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ABSTRACT 

Cryo-electron tomography (Cryo-ET) is an electron 
microscopy technique that plays an important role in 
structural biology by reconstructing structures of biological 
macromolecules in their native environment. In cryo-ET 
images, also called tomograms, macromolecules are detected 
through particle picking for their structural reconstruction. 
Automated particle picking is essential for processing large 
volumes of cryo-ET data. Although deep learning-based 
object detection models have achieved excellent performance 
in many applications, their adoption in particle picking for 
tomograms remains limited due to low signal-to-noise ratios 
(SNRs) of cryo-ET images, typically below 0.1. So far, 
studies on particle picking techniques for tomograms have 
chosen segmentation models for accuracy. Different from 
these studies, we solve the problem as a 3D object detection 
task. Specifically, we have developed a one-stage detection 
model that locates and classifies particles in 3D tomograms 
with high efficiency and competitive accuracy. Unlike 
segmentation models, our model requires only location and 
class information of particles but not their geometry 
information for training. Experiments show that our model 
achieves detection accuracy similar as that of state-of-the-art 
segmentation models on the SHREC2020 dataset of synthetic 
images. But its detection speed is about ten times faster than 
the fastest segmentation model. Our model also achieves 
good performance on the EMPIAR-10045 dataset of real 
cryo-ET images. Source code and data of this work are 
openly accessible at: http://github.com/cbmi-
group/3DFastParticleDetection.   

Index Terms—Particle picking, Cryo-electron 
tomography, Object detection, Deep learning, Convolutional 
neural network 
 

1. INTRODUCTION 
Cryo-electron tomography (Cryo-ET) makes it possible 

to solve three-dimensional structures of biological 
macromolecules in their native environment [1]. In cryo-ET, 
quick-frozen samples of biomacromolecules are transmission 
scanned from multiple angles. Then the acquired series of 2D 
projections are used to reconstruct 3D tomograms [2]. 
However, biological samples can only withstand limited 
radiation, which results in very low signal-to-noise ratios 
(SNRs) in tomograms, typically below 0.1. This makes it 
infeasible to reconstruct structures of biomacromolecules in 
3D tomograms directly. Instead, thousands or more images of 

biomacromolecules of the same kind must be aligned and 
averaged to reconstruct structures at nanometer to angstrom 
resolutions [1]. A key requirement of this procedure is to pick 
as many biomacromolecules, also called particles, from the 
tomograms as possible. As manual picking is laborious and 
inefficient to handle large volumes of cryo-ET data, 
automated particles picking becomes essential.  

Over the past two decades, a wide variety of automated 
particle picking techniques have been proposed [3]. However, 
these techniques are mainly developed to pick single particles 
from 2D cryo-electron microscopy (cryo-EM) images rather 
than 3D tomograms. Before the rapid rise of deep learning, a 
commonly used approach is template matching [4-7]. 
However, it can only handle biomacromolecules with known 
structures. And its performance is influenced strongly by the 
quality of the templates prepared. Another approach is to use 
edge detection type algorithms such as Difference of 
Gaussian [8] and Laplacian of Gaussian [9]. These algorithms 
are template-free and can detect particles of unknown 
structures with fast speeds. But they perform well only on 
cryo-EM images with relatively high SNRs [8].  

Deep learning brings a new solution to the particle 
picking problem. Recently, significant progress has been 
made in object detection using deep learning, with many 
models developed [10]. One-stage models such as YOLO 
[11] and SSD [12] combine object localization and 
classification into one step, while two-stage models such as 
Fast R-CNN [13], Faster R-CNN [14], and Mask R-CNN [15] 
complete object localization and classification in two steps. 
These models have also been used to pick single particles 
from 2D cryo-EM images. For example, Wang et al. [16] 
proposed DeepPicker, a convolutional neural network (CNN) 
model that detects particles in an automated fashion with 
accuracy approaching that of manual annotation. Wagner et 
al. [17] developed SPHIRE-crYOLO, a one-stage particle 
picking model based on YOLO [11] for fast speeds in 
selecting single particles. Li et al. [18] proposed a model 
based on Faster R-CNN for high accuracy and robustness in 
particle detection and classification.   

 For 3D tomograms, motived by the success of U-Net [19, 
20] in segmentation of biomedical images, a natural way for 
particle picking is to separate pixels of particles from their 
background and then cluster them to obtain the location of 
each particle. An example of this approach is DeepFinder 
[21], which utilizes a U-Net architecture to identify multi-
class macromolecules. Other studies [2, 22] use different 



segmentation models to achieve comparable performance. 
Overall, these models utilize geometry information of 
particles to achieve high detection accuracy. However, they 
also have two important limitations. First, they require 3D 
segmentation labels of various kinds for training. Second, 
their clustering requires long processing time. To overcome 
these limitations, we choose to solve the problem of particle 
picking for 3D tomograms as an object detection task.  

 Our main research contributions are as follows: (1) We 
have developed a one-stage object detection model for 
automated particle picking from 3D tomograms. It generally 
matches state-of-the-art segmentation models in detection 
accuracy but is much faster in detection speed. (2) We have 
developed a strategy to handle large tomograms. It divides a 
large tomogram into small overlapping cubes so that 
detection performance will not be negatively affected by 
those particles that cross cube boundaries. This strategy is 
highly effective and can also be combined with other DNNs 
models for particle picking.  
 

2. METHOD 
2.1. Data Preprocessing: Dividing Tomograms into 
Overlapping Cubes 

Sizes of 3D cryo-ET tomograms are often much larger 
than those of 2D cryo-EM images, which cause deep learning 
models to vastly exceed the memory limit of GPUs. It is 
essential to divide tomograms into small pieces before 
training. A simple strategy is to split a tomogram into 
multiple non-overlapping cubes. However, we find that it is 
difficult for DNNs to learn to pick particles at cube 
boundaries because their information is split among multiple 
cubes and therefore is incomplete in each cube. To solve this 
problem, we set extra overlapping zones for the cubes so that 
complete particle information is preserved in each cube for 
training and detection. The width of the overlapping zones is 
empirically determined to be on the same scale as the average 
radius of particles. As an example, to process a tomogram of 
size 512×512×200, we first crop it to a 480×480×192 block. 
Then the block is divided into 400 cubes with a size of 48×
48×48 each. If we are to give each cube an overlapping zone 
of width 8, we pad the cube to 64×64×64 using data from its 
neighboring cubes. Although we use the 64×64×64 cubes for 
training, only those particles in the center 48×48×48 space, 
which we refer to as effective detection zones, are used for 

particle localization and classification so that their complete 
information is available. Particles outside this area are 
excluded from calculation of loss function and model 
prediction.  
2.2. Detection Framework 

Our detection framework consists of three modules: a 
DNN particle detection model, a prediction converter, and a 
loss calculator. The detection model is a 3D adaption of 
YOLOv3 [23]. Its architecture is shown in Figure 1. It first 
uses a convolutional block and a series of ResNet blocks [24], 
referred to as “res” blocks, that function similarly as feature 
pyramid networks to extract features at multiple scales. To 
reduce the loss of information in downsampling layers, the 
model uses convolutional layers with stride 2 instead of max 
pooling. Extracted deep features are upsampled by nearest 
neighbor interpolation and then fused with higher-level 
features. After a series of convolution, the output is used by 
another higher-level layer. Because input cubes with size 64
×64×64 are small, the size of particles cannot be too large. 
To simplify the network architecture, we only use the 
predictor header at the shallowest level, which is designed to 
detect small objects. We also reduce the number of 
downsampling layers to preserve more shallow features. The 
overall network architecture is similar to that of a U-Net but 
with fewer decoder layers. The prediction of particles is based 
on grid cells, not on voxels. For a 64×64×64 input cube, the 
output of this network consists of 16×16×16 grid cells, with 
each grid cell representing a 4×4×4 space of the input cube. 
We choose that one grid cell contains 3 anchor boxes to 
predict different sizes of particles. These boxes are 
distinguished by their sizes, which are used as bounding box 
priors to reduce the difficulty of learning features. The anchor 
box sizes are calculated by k-means clustering on particle 
sizes of the dataset processed before network training.  

To describe a detected particle, each bounding box uses 
a vector that consists of 3 parts, as shown in Figure 2. The 
first part contains 4 parameters 𝑡௫, 𝑡௬, 𝑡௭, 𝑡௦where ሺ𝑡௫, 𝑡௬, 𝑡௭ሻ 
denotes the center of the bounding box as the particle location, 
and 𝑡௦  denotes the size of the bounding box. To limit the 
range of the location, 𝑡௫, 𝑡௬, 𝑡௭ are sigmoid functions of the 
detection model output. The second part use one parameter 
𝑡௖௢௡௙ to denote bounding box confidence, which is also the 
sigmoid function of the detection model output. The last part 
is a one-hot vector for classification, with each parameter 

 
Figure 1. Architecture of the proposed particle detection model. “res” denotes a ResNet block that contains two convolutional blocks and a skip 
connection. “Up” and “down” denote upsampling and downsampling, respectively. 
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associated with one class. Because each particle belongs to 
only one class, the vector is the softmax of the detection 
model output.  

The prediction converter is a translation module that 
converts network output to bounding box coordinates using 
the following equations: 
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 𝑏௦ ൌ 𝐴௦ ∗ 𝑒௧ೞ ሺ2ሻ 

Here ൫𝑐௫, 𝑐௬, 𝑐௭൯ denotes offset from the top left of the input 
cube to the grid cell, and 𝐴௦ denotes the size of the anchor 
box in the grid cell. The multiplier 4 corresponds to the size 
of the grid cell. By using Equations 1 and 2 to convert 
network output, we finally get the actual predicted particle 
position (𝑏௫ , 𝑏௬ , 𝑏௭ ) and the real bounding box size 𝑏௦ 
associated with the input data. These parameters are used to 
classify prediction boxes in the loss calculator in the training 
stage.  

In the detection stage, boxes with 𝑡௖௢௡௙ ൐ 0.5 will be 
picked as candidates. After removing multiple hits by non-
maximum suppression (NMS), the candidates from all 
batches will be mapped according to the associated cube’s 
location to generate the total prediction list of the full 
tomogram. Another NMS is used to reduce same hits in 
different cubes. The final list is the output of the entire 
detection framework.  
 
2.3. Training Strategies and Loss Function 

After the prediction converter transforms the network 
output to bounding boxes, the predictions are divided into 
three classes for loss calculation according to [23]. In 
summary, the prediction box that has the largest intersection-
over-union (IOU) with any ground truth box is assigned to 
the class of “positive samples”. The remaining prediction 
boxes that have IOU larger than a selected threshold with any 
ground truth boxes are assigned to the class of “ignored 
samples”. In this study we set the threshold at 0.333, and the 
rationale is explained in the Supplementary Material. The 
prediction boxes left are assigned to the class of “negative 
samples”. Our loss function is the sum of three parts: 

bounding box loss  𝐿௕௕௢௫ , classification loss  𝐿௖௟௔௦௦ , and 
confidence loss  𝐿௖௢௡௙ (Equations 3-6). Our training strategy 
is that only positive samples contribute to bounding box loss, 
classification loss and confidence loss. Negative samples 
only contribute to confidence loss, while ignored samples do 
not contribute to any loss. By adding ignored samples, the 
value of confidence in grid cells becomes smoother. Without 
this design, the object detection model tends to predict all 
boxes with low confidence. The ignored samples will be 
removed by non-maximum suppression in the detection stage.  

We use mean square errors (MSE) for calculating 
bounding box loss and use binary cross entropy loss (BCE) 
for calculating classification loss and confidence loss. As the 
number of prediction boxes is much higher than the number 
of ground truth, to reduce computational cost, we invert 
Equations 1 and 2 and use the inverted formulas to calculate 
ground-truth  𝑡̂௫, 𝑡̂௬, 𝑡̂௭, 𝑡̂௦ from the annotation 𝑏෠௫, 𝑏෠௬, 𝑏෠௭, 𝑏෠௦ 
in the training set. This data is used to calculate the bounding 
box loss in Equation 3. The total loss is defined as follows:  
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Here N is the number of predicted bounding boxes and 𝑝௜ሺ𝑐ሻ 
is 1 if the ground truth class is 𝑐 otherwise 0. We change the 
weights of different losses by adjusting their corresponding 
coefficients λ௕௕௢௫, λ௢௕௝ , and, λ௖௟௔௦௦ , respectively.  
 

3. EXPERIMENTS 
3.1. Datasets and Experiments 

Our detection framework is evaluated on SHREC2020, a 
public dataset that consists of ten simulated tomograms of 
subcellular scale volumes for a competition between 
participating particle picking algorithms [2]. A sample view 
of this dataset is shown in Figure 3. Within each tomogram, 
there are twelve different types of macromolecular 
complexes whose sizes range from 5 to 19 voxels. Our model 
has also been evaluated on real cryo-ET images in the 
EMPIAR-10045 ribosome dataset [25], with detailed results 
provided in the Supplementary Material. We use precision, 
recall and F1 score to quantify localization and classification 
performance of our model. For ground truth, we use data 

 
Figure 3. Tomogram 9 from the SHREC20 dataset. (A) The simulated 
3D tomogram. (B) Noise-free ground truth for the tomogram in (A).  

 
Figure 2. The relationship between detection network output and 
prediction boxes.  



provided by the SHREC2020 competition. To determine 
whether a prediction is a hit, we follow the same evaluation 
criteria used in the competition [2]. Specifically, if a 
predicted location is within the voxels of the dilated ground 
truth of particles, it is considered as a true positive. To reduce 
the influence of the background, as most predicted grid cells 
contain no particles, we set 𝜆௡௢௢௕௝ to 0.1, 𝜆௢௕௝ and 𝜆௖௢௡௙ to 1, 
𝜆௕௕௢௫ and 𝜆௖௢௡௙ to 5. The anchor box sizes chosen are 5, 10 
and 15 to fit different sizes of particles. We use the Adam 
optimizer and set the learning rate as 0.001. Our detection 
framework is implemented using Pytorch 1.7.0 based on 
Python 3.7.3 and is trained on 4 NVIDIA GeForce RTX 3090. 
It takes approximately 1 hour and 40 minutes to complete 120 
epochs of training.  

3.2. Results 
Performance of our model in comparison with other models 
submitted to the SHREC2020 competition is summarized in 
Table 1. The precision of our model is higher than that of the 
competing models, while the recall of our model ranks the 
second. Comparison of classification performance is 
summarized in Table 3. Representative results are shown in 
Figure 4. Because our model uses only the coordinates of 
particles instead of their geometry, it is less accurate in 
detecting and distinguishing aspherical particles. 
Experiments shows that the recall rates for large globular 
particles such as 4d8q, 1xbn, 3cf3 are good but poor for small 
aspherical particles such as 1s3x and 3qm1. Comparison of 
training and testing cost in terms of processing time is 
summarized in Table 2. Our model is approximately ten times 

faster than the fastest segmentation model. Influence of 
overlap size on performance is examined in the 
Supplementary Material. With sufficient overlap size, the 
model can predict more particles and achieves higher recall 
and IOU. However, when the overlap size is too large, the 
number of particles whose centers are in overlap zones 
increases. The detection performance will be negatively 
impacted because these particles are considered as 
background by our training strategy.  

On EMPIAR-10045, a dataset of real cryo-ET images, our 
model achieves a precision of 0.69 and a recall of 0.75 in 
localization, whereas a 3D U-Net with connected component 
analysis provides a precision of 0.68 and a recall of 0.87. 
Further details can be found in the Supplementary Material.  

 
4. CONCLUSION 

In this study, we have developed a one-stage object 
detection model for fast particle picking from 3D tomograms. 
Compared with the state-of-the-art segmentation models, our 
model is substantially faster because it combines bounding 
box regression and classification in one step, which is key to 
its fast speed. Our model provides an efficient tool for 
processing large 3D tomograms. However, our study also has 
its limitations. The poor classification accuracy of our model 
for small particles indicates that more shallow features should 
be preserved. Another limitation is that the size of the grid 
cell limits the minimum distance between two particles, 
making it difficult for the model to distinguish between 
adjoining particles. These limitations will be addressed in our 
future work.  

 Training stage Detection stage 
3D MS-D 168 h 5 min 
DeepFinder 50 h 20 min 
3D ResNet 5 h 2 h 
YOPO 8 h 40 min 
Dn3DUnet 15 h 10 min 1 min 41 s 
UMC 16 h 42 min 
Ours 1 h 40 min 10 s 

Table 2. Time cost of training and test. 

 
Figure 4. Samples of detection results with location and geometry of 
actual particles. (A) A cube cropped from the evaluation tomogram. 
(B) A sample view of one slice. (C) Localization result of molecule 
3gl1, an example of small particles. (D) Localization result of molecule 
4d8q, an example of large particles. (E) and (F) Magnified views of the 
red dashed boxes from (C) and (D), respectively. 

 Precision Recall F1 Score 
3D MS-D 0.947 0.906 0.926 
DeepFinder 0.957 0.893 0.924 
3D ResNet 0.692 0.712 0.702 
YOPO 0.901 0.914 0.907 
Dn3DUnet 0.900 0.841 0.869 
UMC 0.950 0.949 0.949 
Ours 0.957 0.947 0.952 

Table 1. Results of localization evaluation on SHREC2020 dataset. 
Results of the other models are reproduced from [2].  

 1s3x 3qm1 3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 4d8q 
3D MS-D 0.192 0.408 0.437 0.416 0.368 0.461 0.492 0.719 0.948 0.851 0.942 0.964 

DeepFinder 0.610 0.729 0.800 0.911 0.783 0.848 0.866 0.939 1.000 0.984 0.993 0.993 
3D ResNet 0.193 0.185 0.405 0.407 0.334 0.445 0.491 0.628 0.906 0.719 0.868 0.817 

YOPO 0.558 0.741 0.670 0.834 0.696 0.682 0.795 0.896 0.987 0.83 0.923 0.993 
Dn3DUnet 0.529 0.577 0.569 0.674 0.332 0.523 0.462 0.676 0.925 0.684 0.907 0.974 

UMC 0.661 0.827 0.839 0.947 0.855 0.873 0.899 0.981 0.997 0.980 1.000 0.997 
Ours 0.397 0.610 0.675 0.599 0.552 0.634 0.695 0.845 0.971 0.875 0.964 0.985 

Table 3. Comparison of F1 scores of our model versus competing methods. The first row lists the PDB ID of each macromolecule. 
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