
 
 

 

  

Abstract—Folding-boom aerial platform vehicle is a type of 
construction vehicle used to hoist personnel to the appointed 
location in the aerial. As for aerial platform vehicle, the flexible 
deformations of the arm system cannot be neglected. Therefore, 
the flexible multi-body dynamics equations of the arm system of 
folding-boom aerial platform vehicle are established based on 
flexible multi-body dynamics theory and Lagrange’s equation. 
Following, the simulation is carried out. The simulation results 
show that the moving beams exist high frequency vibrations, 
which caused by the elastic deformations of them. As a result, 
the vibrations cause the work platform of aerial platform 
vehicle to shake, and at the same time, the deflections of the 
beams lead to small deviations of the trajectory of the work 
platform. Therefore, the establishment of the equations lays the 
basis of vibration controlling and accurately controlling the 
trajectory of the work platform of aerial platform vehicle. 

I. INTRODUCTION 
ERIAL platform vehicle is a kind of construction vehicle 
which can hoist personnel to the appointed location in 
the aerial for installation or maintenance.  

There are several types of aerial platform vehicle, 
including telescopic-boom, folding-boom and mixing-boom 
styles.  

Presently, some researches were carried out on the 
telescopic-boom aerial platform vehicle [1, 2]. But for 
folding-boom aerial platform vehicle, few published 
literatures are found for its design and control. The research 
of folding-boom aerial platform vehicle could lay the basis 
for the aerial platform vehicle with the more complex arm 
system, such as mixing-boom style, the beams of which have 
the function of folding and extension. And what’s more, the 
amount of folding-boom aerial platform vehicle occupies 
80% of aerial platform vehicle used in China. Therefore, the 
research of it has its practical significance. In this paper, we 
focus on the folding-boom aerial platform vehicle, which 
could cross barriers easily.  As is shown in the Fig.1, 
Folding-boom aerial platform vehicle has two beams, each of 
which is driven by a hydraulic cylinder.  

As an apparatus with the human working on the platform, 
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aerial platform vehicle requires very high safety. Therefore, 
the steady movement and accurately positioning of work 
platform should be ensured. As for the long beam of aerial 
platform vehicle, elastic deformations of them are not be 
neglected, so the dynamics of the arm system of aerial 
platform vehicle cannot be depicted accurately by the rigid 
model without considering the flexible deformations. In this 
paper, the two beams are seen as flexible and the flexible 
multi-body dynamics equations of the arm system are 
established based on flexible multi-body dynamics theory and 
Lagrange’s equation. The theory of flexible multi-body 
dynamics is introduced in [3], and the theory has been used 
for the bridge detection vehicle and concrete pump truck in 
[4, 5, 6]. 

Based on the flexible dynamic model set up, the 
experimental study is carried on. By analysis of the 
simulation results, the model derived by the method of 
flexible multi-body dynamics seems more plausible by 
contrast with the rigid model. 

The equations established by flexible multi-body dynamics 
theory lay the foundation of controlling vibration and 
accurately positioning the work platform of aerial platform 
vehicle.  

This paper is organized as follows. In section II, the arm 
coordinate system is created and the kinetic energy and 
potential energy of the arm system are calculated based on the 
coordinate system. Following, the flexible multi-body 
dynamics equation of folding-boom aerial platform vehicle is 
derived. Then, the experimental study is carried on in section 
III. Finally, the concluding remarks are provided. 
 

 
Fig.1  Scheme of folding-boom aerial platform vehicle 
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II. MODELING OF ARM SYSTEM BASED ON 
FLEXIBLE MULTI-BODY DYNAMICS 

Based on the physical model of folding-boom aerial 
platform vehicle, we create the schematic diagram of arm 
coordinate system, as is shown in Fig.2. 

 
Fig.2  Schematic diagram of arm coordinate system 

A. Calculation of Kinetic Energy of Arm System 
 In Fig.2, XOY  is inertial coordinate system and k k kX O Y  
is moving coordinate system of beam k  ( 1, 2k = ). The 
rotating transformation matrix from k k kX O Y to XOY  is 
described by kT , which can be defined as:            

 
cos sin

,
sin cos

k k
k

k k

T
θ θ
θ θ

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (1) 

where kθ  is the included angle between the axis kX and axis  
X  .                          

Suppose kP  is any point of beam k  and kr  is the position 
vector of point kP  in the moving coordinate system k k kX O Y  

, then kr  can be described as:       

 [ ]T
k k kr x v=  (2) 

  
where kx  is the x-coordinate  of kr  in k k kX O Y  and kv  is 
the deformation of the point kP  of beam k .                                                                 

The position vector kr  of point kP  in k k kX O Y  can be 
transformed into inertial coordinate system XOY  by rotating 
transformation matrix  kT  .                           

kR  is used to denote the position vector of point kP  in 
XOY , which can be written as 
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R T r

R T r T r

=

= +
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Therefore,  the velocity of 1R  and 2R are given by 
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where k k kT ST θ=  and 
0 1
1 0

S
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.                     

In addition, P  denotes the ending point of beam 2 and 
pR  

is used to describe the position vector of point P  in XOY  , 
which is written as  

1 01 2 02pR T r T r= +  , so the corresponding 

velocity of
pR  is given by   

 1 01 1 2 02 2pR ST r ST rθ θ= +  (5) 
where, 0 [ 0]T

k kr l=  represented the position vector of the 
ending point of beam k  in k k kX O Y  when there is no 
deformations.                                                                   

 The coordinates of the ending point P  in XOY  can be 
expressed as: 
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Assume that the two beams are homogeneous rods and the 
mass length density of the beam k  is defined by k

lk
k

m
l

ρ =  ,  

where km and kl  denote the mass and the length of beam k  
respectively . 

Therefore, the kinetic energy of beam system of 
folding-beam aerial platform vehicle is given by the 
following equation 
 1 2 mK K K K= + + , (7) 
where， kK  is the kinetic energy of beam k , and can be 

described as 0

1
2

kl T
k lk k k kK R R dxρ= ∫  . mK  is the kinetic 

energy of work platform, and can be describe as 
1
2

T
m p pK mR R=  .                                         

B. Calculation of the Potential Energy of the Arm System 

kv can be expressed as  

 
1

( , ) ( )
kn

k k kp p k
p

v x t q xϕ
=

=∑ , (8) 

where ( )p kxϕ  is the p-order primary function of beam k  
and kpq  is the generalized coordinate corresponding to 

( )p kxϕ  . kn  is the order number of the Ritz function of beam 

k , and generally is taken as 2kn =  . Therefore, kv  is 
written as      

1 1 2 2( , ) ( ) ( )k k k k k kv x t q x q xϕ ϕ= +   
where 1 ( )kxϕ  and 2 ( )kxϕ  are the two former model function, 
which is defined as   

1 ( ) sin k
k

k

xx
l

πϕ =  ,  
2

2( ) sin k
k

k

xx
l
πϕ =  

Therefore, considering the deformation potential energy, 
the potential energy of the beam system is given by the 
following equation 
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where the last term is deformation potential energy and the 
former two terms are gravitational potential energy. In 
equation (9), m  is the mass of load, g  is acceleration of 
gravity, E  is the modulus of elasticity of the beam material, 
and kI  is the moment of inertia of the beam k cross-section.                                

C. Calculation of the Generalized forces  
In Fig.2，a hydraulic cylinder is mounted between A  and 

B  where A  is a fixed point in the vehicle body, and B  is 
fixed at beam 1. C and D  represent the fixed point of beam 1 
and beam 2 respectively, and another hydraulic cylinder is 
mounted between C and D .  

In inertial coordinate system XOY , assume that the 
coordinates of A  are 11 01( , )a a− −  . 12OB a=  , 2 21O C a=  
and 2 22O D a=  . 

Therefore, piston displacement 1y  and 2y of the hydraulic 
cylinder can be expressed as   

2
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where Bv  、 Cv  and Dv  are the deformations of the points 

B  、C  and D  , respectively.  
Hydraulic cylinder force F  is given by 

 0k yk k k k kF m y dy cy f= + + +  (10) 
where d is damping factor, c is spring stiffness coefficient，

0 kf is the initial value of elastic force and ykm  is the mass of 
piston rod of hydraulic cylinder.  

Therefore, generalized force 
[ ]1 2 3 4 5 6

TQ Q Q Q Q Q Q= is given by the 
following equation: 
 TQ J F=  (11) 
where,  Jacobian matrix
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D. Establishment of the flexible multi-body dynamics 
Equations of aerial platform vehicle 
Lagrange equation is described by 

 ( ) ( 1,2 6)j
j j

d L L Q j
dt z z

∂ ∂− = =
∂ ∂

, (12) 

where L K P= − . Generalized coordinates are 
1 2 3 4 5 6[ ]Tz z z z z z z=  , which can also be 

expressed as [ ]Tz qθ=  , where 1 2[ ]Tθ θ θ=  , 

11 12 21 22[ ]Tq q q q q=  .                        
Taking (7)、 (9) and (11) into (12), the flexible multi-body 

dynamics Equations of folding-beam aerial platform vehicle 
become as follows:  
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In equations (13), [ ]1 2
TQ Q Qθ = , 

[ ]3 4 5 6
T

qQ Q Q Q Q= , 
1 2

T
θ θ θ⎡ ⎤= ⎣ ⎦ , 

[ ]11 12 21 22
Tq q q q q= , 2 2 2

1 2

T
θ θ θ⎡ ⎤= ⎣ ⎦ .  

G , M , H  are mass matrix, which are expressed as 
follows: 
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N  is the coefficient matrix of generalized coordinate q  , 
which is described by  
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In addition, U and V  are coefficient matrix of  2θ , and 
R  is the matrix including the terms which are not related 
with θ  , q  , 2θ  and q . 

In the process of deriving equations (13), the terms with 
respect to the generalized coordinates q are neglected 
considering the deformations are negligibly small. 

The equations of rigid model can be obtained without 
considering the deformation kv . 

III. SIMULATION RESULTS    
Equations (13) can be written as   
 

 ( ) ( , )dyM y f y t
dt

= , (14) 

 

where mass matrix  
6 6 0 0

( ) 0
0 T

I
M y G H

H M

×⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

T
y q qθ θ⎡ ⎤= ⎣ ⎦ .  

 
The equations (14) are differential-algebraic equations 

(DAEs) of index 1[7], ode15s solver in matlab can solve these 
problems. 

 
Parameters used for the simulation are selected as follows: 

1 7.5l m= , 2 8.5l m= , 1 650m kg=  , 2 550m kg=  , 
150m kg= , 0.05d =  , 0.03k = , 20ykm kg=  , 

8 2
1 6 10EI N m= × ⋅ , 8 2

2 5 10EI N m= × ⋅ , 10 0.9a m=  , 

11 0.9a m=  , 12 1.8a m=  , 21 1.8a m= , 22 0.9a m=  ， the 
initial angles of the two beams are 1 2.09radθ = and 

2 0.52radθ =  , the initial angular-velocity θ  is zero.   
 
 

The numerical solutions of equations (13) are shown in 
Fig.3~ Fig.6. 
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Fig.3  the comparison of angular rotation 

2θ  
between flexible and rigid model 
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Fig.4  the comparison of the X -coordinate of endpoint P  

between flexible and rigid model 
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As can be seen from Fig.3, the angular rotation of flexible 

model has small vibrations, which shows that elastic 
deformations have an effect on the rigid angular rotation. 
Therefore, vibration control should be studied.  

Fig.4 shows that there exist small deviations of the 
trajectory of the work platform due to the deflections of the 
beams in the flexible model. Similarly, the accurate control of 
the trajectory need be studied further. 
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Fig.5 and Fig.6 show that the moving beams exist high 
frequency vibrations, which are caused by the elastic 
deformations of the beams. In order to realize the steady 
movements of the work platform, the vibrations should be 
suppressed. 

 

IV. CONCLUSIONS 
Flexible multi-body dynamics equations of the arm system 

of folding-boom aerial platform vehicle are established. 
Based on the dynamics equations, the experimental study is 
carried on. Simulation results show that the vibrations 
associated with the flexible beams are significant and there 
exist small deviations of the trajectory of the work platform 
which caused by the beam deflection. Therefore, the control 
of vibrations will be carried on in order to attain the steady 
movements, and at the same time the control of reducing the 
trajectory deviation will be studied further in order to realize 
accurate positioning.  
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