − 1, the 
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probability of transforming to state 𝑠′ and obtaining reward 𝑟 

at time is 𝑡 can be expressed as 

𝑝(𝑠′, 𝑟|𝑠, 𝑎) ≜ 𝑃𝑟{ 𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}    (5) 

The state transition probability is: 

 𝑝(𝑠′|𝑠, 𝑎) ≜ 𝑃𝑟{ 𝑆𝑡 = 𝑠′|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} 

                                     = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑟∈ℜ                            (6) 

The expected rewards for state-action pair is: 

 𝑟(𝑠, 𝑎) ≜ 𝐸[𝑅𝑡|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎] 

               = ∑ 𝑟𝑟∈ℜ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑆′∈𝑆                                   (7) 

The expected value of the next state tuple is: 

𝑟(𝑠, 𝑎, 𝑠′) = ∑ 𝑟
𝑝(𝑠′,𝑟|𝑠,𝑎)

𝑝(𝑠′|𝑠,𝑎)𝑟∈ℜ                                               (8) 

3.2  Urban global scene intelligent perception based on the 

extension of multi-source local scene perception 

After forming the edge-level intelligent loop for perception in 

Social-Physical space at local scenes, edge nodes periodically 

send fine-grained scene data to the central cloud platform. The 

central cloud platform automatically generates aggregation 

results through configurable modes. For example, suppose that 

edge nodes send the number of vehicles passing through each 

intersection in the urban transportation scene every 5 minutes 

to the central cloud platform. Based on this, the platform can 

calculate indicators, such as the average number of vehicles, 

the total number, etc. in this scene at different time 

granularities such as every hour, every day, and every week. 

 

Fig.4. The perception framework based on Intelligent Loop 

In order to obtain a portrait description of a multi-edge scene, 

a calculation mode and frame for edge information analysis 

can be designed. First of all, using distributed Big Data 

computing tools, through the stream computing architecture 

model, integrate sources of scene information in different 

regions of the city. Secondly, based on various of visual 

analysis tools(spatio-temporal matrix, and multi-colour mode 

assisted cognition, etc..), as well as multiple statistical analysis 

tools(data dimensionality reduction, optimal linear sorting,  

etc..) we achieve a broader and deeper scene description of the 

whole city. Finally, comprehensive statistical inference 

models such as Bayesian networks are proposed to provide 

comprehensive information on the entire city in different 

dimensions such as time, space, and various applications. 

4. THE COLLABORATIVE LEARNING OF 

INTELLIGENT LOOP 

The learning of intelligent loop is to realize collaborative 

learning by means of visualization and other enhancement 

measurements. The closed-loop can be regarded as two 

independent and interactive subsystems: the actual system—

formed by social space and physical space; and the artificial 

system—formed by social space and cyber space. In the whole 

urban-level intelligent loop, we propose the following modes: 

(1) From physical space to cyber space, the knowledge 

automation of man-machine hybrid is studied: by means of 

data and calculation, the optimization modelling of “artificial 

system” from physical space is constructed automatically; (2) 

From cyber space to physical space, Human-Cyber 

cooperative learning of intelligent loop is studied: the 

simulation, verification and evaluation results of cyber space 

is used to verify and execute in the “actual system”; (3) 

Continuous iterative optimization to  form a synchronous 

mapping mechanism of CPSS (Fig.5). In this mode, we 

consider “human” as an enhanced force, that participates in the 

understanding and perception of data, intervenes the 

optimization and evaluation of the intervention model. 

4.1  Knowledge learning from physical space to cyber space 

The operation mechanism from the actual system to the 

artificial system can be enhanced by three aspects (Fig.5). 

Firstly, original data can be collected from the actual city and 

used to conduct visual analysis(scatter map, etc..), in order to 

obtain the distribution features and visual representation of 

data and guide the dynamic calibration of multi-agent artificial 

population model. Secondly, build cognitive model and 

complete visual analysis. Through combining the semantic 

cognitive quantitative model of multi-dimensional 

spatiotemporal heterogeneous data, especially the visual data 

mining method and the visual parameter adjustment 

mechanism based on the Bayesian network, the understanding 

of the internal details of this model can be enhanced, which 

benefits better diagnosis and adjustments of the model 

parameters. Thirdly, through visual analysis of the scheme 

model based on Bayesian network expression, different 

schemes can be presented and evaluated more intuitively. And 

with the help of comparisons of statistical parameters, the 

temporal and spatial distribution and comparison of visual 

feature elements containing statistical data in urban air can be 

designed, and the optimal model can be obtained. 

4.2 Knowledge learning from cyber space to physical space 

Firstly, based on the original experimental data in the artificial 

system and perception data in the actual system, visual 

analysis and feature extraction are completed to verify the 

effectiveness of the artificial population model. Secondly, 

through visual analysis of various assumptions and possible 

Smart City management schemes in experimental  verification, 

a distributed fast approximate calculation method based on 

microservice architecture is designed, which is convenient for 

real-time adjustment of model parameters, enhancement of 

internal understanding of calculation experiment results. 
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Thirdly, the results of large-scale calculation experiments are 

evaluated comprehensively and quantitatively. The optimal 

Smart City management scheme is selected to guide the actual 

system dynamically. Furthermore, the artificial system tends 

to the actual system through computational experiments. 

Finally, the above processes are implemented in parallel to 

achieve the dynamic management application requirements of 

Smart City, especially in the field of transportation. 

 

Fig.5.  The learning framework of Smart City 

5. CASE STUDY: REALIZATION OF T-CPSS 

Based on the achievements of the basic model of human-

machine space, intelligent loop architecture, intelligent loop 

cognitive theory, intelligent loop learning method and so on, 

we take Hangzhou transportation CPSS as an example to show 

the whole process of the construction of urban intelligent 

transportation loop system, and verify the effectiveness of 

CPSS based on intelligent loop framework. 

5.1 Construction of urban T-CPSS based on Intelligent Loop 

Intelligent loop for urban transportation CPSS is mainly 

composed of urban-level traffic management cloud platform 

(cyber space), and human and physical space connected by 

edge-level intelligent loop. The cloud platform has three layers 

(Fig.6). In the data layer, basic model of three spaces will be 

distinguished, and perception data from social and physical 

spaces will be stored. In the knowledge layer, models in social 

space are realized: the individual travel rules, activity plans, 

social interactions, etc., and the Knowledge Graphs of physical 

space are constructed: transportation infrastructure knowledge 

map, traffic status knowledge map, etc.. Based on the data 

from social networks, mobile signals, video monitoring, and 

so on, we complete the model calibration of multi-scale 

network social groups and the iterative updating of knowledge 

system. In the fusion experiment layer, we establish intelligent 

city management scheme database, scene generator, model 

loader, loop cognitive learning and other modules, 

dynamically configure individual behaviour model and 

knowledge category, complete the integration experiment and 

carry out visual evaluation of various management strategies. 

Finally, the optimized management strategy will be delivered 

to and guide the actual system.  

The edge-level intelligent loop is mainly composed of the 

intelligent learning module, scene recognition module and 

scene generation module of the edge node. The current local 

scene can be obtained using perception data from social space 

and physical space through intelligent learning and cognition, 

and then optimize the delivered management strategy. The 

inferred time-sharing scene data will be generated in the form 

of scene slices and saved in the scene generation module. Edge 

nodes also communicate with the cloud platform, so as to 

achieve local data reporting and city portrait drawing. 

 

Fig.6. Framework of Intelligent Transportation platform 

5.2 Experimental verification of urban T-CPSS 

Relying on the transportation CPSS based on intelligent loop, 

we take Hangzhou City (in Zhejiang Province) as the target 

city to verify feasibility and effectiveness of CPSS based on 

intelligent loop. First, according to the typical scenes of 

individuals and families, such as going to school, the internal 

edge-level intelligent loop of each scene is completed and 

guides the local intelligent control. Then, utilizing analysis of 

the social traffic behaviors when completing the activity plans, 

the urban-level transportation intelligent loop is deployed by 

connecting each edge-level scene loop in series. Finally, the 

urban-level intelligent loop for T-CPSS is established. The 

cloud platform will realize the optimal management plan of the 

actual system, to guide the collaborative optimization. 

 

Fig.7. Experimental area of T-CPSS in Hangzhou 

Our experimental area includes 3 intersections in Hangzhou 

surrounded by Wenyi Road, Moganshan Road, and Jiaogong 

Road (Fig.7). Take the intersection of Wenyi Road and 

Moganshan Road as an example, through the optimal control 

of traffic signal using urban intelligent loop system, queue 

lengths in four directions, which is the cumulative queue 

lengths along each incoming lane of one intersection[T, Chu., 

J, et al. 2020],  improved obviously. The optimization plan was 

conducted on May 11, 2020, and Fig.8 demonstrates the 

comparison of queue length before the implementation of the 

optimization scheme (May 11-13, 2020) and after the 

implementation (May 18-20, 2020. It should be noted that May 

11 and May 18 have similar traffic demand for the same 

weekday. For east direction, the queue lengths are decreased 

by 44.7%, 16.8% and 8.7% in May 18-20 (the whole day), 
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compared with them in May 18-20 correspondingly, verifying 

the power of traffic signal optimization of  T-CPSS based on 

intelligent loop. 

 

(a) East direction                           (b) South direction 

  

(c) West direction                            (d) North direction 

Fig.8. Comparison of queuing length before and after the 

implementation of optimization scheme 

In addition, the accuracy of the release on traffic conditions in 

Hangzhou based on intelligent transportation cloud platform 

has reached 90%, improving 20% higher than that before the 

adoption of the cloud platform. And it can release not only the 

congestion state, but also the travel time of the covered area, 

as well as traffic control, accident, event and other information, 

which is more comprehensive and practical than the content 

released by the state-of-art system. 

6.  CONCLUSIONS 

There are now many achievements in the integration of CPSS, 

but often plan the integration direction from a macro 

perspective, lacking specific implementation details; or only 

focus on the information integration in a certain field, lacking 

universality. Therefore, it is necessary to design the overall 

architecture of the integrated Smart City system and introduce 

intelligent circuits to solve the problems of perception, 

cognition, learning and circuit fusion in the ternary space. 

In this paper, we proposed a novel CPSS framework based on 

intelligent loop, and analysed problems of basic modelling and 

fusion, perception and cognition, and learning. We realized the 

perception of physical objects in Smart City through IoT, and 

the perception of human through social sensor network 

technology. Further, we designed a CPSS cloud platform, and 

took urban transportation as an instance to demonstrate the 

whole process of integration in CPSS and the power of 

intelligent loop. 

ACKNOWLEDGEMENTS 

This work was supported in part by National Natural Science 

Foundation of China under Grants U1909204, 61773381, 

U1811463 & 61872365; Chinese Guangdong’s S&T project 

(2019 1515120030);  ongguan’s Innovation Talents Project 

(Gang Xiong). 

REFERENCES 

Wang, F. Y. (2010). The Emergence of Intelligent Enterprises: 

from CPS to CPSS. IEEE Intelligent Systems,25(4), 85-88.  

Chinese Academy of Sciences. (2009). Information Science& 

Technology in China: A Roadmap to 2015. Science Press, 

Beijing. 

Alkhatib, H. S., Faraboschi, P. (2015). What Will 2022 Look 

Like?. IEEE Computer, 48(3), 68-76. 

Rajkumar R., et al. (2010). Cyber-Physical Systems: the Next 

Computing Revolution. Design Automation Conference, 

731-736. 

Fang, J., et al. (2013). The integration of human, cyber and 

physical spaces will promote information service to enter 

the era of inclusive computing. Bulletin of Chinese 

Academy of Sciences, 28(5), 564-566. 

Pan, Y.  (2016). Heading toward Artificial Intelligence 2.0. 

Engineering, 2(4), 409-413. 

Li, G., Xu, Z. (2017). Judging New Economy from Perspective 

of Information Technology Trend. Bulletin of Chinese 

Academy of Sciences, 32(3), 233-238. 

Pan Y. (2017). Special Issue on Artificial Intelligence 2.0. 

Journal of Zhejiang University Science C, 18(1), 1-2. 

Zhuang, Y. T. Fei, W. U., et al. (2017). Challenges and 

Opportunities: from Big Data to Knowledge in AI 2.0. 

Frontiers of Information Technology & Electronic 

Engineering, 18(1), 3-14. 

 Zheng, N. N., et al. (2017). Hybrid-Augmented Intelligence: 

Collaboration and Cognition. Frontiers of Information 

Technology & Electronic Engineering, 18(2), 153-179. 

Dong, X., Lin, Y., et al. (2017). A Parallel Transportation 

Management and Control System for Bus Rapid Transit 

Using the ACP Approach. IEEE Transactions on 

Intelligent Transportation Systems, 18(9), 2569-2574. 

Xiong, G., et al. (2017). Parallel Transportation Management 

and Control System for Subways. IEEE Transactions on 

Intelligent Transportation Systems, 18(7), 1974-1979. 

He, K., Xu, Z., et al. (2016). Congestion Avoidance Routing 

Based on Large-Scale Social Signals. IEEE Transactions 

on Intelligent Transportation Systems, 17(9), 2613-2626. 

Ye, P., Wang, X., et al. (2016). Hybrid Agent Modeling in 

Population Simulation: Current Approaches and Future 

Directions. Journal of Artificial Societies and Social 

Simulation, 19(1), 1-20. 

Ye, P., Wang, X. (2018). Population Synthesis using Discrete 

Copulas. IEEE International Conference on Intelligent 

Transportation Systems (ITSC 2018), Maui, Hawaii, USA, 

Nov. 4-7, 479-484. 

Sun, L., Erath, A. (2015). A Bayesian network approach for 

population synthesis. Transportation Research Part C: 

Emerging Technologies, 61, 49-62. 

Ye, P., Hu, X., et al. (2017). Population Synthesis Based on 

Joint Distribution Inference Without Disaggregate 

Samples. Journal of Artificial Societies and Social 

Simulation, 20(4), 16. 

Ye, P., Zhu, F., et al. (2020). Consistent Population Synthesis 

with Multi-Social Relationships Based on Tensor 

Decomposition. IEEE Transactions on Intelligent 

Transportation Systems, 21(5), 2180-2189. 

T, Chu., J, Wang., Lara Codecà, et al. (2020). Multi-Agent 

Deep Reinforcement Learning for Large-Scale Traffic 

Signal Control. IEEE Transactions on Intelligent 

Transportation Systems, 21(3):1086-1095. 

 


