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ABSTRACT
Cross-modal retrieval is an important multimedia research area
which aims to take one type of data as the query to retrieve rele-
vant data of another type. Most of the existing methods follow the
paradigm of pair-wise learning and class-level learning to generate
a common embedding space, where the similarity of heterogeneous
multimodal samples can be calculated. However, in contrast to
large-scale cross-modal retrieval applications which often need to
tackle multiple modalities, previous studies on cross-modal retrieval
mainly focus on two modalities (i.e., text-image or text-video). In
addition, for large-scale cross-modal retrieval with modality diver-
sity, another important problem is that the available training data
are considerably modality-imbalanced. In this paper, we focus on
the challenging problem of modality-imbalanced cross-modal re-
trieval, and propose a Multimodal Coordinated Clustering Network
(MCCN) which consists of two modules, Multimodal Coordinated
Embedding (MCE) module to alleviate the imbalanced training data
and Multimodal Contrastive Clustering (MCC) module to tackle
the imbalanced optimization. The MCE module develops a data-
driven approach to coordinate multiple modalities via multimodal
semantic graph for the generation of modality-balanced training
samples. The MCC module learns class prototypes as anchors to
preserve the pair-wise and class-level similarities across modal-
ities for intra-class compactness and inter-class separation, and
further introduces intra-class and inter-class margins to enhance
optimization flexibility. We conduct experiments on the benchmark
multimodal datasets to verify the effectiveness of our proposed
method.
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• Information systems → Multimedia and multimodal re-
trieval.
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1 INTRODUCTION
Recent years have seen a rapidly growing trend of multimodal data
describing the same topic in social media, including image, text,
video, audio and 3D model. Cross-modal retrieval task as a core
area of information retrieval aims to take one type of data as the
query to retrieve relevant data of another type [47]. It is a funda-
mental research task and has a number of practical applications
in domains such as image retrieval [42], image caption [33], video
recommendation [38], automatic story generation [17] and so forth.
However, it is well known that the inconsistent representation and
distribution of distinct modalities causing the heterogeneous gap
across modalities, which makes cross-modal similarity cannot be
directly computed [8]. Therefore, the main challenge of cross-modal
retrieval is how to measure the similarity between the samples from
different modalities.

A common approach to bridge the heterogeneous gap is to find
a common embedding space by learning modality-specific transfor-
mations, where the cross-modal similarity can be directly compared
[11, 34]. To preserve the multimodal semantic structure in the com-
mon embedding space, most of the existing cross-modal retrieval
methods follow the paradigm of pair-wise learning and class-level
learning. The former usually leverages the triplet ranking loss func-
tion to optimize the similarity of paired samples (from the same or
different modalities), which encourages the similarity of the related
pairs larger than the unrelated ones [24, 34, 39]. The latter basically
learns to classify each training sample to its target class with a
classification loss [9, 11, 26, 34], which essentially learns a semantic
partition of the common embedding space. Recent work focuses on
introducing adversarial training process to learn modality invari-
ant embeddings with a modality classifier and achieves superior
performances [24, 39].

However, most existing methods on cross-modal retrieval only
consider two modalities, usually text and image (or text and video)
modalities. For large-scale cross-modal retrieval applications, it is of-
ten needed to handle multiple modalities (e.g., image, text, video, au-
dio and 3D model). In addition, for large-scale cross-modal retrieval
with multiple modalities, another important problem is that the
available training data are considerably modality-imbalanced, due
to the discrepancies between different modalities in the difficulty
of data collection and labor annotation. The modality-imbalanced
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training data inevitably lead to insufficient learning over multi-
ple modalities. Although several methods have been proposed to
improve the modality-imbalance problem in the context of two
modalities, most of them concentrate on introducing new con-
straints [6, 11] or parameters [45] to generate modality-balanced
training samples, which would lead to slow convergence and poor
performance when extended to multiple modalities.

In this paper, we focus on the challenging problem of modality-
imbalanced cross-modal retrieval in large-scale applications with
multiple modalities. In addition to the issue of alleviating modality-
imbalanced training data for effective learning over multiple modal-
ities, another research issue is the imbalanced optimization. Due
to the huge heterogeneous modality gap between samples from
different modalities, previous work mainly optimizes the similar-
ity of paired samples from different modalities (i.e., heterogeneous
similarity) yet ignores the paired samples from the same modality
(i.e., homogeneous similarity). The imbalanced optimization will be
further exacerbated when extended to multiple modalities, and re-
sult in worse preservation of the semantic structure for multimodal
data.

To tackle the above challenges, we propose a Multimodal Co-
ordinated Clustering Network (MCCN) for modality-imbalanced
cross-modal retrieval problem with multiple modalities. The MCCN
consists of two modules, Multimodal Coordinated Embedding mod-
ule (MCE) and Multimodal Contrastive Clustering module (MCC).
The MCE module employs a data-driven approach to coordinate
multiple modalities for generating modality-balanced training sam-
ples, based on the intuition that multimodal samples belonging to
the same category usually share the same semantic content but
follow different distributions. It randomly walks on a predefined
multimodal semantic graph to stochastically make transitions be-
tween embeddings over different modalities to generate modality-
balanced samples with consistent labels. Benefited from the MCE
module, the independent modality-specific networks are forced
to explicitly consider aligning multimodal samples, which is es-
sential to the deep understanding of multimodal content. Inspired
by prototype learning, the MCC module takes class prototypes as
anchors to integrate the semantic similarities of heterogeneous and
homogeneous samples. It then preserves the pair-wise similarity
and class-level similarity across multiple modalities for intra-class
compactness and inter-class separation. To this end, we present
a novel contrastive clustering loss to jointly learn the common
embedding space and class prototypes, and further introduce an
intra-class margin and an inter-class margin to enhance the opti-
mization flexibility.

The main contributions of our work are as follows:

• For large-scale retrieval task with multiple modalities, we
identify the important problem ofmodality-imbalanced cross-
modal retrieval, and propose a novel multimodal coordinated
clustering network MCCN to tackle this problem.

• To alleviate the imbalanced training data, we present a multi-
modal coordinated embedding module MCE to stochastically
transit between embeddings over different modalities with
consistent labels.

• To tackle the imbalanced optimization, we propose a multi-
modal contrastive clustering module MCC that jointly learns

class prototypes to minimize the intra-class variations and
meanwhile maximize the inter-class variations.

• We conduct experiments on the benchmark multimodal
datasets with multiple modalities, and experimental results
demonstrate the effectiveness of our method.

2 RELATEDWORK
2.1 Cross-modal Retrieval
The key challenge of cross-modal retrieval is to bridge the hetero-
geneity gap and find a common embedding space in which the
semantic similarity of multimodal samples can be compared. The
typical methods can be divided into two main categories, traditional
methods and deep learning based methods. Traditional methods
use statistical correlation analysis to transform multimodal samples
to common representations by maximizing pair-wise correlations,
in which the representative methods are CCA [7] and its extensions
[1, 5, 37]. Another class of traditional methods utilizes graph regu-
larization to learn the statistical correlations between multimodal
samples. The representative work [46] proposes the JRL model
which employs both graph regularization and semi-supervised in-
formation to perform joint representation learning.

Deep learning based methods take advantage of the powerful
representation capabilities of deep neural networks to learn the
common representation for multimodal samples, which mainly fo-
cus on learning modality-specific transformations to find a common
embedding space for cross-modal retrieval. To preserve the multi-
modal semantic associations in the common embedding space, most
of the existing cross-modal retrieval methods follow the paradigm
of preserving pair-wise similarity and class-level similarity. Angrew
et al. [1] uses two modality-specific transformations to nonlinearly
project image and text into a latent common embedding space,
where the projected embeddings are highly correlated. In [3], Feng
et al. propose a cross-modal auto-encoder that optimize pair-wise
constraints at different levels to preserve the semantic associations.
As one item in one modality may correspond to more than one
semantically related items in another modality, Wang et al. [34] pro-
pose a triplet constraint that optimize coupled samples belonging
to the same category across different modalities. The triplet con-
straint can effectively minimize the gap among the representations
of all semantically related samples from different modalities, and
some new variants have been proposed in subsequent cross-modal
retrieval methods [24, 39, 47]. To gain discriminative embedding
space, some methods further exploits label information to capture
class-level similarity structure of multimodal samples [22, 39, 47].

The aforementioned methods mainly focus on cross-modal re-
trieval with two modalities (typically image and text), ignoring the
growing need of large-scale cross-modal retrieval with multiple
modality data involving image, text, audio, video and 3D model.
Although the above methods can be directly extended to multiple
modalities, they will inevitably encounter the modality-imbalanced
training data and imbalanced optimization issues. Some early meth-
ods for learning embeddings of multiple modalities have been pro-
posed based on linear projections, which jointly learn multiple
view-specific transformations to maximize cross-modal similar-
ity in a non-pairwise manner [13, 29]. To capture the complex
nonlinear correlations, some deep lerning based methods [35, 40]
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Figure 1: Overall architecture of the proposedMCCN. It first pads themodality-imbalanced training data to a fixed length, and
further connects samples belonging to the same category from different modalities to generate multimodal semantic graph
(MSG). Then theMCEmodule randomlywalks on the predefinedMSG tomake transition between padded embeddings and real
embeddings with consistent semantic label, which generates modality-balanced training data to avoid insufficient learning.
Finally, the MCCmodule jointly learns class prototypes to minimize the intra-class variations as well to maximize inter-class
variations in the common embedding space, which preserves cross-modal semantic correlations for effective retrieval. As an
example, the square represents the embedding of image modality, the triangle represents the embedding of text modality, and
the rhombus represents the embedding of 3D model modality. Different colors denote different semantic categories.

have been proposed to learn the optimal latent subspace shared
by multiple modalities. More recent work [8] employs separate
modality-specific sub-networks to preserve the semantic discrim-
ination in a predefined embedding space, yet it fails to take the
cross-modal similarity into consideration.

In essence, these methods straightforwardly extend embedding
space learning methods from two modalities to multiple modalities,
without considering the modality-imbalanced training data and
imbalanced optimization issues. In our work, we identify these two
important issues in modality-imbalanced cross-modal retrieval for
large-scale applications, and propose the multimodal coordinated
embedding module and multimodal contrastive clustering module
to alleviate these non-trivial issues.

2.2 Prototype Learning
Prototype learning is a classical and representative method in pat-
tern recognition and machine learning [43]. The earliest prototype
learningmethod is thek-nearest-neighbor (K-NN), which calculates
the distance from all samples and obtains the nearest k samples as
the classification basis. To reduce the heavy burden of computation
requirement and storage space of K-NN, many prototype learning
methods have been proposed to select or synthesize prototypes that
better represent the class distributions [10, 30]. These methods are
also effective to improve the classification accuracy, in which Learn-
ing Vector Quantization (LVQ) [15] is a representative method that

offers intuitive and simple, yet powerful learning capacity in su-
pervised learning. The LVQ has been widely studied and has many
variants, which can be divided into two main categories according
to the updating methods of prototypes. One category concentrates
on designing suitable updating conditions and rules to learn the
prototypes, while the performance is limited by the initialization
of prototypes and the selection of informative patterns [4, 18]. The
other category learns the prototypes in a parameter optimization
way, by defining loss functions with regard to the prototypes and
learning the prototypes through optimizing the loss functions [43].
A detailed review and evaluation of the prototype based learning
methods can be found in [19].

As many prototype learning algorithms based on loss minimiza-
tion are promising to give better performance [19], in this work, we
focus on learning class prototypes through optimizing the loss func-
tions. We propose a novel multimodal contrastive clustering loss to
jointly update multimodal embeddings and class prototypes, which
aims to minimize intra-class variations and meanwhile maximize
inter-class variations for multimodal samples. More importantly,
the class prototypes integrate the distribution information of hetero-
geneous and homogeneous samples, thus can effectively alleviate
the modality-imbalanced optimization caused by heterogeneous
sample pairs. To the best of our knowledge, this is the first work
on combining the prototype learning with multimodal embedding
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space learning to perform large-scale cross-modal retrieval over
multiple modalities.

3 PROPOSED METHOD
In this section, we will first describe the problem formulation of
the cross-modal retrieval task with imbalanced multiple modali-
ties. Figure 1 illustrates the overall architecture of our proposed
method MCCN. We then will introduce the proposed multimodal
coordinated embedding module (MCE) that randomly walks on a
predefined multimodal semantic graph (MSG) to generate modality-
balanced training data with consistent labels. Finally, we will de-
scribe the proposedmultimodal contrastive clusteringmodule (MCC)
that jointly learns class prototype to minimize the intra-class varia-
tions as well to maximize the inter-class variations across multiple
modalities.

3.1 Problem Formulation
Suppose that we have a collection of data fromM different modal-
ities, with {x1i , x

2
i , ..., x

M
i } representing the same underlying con-

tent or objects. For example, the image, text, video, audio and 3D
model are often used to describe the same topic. For each modal-
ity, we can denote the i-th sample of the z-th modality as xzi , and
denote the set containing all the nz samples of the z-th modal-
ity as Φz = {xz1 , x

z
2 , ..., x

z
nz }. The corresponding label vector of

the z-th modality is represented as Y z = [yz1 ,y
z
2 , ...,y

z
nz ], and

yzi ∈ {1, 2, ...,C} is the index of category, whereC is the number of
semantic categories. We then utilize a modality-specific encoder to
extract the original embedding, denote as:

uzi = Ez (xzi , ζz ) ∈ Rdz (1)

where uzi denotes the original embedding in the modality-specific
embedding space, Ez is the encoder of the z−th modality (e.g., Bert
model for text modality encoding, and VGG-net for image modality
encoding), dz is the dimension of the z−th embedding space, and ζz
is the parameters pre-trained on other datasets. Here we fine-tune
the image encoder pre-trained on ImageNet and the text encoder
pre-trained on Wiki Corpus. Therefore, the original embedding
matrix for z−th modality can be denoted as:

U z = {uz1 ,u
z
2 , ...,u

z
nz } ∈ Rdz×nz (2)

3.2 Multimodal Coordinated Embedding (MCE)
The goal of cross-modal retrieval is to learn a modality-specific
transformation function for each modality to project them into a
common embedding space. Since the training samples are consid-
erably modality-imbalanced over multiple modalities, we propose
a multimodal coordinated embedding module (MCE) to generate
modality-balanced embeddings, which utilizes a predefined multi-
modal semantic graph to stochastically make transitions between
embeddings over different modalities. Without losing generality, let
us assume that modality k has sufficient samples in each category,
which is usually text modality due to the convenience of data col-
lection. Following [20], we first utilize the zero-padding operation
to pad the multimodal features into a unified length, denoted as:

U
z
= {uzi } = {U z ,Qz } ∈ Rdz×nk (3)

where Qz = {qzl } ∈ Rdz×(nk−nz ) is a all-zero matrix. The em-
beddings of U z are real embeddings containing distribution in-
formation over different modalities, and Qz consists of padding
embeddings that aims to generate balanced multimodal samples
with consistent semantic labels. Similarly, we pad the label vector
Y z as:

Y
z
= [yzi ] = [Y z ,Hz ] ∈ Rnk (4)

where Hz = Yk − Y z .
Then we employ the semantic labels [Y z ]Mz=1 to construct multi-

modal semantic graph that can be used to create stochastic multi-
modal training samples with consistent labels over multiple modal-
ities. Specifically, two embeddings are connected with an edge in
the multimodal semantic graph, if and only if they belong to the
same category and come from different modalities. The connection
matrix can be defined as:

ez1z2i j =

{
1, if yz1i = y

z2
j and z1 , z2

0, otherwise
(5)

Note that we do not connect samples of the same modality, which is
motivated by the fact that embeddings of samples belonging to the
same category and the same modality follow the same distribution
[36, 40]. To avoid the transition between the padding embeddings,
we set the edge between the padding embeddings to 0.

To generate transition probability from embeddings of the mul-
timodal semantic graph, inspired by [41], we use a random walk
with random restart and self-loop to fill out the transition proba-
bility table. We can define the transition probability p(uz1i ,u

z2
j ) as

probability of transition from embedding uz1i to embedding uz2j . To
encourage the transition within padding embeddings and real em-
beddings belonging to the same category across different modalities,
when uz1i is connected with uz2j but not with uz3l in the multimodal
semantic graph, we can set the ratio of p(uz1i ,u

z2
j ) and p(uz1i ,u

z3
l )

to be a constant greater than 1. Mathematically, we have:

uz1i ∼ uz2j ,u
z1
i ≁ uz3l → p(uz1i ,u

z2
j )/p(uz1i ,u

z3
l ) = ϵ (6)

where ϵ > 1 and is a tuning parameter, ∼ denotes connect and
≁ denotes not connect. The larger the value of ϵ , the more likely
the padding embedding will be replaced by the real embedding
belonging to the same category and from other modalities. We also
have:

p(uz1i ,u
z1
i ) = ϵ0 (7)

where ϵ0 is the self-loop probability. Since the sum of transition
probabilities from one embedding to other arbitrary embeddings
is 1, i.e.,

∑
u ∈U p(uz1i ,u |ϵ, ϵ0) = 1, we can derive transition prob-

abilities between any two embeddings to fill out the transition
probability table T . Based on the transition probability table T , we
can define a transition function ϒ to generate the modality-balanced
embeddings, denote as:

Û z = ϒ(U
z
,T) (8)

Finally, we can calculate themultimodal coordinated embeddings
as:

Hz = fz (Û
z , θz ) ∈ Rd×n (9)
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where Hz = {hz1 ,h
z
2 , ...,h

z
n } is the learned embeddings of z−th

modality in the common embedding space, θz is the trainable pa-
rameters of the z-th modality-specific transformation function, and
d is the dimension of the common embedding space.

3.3 Multimodal Contrastive Clustering (MCC)
To preserve the semantic relationships of multimodal samples in the
common embedding space, previous work mainly construct paired
samples (can be from the same or different modalities) to minimize
the inter-class similarity and maximize the intra-class similarity
[24, 34, 39, 47]. However, these methods of constructing pair-wise
constraints simultaneously optimizes the heterogeneous and ho-
mogeneous sample pairs, which may suffer modality-imbalanced
optimization due to the modality gap. We find inspiration from
prototype learning [43], which provide a gradually evolved class
prototype to jointly learn the intra-class cluster and inter-class
separation of multiple modalities. More importantly, the class pro-
totypes integrate the distribution information of heterogeneous and
homogeneous samples, which can effectively alleviate the modality-
imbalanced optimization problem. For each class c ∈ {1, 2, ...,C},
we maintain a prototype vector oc ∈ Rd in the common embedding
space by calculating the mean of embeddings corresponding to
the c-th category from all modalities. The prototype vector oc is
jointly trained by the prototype-based loss function. A natural way
to jointly train multimodal embeddings and class prototype vector
is to minimize the distance from the embedding to the correspond-
ing prototype while maximizing the distance from the embedding
to wrong prototypes, which is usually modeled as a contrastive
clustering problem [12].

For embeddings of z-th modality, let us assume that there are K
positive Euclidean distances from embeddings Hz to their corre-
sponding prototype and L negative Euclidean distances from embed-
dings to wrong prototypes. We represent these positive distances
as {dzα }(α = 1, 2, ...,K) and negative distances {d̂zβ }(β = 1, 2, ..., L),
respectively. To minimize each positive distance dzα ae well as to
maximize each dzβ , we define the multimodal contrastive clustering
loss as follows:

L =

M∑
z=1

(loд[1 +
L∑

β=1

K∑
α=1

exp(λ(dzα − d̂zβ + ∆))]) (10)

where λ is a scale factor and ∆ is a margin for class separation.
Here we utilize the same scale factor and margin for each modality
to reduce parameters. It iterates every distance to minimize the
intra-class variations and maximize the inter-class variations. It
aims to optimize dzα → 0 and d̂zβ → ∆.

To enhance the optimization flexibility, inspired by [32], we
introduce the intra-class margin and inter-class margin, thus the
final learning objective of MCCN can be formulated as:

L =

M∑
z=1

(loд[1 +
L∑

β=1

K∑
α=1

exp(λ((dzα − ∆p ) − (d̂zβ − ∆n )))])

=

M∑
z=1

(loд[1 +
K∑
α=1

exp(λ(dzα − ∆p ))
L∑

β=1
exp(−λ(d̂zβ − ∆n ))])

(11)

where ∆p denotes the intra-class margin and ∆n denotes the inter-
class margin. For simplicity, we set ∆p =m and ∆n = 1 −m, thus
only preserve a single parameterm. We can see that our loss expects
the positive distance dzα < m the negative distance dzβ > 1 −m. We
will evaluate the impact of λ andm in the experiment.

4 EXPERIMENT
In the experiments, we first compare our proposed MCCN with
representative methods by performing cross-modal retrieval over
multiple modalities. We then conduct cross-modal retrieval experi-
ments specifically for image and text to further evaluate the per-
formance of the proposed MCCN. Moreover, we conduct ablation
studies to evaluate the impact of each component in MCCN. Finally,
we conduct a detailed parameter analysis on the hyper-parameters
of our method.

4.1 Experimental Setup
4.1.1 Datasets and Features. To verify the effectiveness of our pro-
posedMCCN,we conduct experiments on twomodality-imbalanced
multimodal datasets, namely XMedia [26, 46] and XMediaNet [23,
25]. The Xmedia dataset is the benchmark dataset for cross-modal
retrieval with multiple modalities. It contains samples of 5 modal-
ities from 20 different semantic categories. The XmediaNet is a
large-scale multimodal dataset with 200 semantic categories, we
test the most common image, text and video modalities with imbal-
anced data. In additional, to evaluate the effectiveness of MCCN on
conventional image-text retrieval, we also carry out experiments on
benchmarkWikipedia [28] and Pascal [27] datasets. For Xmedia and
XmediaNet datasets, the feature files are provided by the authors.
For Wikipedia and Pascal datasets with two modalities, we use the
pre-trained BERT [2] model to extract embeddings from text, and
use the pre-trained VGG-19 [31] to extract embeddings from image.
The detailed statistics of the four datasets are summarized in Table

Table 1: General statistics of the four datasets used in our ex-
periments, where ’/’ in the second column denotes the num-
ber of train/valid/test set. The split ofXMedia dataset strictly
follows that in [8], and the split of other datasets strictly fol-
lows that in [47].

Dataset Label Modality Instance Feature

XMedia 20

Image
Text
Video
Audio

3D-model

4000/500/500
4000/500/500
969/87/87
800/100/100
400/50/50

4,096D VGG
3,000D BoW
4,096D CNN
29D MFCC
4,700d LightF

XMediaNet 200
Image
Text
Video

32000/4000/4000
32000/4000/4000
8000/1000/1000

4,096D VGG
3,000D BoW
4,096D CNN

Wikipedia 10 Image
Text 2173/231/462 4,096D VGG

768d BERT

Pascal 20 Image
Text 800/100/100 4,096D VGG

768d BERT
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Table 2: Performance Comparison with representative methods on XMedia dataset.

Method
Query Image Text Video Audio 3D

AvgTarget Text VideoAudio 3D ImageVideoAudio 3D Image Text Audio 3D Image Text Video 3D Image Text VideoAudio

MvDA 0.795 0.516 0.482 0.548 0.786 0.537 0.506 0.582 0.483 0.477 0.295 0.387 0.473 0.480 0.354 0.425 0.533 0.547 0.412 0.358 0.499

JFSSL 0.859 0.582 0.526 0.568 0.867 0.608 0.551 0.610 0.527 0.509 0.326 0.412 0.511 0.553 0.396 0.463 0.584 0.571 0.443 0.406 0.544

JLSLR 0.864 0.604 0.541 0.583 0.874 0.614 0.563 0.636 0.541 0.536 0.338 0.430 0.556 0.572 0.421 0.486 0.602 0.620 0.472 0.412 0.563

SDML 0.887 0.645 0.585 0.655 0.904 0.674 0.604 0.696 0.586 0.587 0.379 0.488 0.575 0.608 0.425 0.517 0.667 0.674 0.501 0.416 0.604

MCCN 0.908 0.654 0.614 0.665 0.915 0.677 0.627 0.711 0.601 0.592 0.393 0.499 0.586 0.621 0.442 0.526 0.675 0.686 0.514 0.425 0.617

1. To ensure fair comparison, all the compared methods adopt the
same features used in our method.

4.1.2 Evaluation Metrics. The evaluation results of all the experi-
ments are presented in terms of the mean average precision (MAP),
which is a standard performance evaluation criterion in cross-modal
retrieval research [9, 34, 47]. Specifically, we compute the MAP
scores on the ranked lists of the retrieved results for multiple cross-
modal retrieval tasks, e.g., retrieving text, video, audio, 3D instances
using image queries. The cosine distance is adopted to measure the
similarity of features. To calculate the MAP, we first evaluate the
average precision (AP) of a set of R retrieved items by:

AP =
1
T

R∑
r=1

Pr × δ (r ) (12)

where T is the number of relevant items in the retrieved set, P(r )
represents the precision of the top r retrieved items, and δ (r ) is
an indicator function, whose value is 1 if the r -th retrieved item
is relevant (here relevant means belonging to the category of the
query). The MAP can be calculated by averaging the AP values.

4.1.3 Implementation Details. For image modality, we first resize
it into 224*224 and utilize pretrained VGG-19 [31] to extract a
4096-dimensional feature vector from the fc7 layer as the original
image feature. For text, we use a pretrained BERT to extract 768-
dimensional text feature. Similar to the BERT paper [2], we take the
embedding associated with [CLS] to represent the whole sentence.
Other variants such as XLNET [44] and ALBERT [16] could also
be used to extract text feature. It is notable that all the compared
methods adopt the same image feature and text feature for fair
comparison. The value of ϵ in Equation (6) is set to be 1000. The
self-loop probability ϵ0 is set to be 0 for padding embeddings and
set to be 1 for real embeddings, since every padding embedding
should be replaced by the real embedding. After multimodal coordi-
nated embedding, we employ two fully-connected layers with the
Rectified Linear Unit (ReLU) [21] active function for each modality
to project them into a common embedding space. The numbers of
the hidden units for the two layers are 2048 and 1024, respectively.
The weights of the second fully-layers of the two sub-networks
are shared to learn the correlation of the two different modalities.
The entire network optimized by Adam update rule [14]. We set
the initial learning rate as 10−4, the batch size 128. Regarding the
parameter λ andm in Equation (10), we will analyze the impact of

parameter setting in Figure 2. The best reported results of MCCN
are obtained by the optimal values of λ andm per dataset.

4.2 Cross-modal Retrieval on Multiple
Modalities

In this section, we first conduct cross-modal retrieval experiments
on multiple modalities. Specifically, we conduct experiments on the
XMedia dataset involving five modalities (i.e., image, text, video,
audio and 3D model), and on the large-scale XmediaNet dataset in-
volving three common modalities (i.e., image, text, video). Note that
both of the two multimodal datasets are considerably imbalanced
in different modalities.

4.2.1 Baselines. We compare our proposed MCCN with the re-
cently proposed cross-modal retrieval methods that learn embed-
dings of multiple modalities, namely MvDA [13], JFSSL [35], JLSLR
[40] and SDML [8]. Table 2 and Table 3 report the MAP scores of
our proposed MCCN method and the baseline methods on Xmedia
and XmediaNet, respectively.

4.2.2 Compared with Baselines. From the experimental results on
the Xmedia dataset, we can see that our proposed MCCN method
achieves the best performance in all cases. Specifically, our MCCN
outperforms the previous best model SDML [8], achieving the aver-
age improvement 1.3% in terms of theMAP score. This demonstrates
the benefit of our model in tackling modality-imbalanced training
data and modality-imbalanced optimization. We can also see that
the performances of the graph-based regression models JFSSL and
JLSLR are significantly better than MvDA, showing the advantage
of constructing the graph structure of multimodal samples to pre-
serve the semantic relationships. Moreover, the superiority of SDML
over JFSSL and JLSLR demonstrates the effectiveness of preserving
the semantic discrimination in the predefined embedding space for
multiple modalities.

For the results on the large-scale XmediaNet dataset, our MCCN
still outperforms the SOTA model SDML, achieving the average
improvement 1.7%. This indicates the obvious advantage of our
model in handling large-scale cross-modal retrieval task. Compared
to the results on the Xmedia dataset, we can find that our MCCN
and the baseline methods all encounter clear performance drop,
due to the dramatic increase of the number of semantic categories
and still the number of instances in each category remains the same
in XmediaNet. In general, the above experimental results verify the
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Table 3: PerformanceComparisonwith representativemeth-
ods on XMediaNet dataset.

Method
Query Image Text Video

AvgTarget Text Video Image Video Image Text

MvDA 0.520 0.354 0.514 0.254 0.309 0.252 0.367

JFSSL 0.556 0.372 0.562 0.289 0.350 0.296 0.404

JLSLR 0.571 0.403 0.585 0.302 0.356 0.315 0.422

SDML 0.604 0.412 0.607 0.346 0.387 0.317 0.446

MCCN 0.621 0.415 0.626 0.361 0.415 0.339 0.463

effectiveness of our method for modality-imbalanced cross-modal
retrieval with multiple modalities.

4.3 Cross-modal Retrieval on Image and Text
In this section, we conduct cross-modal retrieval experiments specif-
ically for image and text to further evaluate the performance of the
proposed MCCN. Note that images and texts often co-occurs on
social media, making it significantly less difficult to collect paired
image and text datasets than other modalities like audio, video and
3D model. Therefore, multimodal datasets of image and text usually
contain modality-balanced training data. We will show the superi-
ority of the multimodal contrastive clustering method proposed by
MCCN on these datasets compared with representative cross-modal
retrieval methods, including latest adversarial training methods.

4.3.1 Baselines. For comparison, We compare MCCN with seven
representative baseline methods, including two traditional meth-
ods, namely DCCA [1] and JRL [46], and five deep learning based
methods, namely ACMR [34], SDML [8], DSCMR [47], DAVAE [11],
and MS2GAN [39]. Table 4 reports the MAP scores of our proposed
MCCN method and the comparative methods. Here we denote
"Image query Text" as "I2T", and denote "Text query Image" as "T2I".

4.3.2 Compared with Baselines. From the results, we can see that
the proposed MCCN achieves the best results on all of the three
datasets. Specifically, our MCCN outperforms the previous best
model, i.e., MS2GAN [39], with improvements 1.1%, 1.4% and 1.1% in
terms of the average MAP scores on Wikipedia, Pascal, and XMedi-
aNet datasets, respectively. The superiority of our MCCN indicates
the advantage of multimodal contrastive clustering in preserving
the similarity relationships between heterogeneous and homoge-
neous multimodal samples. We also noticed that the existing cross-
modal retrieval methods can better overcome the heterogeneous
modality gap by introducing adversarial training in the common
embedding space, as we can see that MS2GAN has achieved the
past SOTA performance. It is worth noting that, compared to in-
troducing more complex adversarial training, our proposed MCCN
uses a lightweight model to achieve the best results.

4.4 Ablation Study
To evaluate the performance of each component used in our MCCN,
we conduct a detailed ablation study on various variants of our

Table 4: Performance comparison of conventional image
and text retrieval on three widely-used benchmark datasets.

Method
Wikipedia Pascal XMediaNet∗

I2T T2I Avg I2T T2I Avg I2T T2I Avg

DCCA 0.518 0.455 0.486 0.603 0.624 0.618 0.653 0.659 0.656

JRL 0.516 0.460 0.488 0.587 0.582 0.585 0.623 0.620 0.622

ACMR 0.535 0.476 0.505 0.671 0.674 0.672 0.704 0.695 0.699

SDML 0.528 0.466 0.497 0.677 0.682 0.680 0.719 0.715 0.717

DSCMR 0.541 0.472 0.506 0.685 0.695 0.690 0.725 0.727 0.726

DAVAE 0.540 0.474 0.507 0.687 0.683 0.685 0.727 0.731 0.729

MS2GAN 0.544 0.475 0.509 0.690 0.697 0.693 0.732 0.730 0.731

MCCN 0.552 0.487 0.520 0.705 0.712 0.707 0.741 0.743 0.742
∗ We replace the text features of the original dataset with Bert features, and thus
the performances of both our method and the baselines are significantly improved.

model. The ablation results for cross-modal retrieval with multiple
modalities are given in Table 5, and the ablation results for image
and text retrieval are given in Table 6.

For cross-modal retrieval on the XMedia dataset involving 5
modalities, we fully evaluated the impact of multimodal coordinated
embedding module (MCE) and multimodal contrastive clustering
module (MCC). In general, we find these variants underperform
full MCCN, which means that all of the components utilized in our
MCCN contribute to the final retrieval accuracy. We firstly remove
the intra-class margin ∆p and the inter-class margin ∆n respec-
tively to analyze the impact of optimization flexibility. We can see
that the performance of our model has a obvious decline after re-
moving ∆p and ∆n , which shows that the intra-class and inter class
margins can improve the semantic partition of labeled multimodal
samples and thus enhance the cross-modal retrieval performance.
Comparing these two variants, we found that removing inter-class
margin ∆n performs worse than removing intra-class margin ∆p . It
indicates that inter-class relationship plays a more important role
in improving the quality of common embedding space, which has
been largely ignored in previous work. Then, we remove the entire
MCC module and utilize the typical pair-wise constraints as [47]
to preserve cross-modal associations, and the model gets the worst
performance as we expected. This demonstrates the effectiveness
of our contrastive clustering module in handling the imbalanced op-
timization between heterogeneous and homogeneous similarities.
Finally, we remove the MCE module and only utilize MCC module
to learn common embedding space with modality-imbalanced train-
ing data. It can be seen that the performance is seriously descended,
showing that our proposed data-driven MCEmodule can effectively
alleviate the modality-imbalanced problem.

For image and text retrieval, we carry out ablation studies on
Pascal dataset. Since multimodal datasets of image and text usually
contain modality-balanced training data, we only evaluate each
component in MCC module in ablation experiments. From Table 6,
we can see that the complete MCCN achieves the best performance,
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Table 5: Ablation results on the XMedia dataset.

Variant
Query Image Text Video Audio 3D

AvgTarget Text VideoAudio 3D ImageVideoAudio 3D Image Text Audio 3D Image Text Video 3D Image Text VideoAudio

MCCN 0.908 0.654 0.614 0.665 0.915 0.677 0.627 0.711 0.601 0.592 0.393 0.499 0.586 0.621 0.442 0.526 0.675 0.686 0.514 0.425 0.617

MCCN w/o ∆p 0.904 0.641 0.603 0.652 0.907 0.665 0.622 0.701 0.596 0.587 0.391 0.476 0.577 0.614 0.435 0.519 0.654 0.671 0.504 0.417 0.607

MCCN w/o ∆n 0.901 0.646 0.605 0.648 0.904 0.659 0.617 0.694 0.589 0.582 0.384 0.471 0.579 0.613 0.438 0.511 0.663 0.667 0.502 0.409 0.604

MCCN w/o MCC0.889 0.620 0.592 0.632 0.888 0.638 0.603 0.681 0.574 0.566 0.381 0.463 0.562 0.600 0.428 0.509 0.646 0.657 0.488 0.398 0.591

MCCN w/o MCE0.905 0.631 0.594 0.642 0.912 0.656 0.613 0.693 0.595 0.590 0.370 0.453 0.581 0.617 0.420 0.501 0.664 0.679 0.486 0.397 0.600

(a) Pascal (b) XMediaNet (c) Pascal (d) XMediaNet

Figure 2: Parameter analysis of λ andm.

Table 6: Ablation results on the Pascal dataset.

Variant Img2Text Text2Img Avg △Avg

MCCN 0.705 0.712 0.707 -
MCCN w/o ∆p 0.673 0.707 0.690 -0.017
MCCN w/o ∆n 0.683 0.701 0.692 -0.015
MCCN w/o MCC 0.670 0.694 0.687 -0.020

indicating that each component is beneficial for image and text
retrieval. Then, we separately remove intra-class margin ∆p and
the inter-class margin ∆n , and the MCCN encounters different de-
grees of performance degradation. The most obvious decline comes
from removing the entire MCC and replacing it with the typical
pair-wise constraints, since it optimizes heterogeneous similarities
and homogeneous similarities indiscriminately and thus leading to
modality-imbalanced optimization.

4.5 Parameter Analysis
The parameters of our method are analyzed in this section. The
objective function contains two parameters λ andm, we evaluate
their influences on Pascal and XmediaNet datasets. We vary λ from
32 to 1024, and show the impact of different values of λ in Figure 2(a)
and (b). From the figures we can see that the MAP first increase with
the growth of λ on both datasets, and then begins a slow decline

after λ surpasses a threshold. The best parameter setting of λ are 64
and 128 on the two datasets. Regarding the parameterm, we vary it
from 0 to 0.5 and show its impact in Figure 2(c) and (d). We can see
that the change ofm has a small performance change on XMediaNet,
while encounters a large change on the pascal dataset, which may
be caused by the size of the dataset. The best parameter setting of
m are 0.2 and 0.3 on Pascal and XMediaNet dataset, respectively.

5 CONCLUSION
In this paper, we identify the important issues ofmodality-imbalanced
cross-modal retrieval for large-scale applications with multiple
modalities. We propose a novel multimodal coordinated cluster-
ing network MCCN to tackle these issues which consists of two
modules. The multimodal coordinated embedding module employs
a data-driven approach to coordinate multiple modalities for gen-
erating modality-balanced training samples. The multimodal con-
trastive clustering module jointly optimizes the pair-wise similarity
and class-level similarity across multiple modalities for preserv-
ing multimodal semantic associations. Experimental results on the
benchmark datasets demonstrate the effectiveness of our proposed
method.
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