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Abstract. Discriminative model-based trackers have made remarkable
progress recently. However, due to the extreme imbalance of foreground
and background samples, the learned model is hard to fit the training
samples well in the online tracking. In this paper, to alleviate the negative
influence caused by the imbalance issue, we propose a novel construc-
tion scheme of target-aware features for online discriminative tracking.
Specifically, we design a sub-network to generate target-aware feature
embeddings of foregrounds and backgrounds by projecting the learned
feature embeddings into the target-aware feature space. Then, a model
solver, which is integrated into our networks, is applied to learn the dis-
criminative model. Based on such feature construction, the learned model
is able to fit training samples well in the online tracking. Experimental
results on four benchmarks, OTB-2015, VOT-2018, NfS, and GOT-10k,
show that the proposed target-aware feature construction is effective for
visual tracking, leading to the high-performance of our tracker.

Keywords: Visual tracking · Data imbalance · Discriminative model

1 Introduction

Visual tracking is one of the fundamental problems in computer vision, span-
ning a wide range of applications including video understanding, surveillance,
and robotics. Despite significant progress in recent years [2,5,17,30,35], visual
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Fig. 1. Distributions of the foreground and background samples with three different
kinds of features. It can be seen that from (a) to (c), it is from hard to easy for a
discriminative model to fit training samples well in online tracking.

tracking is still a challenge due to several severe interferences (i.e., large appear-
ance changes, occlusions, and background clutters) and very limited training
samples.

Different from Siamese based trackers [17,30,32], online discriminative track-
ers [2,6,23,27–29,33–35] can effectively exploit the background information
online, and thus have achieved the state-of-the-art results on multiple challenging
benchmarks [11,16,31]. However, in the online tracking, the extreme imbalance
of foreground and background samples causes the learned discriminative model
to pay more attention to backgrounds while less to foregrounds, and further to
be difficult to fit training samples well (see Fig. 1(a)). These problems negatively
affect the discriminative power of the trackers. In fact, there are already methods
before attempting to solve the problems by mitigating the emphasis on back-
ground information in the learned models, such as sample re-weighting using
Gaussian-like maps [7], spatial reliability maps [22] or binary maps [14]. How-
ever, they inevitably increase the complexity of model learning, and thus affect
the tracking efficiency. Besides, they are hard to take advantage of the end-to-
end CNNs training like [2,5,29,35] to improve their accuracy and robustness
further.

Different from the previous methods, in this paper, we attempt to allevi-
ate the ahead-mentioned problems from the perspective of feature construction.
We consider the feature embeddings used in most previous trackers are target-
unaware ones where the construction of feature is independent of whether a
sample is from the foreground or not. With such features, the distributions of
foreground and background samples which are all extracted over the image region
overlap severely (as shown in Fig. 1(a)), making it hard for the discriminative
model to fit foreground and background samples well. Note that although there
exists methods [4,19] that aim at constructing target-aware features for visual
tracking, both are designed for Siamese-based tracking schemes and may not be
suitable for online discriminative ones.
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Fig. 2. An illustration of the proposed discriminative tracking scheme with target-
aware feature construction.

Based on the above observation, we propose a simple yet powerful scheme
of target-aware feature construction for online discriminative tracking. First, we
introduce a set of base samples, {bi}, which are extracted around the target over
a smaller region than that where training samples are extracted (see Fig. 2), to
obtain target-specific information directly. Then, target-aware feature embed-
dings are constructed by mapping the target-unaware ones of training samples
to the target-aware space with the dot products 〈·,bi〉. In this way, the gen-
erated features are composed of similarities to base samples, causing the over-
lap between the distributions of foreground samples and those of background
samples decreases in the feature space (see Fig. 1(b)). Based on such feature
construction, the learned discriminative model is able to distinguish between
foreground and background samples better.

However, off-the-shelf CNNs features of training samples and base ones may
not be suitable enough for our target-aware feature construction since the extrac-
tions of those features are independent of our scheme. To this end, we design a
sub-network to construct the target-aware features, enabling an end-to-end man-
ner to learn target-unaware feature embeddings. Concretely, as shown in Fig. 2,
first we extract the target-unaware features of training samples and base ones
from the input frames, respectively, with separate branches in the proposed net-
works. Then, the target-aware feature embeddings are obtained through a target-
aware feature construction sub-network, and a differentiable model solver [1,35],
which is integrated into our networks, is applied to learn the discriminative
model. Given a test frame, the target-aware feature embeddings of test sam-
ples are obtained in the same way and the labels of these samples are predicted
with the learned discriminative model. In this way, our networks can be trained
in an end-to-end manner, enabling learning the feature embeddings that are
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tightly coupled with our novel target-aware feature construction and the dis-
criminative tracking scheme. With such target-aware feature embeddings, the
overlap between the distributions of foregrounds and that of backgrounds further
decreases in the feature space (see Fig. 1(c)), leading to strong discrimination of
the learned model.

Finally, based on the learned target-unaware feature extraction network
and the target-aware feature construction, an effective discriminative tracker,
TADFT, is developed and evaluated on four public benchmarks, OTB-2015 [31],
VOT-2018 [16], NfS [13], and GOT-10k [11], achieving state-of-the-art results.

In summary, our main contributions are in three folds.

1. We present a novel construction scheme of target-aware features for online
discriminative tracking to alleviate the negative influence of imbalance of
foreground and background samples.

2. We design a sub-network to construct the target-aware features of foregrounds
and backgrounds, benefiting an end-to-end way to learn the target-unaware
feature embeddings.

3. We develop a discriminative tracker TAFDT based on our target-aware fea-
ture construction and extensively evaluate TAFDT on four public bench-
marks.

2 Discriminative Tracking with Target-Aware Feature
Embeddings

2.1 Target-Unaware Feature Extraction

To achieve strong discrimination of target-unaware features, each image is pro-
cessed by a target-unaware feature extraction network consisting of a backbone,
i.e., ResNet [9], and a head network [35]. Concretely, for each input training/test
frame, N RoIs are first generated by uniform sampling across the whole image
region. Then we extract Block-3 and Block-4 feature maps of ResNet and pass
them through two convolutional layers to obtain two feature maps. Two 512-
dimensional feature vectors of each RoI are finally obtained by using PrPool lay-
ers [12] and fully-connected layers. Thus, the feature dimension D of each sample
is 1024 (concatenated by the two feature vectors). As illustrated in Fig. 2, we
obtain X = [x1,x2, ...,xN ] ∈ R

D×N and Z = [z1, z2, ..., zN ] ∈ R
D×N consisting

of N D-dimensional training samples and test ones, repectively.

2.2 Target-Aware Feature Construction

In order to obtain target-specific information, we extract base samples around
the target object over a smaller region than that where training samples are
extracted (see Fig. 5). Given an additional input frame, called base frame, we
obtain B = [b1,b2, ...,bM ] ∈ R

D×M through the target-unaware feature extrac-
tion network, where bi is a D-dimensional base sample.
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Fig. 3. Construction of target-aware features. It is performed by a dynamic filters layer,
using the base sample matrix B as the weights of a fully-connected layer. For a single
training/test sample, the dimensionality of features is transformed from D to M .

Then, given a D-dimensional sample x, the process of the target-aware feature
construction is represented as follows,

x̃ = [〈x,b1〉, 〈x,b2〉, ..., 〈x,bM 〉]� = B�x, (1)

where 〈, 〉 represents dot product.
Thus, we are able to obtain the target-aware feature embeddings of training

samples and test ones by

˜X = [x̃1, x̃2, ..., x̃N ] = B�X,

˜Z = [z̃1, z̃2, ..., z̃N ] = B�Z.
(2)

Further, to obtain target-aware feature embeddings efficiently and enable
learning target-unaware ones in an end-to-end way, we view the projection oper-
ation as a dynamic fully connected layer, whose weights are equal to the gener-
ated base sample matrix B, as shown in Fig. 3. As such, we are able to construct
a specific feature space for each target object by changing the input base frame.

2.3 Ridge Regression with Target-Aware Feature Embeddings

Ridge Regression with Single Frame. As a classical discriminative model,
ridge regression model has been confirmed to be simple yet effective in the field
of visual tracking by many trackers [6,10,14,35], and thereby employed in our
approach.
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The optimization problem of ridge regression with target-aware feature
embeddings is formulated as follows,

min
α

‖˜X�α − y‖22 + λ||α||22, (3)

where y ∈ R
N×1 is the groundtruth labels and λ ≥ 0 is a regularization param-

eter. The optimal α∗ can be analytically solved by

α∗ =
(

˜X˜X� + λI
)−1

˜Xy, (4)

where I ∈ R
D×D is the identity matrix.

Note that in the optimization problem of ridge regression with the D-
dimensional target-unaware feature embeddings , we achieve the optimal solution
with Gauss elimination method and its time complexity is O(D3/2). It means the
time-consuming grows cubically with the dimension of the feature embeddings.
However, due to the common characteristic in CNNs that deep features are high-
dimensional and M < D in our approach (M = 23 × 23 and D = 31 × 31), a
faster solution of the optimization problem can be achieved, i.e., α is obtained
with time complexity of O(M3/2) in our approach.

Ridge Regression with Historical Frames. Since the size of discrimina-
tive model is reduced by the target-aware feature construction, the influence of
the online optimization on efficiency is weaken, and we are able to extend our
model with historical frames for robust tracking without increasing heavy com-
putational burden. To be specific, we draw training samples from p historical
frames in the training set, i.e., {Xj}pj=1. We consider the optimization problem
of multiple frames in our approach as follows,

min
αp

1
p

p
∑

j=1

‖˜X�
j αp − y‖22 + λ||αp||22, (5)

where ˜Xj = B�Xj .
The objective function in Eq. (5) is minimized by

α∗
p =

⎛

⎝

p
∑

j=1

˜Xj
˜X�

j + λI

⎞

⎠

−1
p

∑

j=1

˜Xjy. (6)

Similar to DCFST [35], the model solver, i.e., solving for αp by directly
using Eq. (6), can be integrated into the networks as a layer with forward and
backward processes during offline training, benefiting an end-to-end manner to
learn the target-unaware feature embeddings coupled with our approach.
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2.4 Offline Training

To take advantage of multiple frames from the sequence, during offline training,
each input image tuple consists of 3 training frames, 3 test ones, and a base
one sampled in a sequence. Then the training sample matrices {Xj}3j=1, the test
sample matrices {Zj}3j=1, and the base sample matrix B are obtained through
the target-unaware feature extraction, respectively.

After obtaining α∗
p over the three training frames by Eq. (6), we calculate

the predicted labels ŷj ∈ R
N×1 by ŷj = ˜Z�

j α∗
p, where ˜Zj = B�Zj . In the end,

we adopt the modified shrinkage loss like in [21,35] over the three test frames.
The objective loss used for offline training is given below.

L =
q

∑

j=1

exp(y) · ‖ŷj − y‖2
1 + exp(c1 · (c2 − |ŷj − y|)) , (7)

where c1 = 10 and c2 = 0.2 are set the same as in [21,35].
It is worth noting that even though the shrinkage loss and our target-aware

feature construction both aim at alleviating the problems caused by the imbal-
ance of foreground and background samples, they focus on different aspects. The
shrinkage loss focuses on the imbalance issue of samples from test frames in the
offline training of the network and is used to prevent the vast number of easy
background samples from overwhelming the learning of feature embeddings [35].
Different from that, the target-aware feature construction focuses on the prob-
lems caused by the imbalance of samples from training frames in model learning
and enables the learned discriminative model fit training samples well in the
online tracking.

2.5 Online Tracking

Updating. Several recent tracking approaches [29,34,35] use a moving average
strategy to update the discriminative model. Despite its simplicity, this strategy
limits the flexibility of the update mechanism due to synthetic appearance and a
constant update rate across the whole sequence. To address the drawbacks of this
strategy, our approach allows the discriminative model to be easily updated by
adding new frames to the training set as in [2]. We ensure a maximum memory
size of 50 for the training set. During online tracking, the model is updated every
15 frames. Besides, we update the base sample matrix in every frame as follows.

BT = B, T = 1,

BT = (1 − γ)BT−1 + γB, T > 1,
(8)

where γ is a weight parameter and T is the frame number.

Localization. In a new test frame, given the optimal solution to Problem (5),
α∗

p, the updated base sample matrix B and the test sample matrix Z, we predict

the target location by ŷ = ˜Z�α∗
p, where ˜Z = B

�
Z. The sample corresponding

to the maximum element of ŷ is regarded as the target object.
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Refinement. After locating the target in a new test frame, we refine its bound-
ing box by ATOM [5] for more accurate tracking.

3 Experiments

Our tracker is implemented in Python using PyTorch. On a single TITAN RTX
GPU, employing ResNet-50 [9] as the backbone network, TAFDT achieves a
tracking speed of 30 FPS. We validate it by performing comprehensive experi-
ments on four benchmarks: OTB-2015 [31], VOT-2018 [16], NfS [13], and GOT-
10k [11].

Table 1. Comparisons of different feature constructions for TAFDT on the combined
NfS and OTB-2015 benchmarks.

Ours Larger area Smaller area Baseline

Method Target-aware None-aware Target-aware+ Target-aware− Center-aware Target-unaware

Sample area 3 × 3 5 × 5 4 × 4 2 × 2 1.5 × 1.5 –

Mean DP(%) 81.2 78.8 80.6 79.7 80.4 79.0

AUC (%) 68.5 64.9 66.2 66.1 64.0 64.7

3.1 Implementation Details

Training Data. We use the training splits of large-scale tracking datasets
including TrackingNet [24], GOT-10k [11], and LaSOT [8]. The networks are
trained with 20 image tuples sampled from a random segment of 50 frames in a
sequence. For each training/test frame, the search area is 5 × 5 times the target
area. Base samples are extracted from the region centered at the target, with an
area of 3 × 3 times the target area. In addition, we use image flipping and color
jittering for data augmentation.

Network Learning. We freeze the weights of the ResNet-50 [9] backbone net-
work during training. The networks are trained for 50 epochs with 1500 iterations
per epoch within 30 h. We use ADAM [15] with learning rate decay of 0.2 every
15 epochs, using a initial learning rate of 0.005.

3.2 Feature Comparisons

In order to confirm the effectiveness of the proposed target-aware feature con-
struction, we compare it with other four feature constructions on the com-
bined OTB-2015 and NfS benchmarks. To compare equitably, the only difference
between these feature constructions is the area of the region where base samples
are extracted. As shown in Table 1, applying none-aware features only obtains
similar results to those of the baseline applying target-unaware features directly
from the feature extraction network. Applying target-aware+ features obtains
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better results due to the reduction of redundant background information, with
the mean AUC score of 66.2% and DP of 80.6%. Our tracker with target-aware
features further improves the results, giving absolute gains of 2.3% and 0.6% in
mean AUC scores and DP, respectively. Note that when more background infor-
mation is contained in base samples as in target-aware+ features and none-aware
ones, it is hard for the discriminative model to pay attention to foreground and
fit training samples well. In contrast, when less foreground information is con-
tained in base samples as in center-aware features and target-aware− ones, the
results degenerate because the discriminative model is less robust to variation
of target appearance. The results show that the area of 3 × 3 times the target
size is the most suitable for our target-aware feature construction, which is the
maximum area where each base sample contains part of the target object.

3.3 State-of-the-Art Comparisons

OTB-2015. Figure 4 and Table 2 show the comparisons of TAFDT with the
state-of-the-art online discriminative trackers. TAFDT achieves the AUC score

Table 2. The mean overlap of TAFDT and other nine state-of-the-art online discrim-
inative trackers on OTB-2015.

Tracker TAFDT ECO [6] ATOM [5] DiMP50 [2] DCFST50 [35]

Venue Ours CVPR2017 CVPR2019 ICCV2019 ECCV2020

Mean OP(%) 88.9 84.2 83.4 84.6 87.3

FPS 30 6 30 30 25

Tracker DCFST18 [35] VITAL [26] fdKCF [34] MDNet [25] DeepSTRCF [18]

Venue ECCV2020 CVPR2018 ICCV2019 CVPR2016 CVPR2018

Mean OP(%) 87.2 85.7 82.7 84.7 84.5

FPS 40 2 24 1 5

0 10 20 30 40 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

is
io

n

Precision Plots on OTB2015

VITAL [0.910]
TAFDT [0.908]
DCFST50 [0.907]
DCFST18 [0.907]
ECO [0.902]
MDNet [0.901]
fdKCF [0.896]
DiMP50 [0.880]
DeepSTRCF [0.879]
ATOM [0.877]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Su
cc

es
s 

ra
te

Success Plots on OTB2015

TAFDT [0.719]
DCFST50 [0.712]
DCFST18 [0.708]
ECO [0.697]
VITAL [0.687]
DiMP50 [0.686]
DeepSTRCF [0.686]
MDNet [0.683]
ATOM [0.675]
fdKCF [0.675]

Fig. 4. The mean precision and success plots of the proposed TAFDT and other six
state-of-the-art online discriminative trackers on OTB-2015. The mean distance preci-
sions and AUC scores are reported in the legends.
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of 71.9%, outperforming the latest DCFST50 [35] and DiMP50 [2] by 0.7% and
3.3%, respectively. In addition, TAFDT achieves the mean OP of 88.9% (see
Table 2), leading the second best tracker DCFST50 with an absolute gain of
1.6%. The results show that the target-aware feature construction helps our new
discriminative tracker TAFDT achieve new state of the art on this benchmark,
while running at 30 FPS, comparable with other trackers.

Table 3 shows the comparison of TAFDT with the Siamese network based
trackers including the latest target-aware feature-based trackers MLT [4] and
TADT [19]. TAFDT achieves a gain of 1.8% in AUC scores compared with
the state-of-the-art SiamRCNN [30] which employs stronger backbone network
(ResNet-101) and more training datas (e.g., COCO [20]), respectively. Moreover,
TAFDT surpasses the previous ‘target-aware’ trackers TADT and MLT with
significant gains of 5.9% and 10.8%, respectively, confirming the effectiveness
and superiority of our target-aware feature construction.

Table 3. The mean AUC scores of TAFDT and other four state-of-the-art Siamese-
based trackers on OTB-2015.

Tracker TAFDT SiamRCNN [30] SiamRPN++ [17] MLT [4] TADT [19]

Venue Ours CVPR2020 CVPR2019 ICCV2019 CVPR2019

AUC(%) 71.9 70.1 69.6 61.1 66.0

Table 4. State-of-the-art comparisons on the VOT-2018 in terms of expected average
overlap (EAO), accuracy and robustness.

Tracker UPDT [3] SiameseRPN++

[17]

ATOM [5] DiMP50 [2] DCFST50 [35] SiamRCNN [30] TAFDT

Venue ECCV2018 CVPR2019 CVPR2019 ICCV2019 ECCV2020 CVPR2020 Ours

EAO 0.378 0.414 0.401 0.440 0.452 0.408 0.455

Robustness 0.184 0.234 0.204 0.153 0.136 0.220 0.180

Accuracy 0.536 0.600 0.590 0.597 0.607 0.609 0.611

VOT-2018. We evaluate TAFDT on VOT-2018, then compare its accuracy,
robustness, and EAO score with six state-of-the-art trackers. As shown in
Table 4, the proposed TAFDT achieves 45.5% and 61.1% in terms of EAO and
accuracy, respectively, surpassing the second best DCFST50 by 0.3% and 0.4%
in terms of EAO and accuracy, respectively.

NfS. We evaluate the proposed TAFDT on the 30 FPS version of NfS. Table 5
shows the comparison with six state-of-the-art trackers. Our approach achieves
the AUC score of 65.5%. TAFDT consistently outperforms DCFST50 and
SiamRCNN with gains of 1.4% and 1.6% in AUC scores, respectively.
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GOT-10k. We evaluate the proposed TAFDT on the test set of GOT10k includ-
ing 180 test videos. In contrast to other datasets, trackers are restricted to use
only the training split of the dataset to ensure a fair comparison. Accordingly,
we retrain our networks by using only the training split. Figure 5 shows the suc-
cess plots of TAFDT and other nine state-of-the-art trackers. The success rates
at overlap threshold 0.5 are shown in legend which represent the percentages of
successfully tracked frames. TAFDT outperforms all previous trackers, achiev-
ing an absolute gain of 0.5% in success rates over the previous best method,
DCFST50.

Table 5. State-of-the-art comparison on the 30 FPS version of NfS in terms of AUC
scores.

Tracker TAFDT ECO [6] UPDT [3] ATOM [5] DiMP50 [2] DCFST50 [35] SiamRCNN [30]

Venue Ours CVPR2017 ECCV2018 CVPR2019 ICCV2019 ECCV2020 CVPR2020

AUC(%) 65.5 46.6 53.7 58.4 62.0 64.1 63.9

Fig. 5. Success plots of the proposed TAFDT and other nine state-of-the-art trackers
on GOT-10k. The success rates at overlap threshold 0.5 are shown in legend.

4 Conclusion

In this paper, we propose a simple yet powerful construction scheme of target-
aware features for online discriminative tracking and a target-aware features-
based online discriminative tracker, TAFDT. Based on our target-aware feature
embeddings, the learned discriminative model is capable of being less affected
by the imbalance issue, and thus fitting training samples well in online tracking.
The devised networks are able to learn the target-unaware feature embeddings
that are tightly coupled with our novel target-aware feature construction and the
discriminative tracking scheme. We extensively validate the proposed TAFDT on
four public benchmarks. Experimental results verify that target-aware feature
construction is effective and leads TAFDT to achieve state-of-the-art perfor-
mance.
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