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Abstract
Recently, language identity information has been utilized to
improve the performance of end-to-end code-switching (CS)
speech recognition task. However, previous work use an addi-
tional language identification (LID) model as an auxiliary mod-
ule, which increases computation cost. In this work, we pro-
pose an improved recurrent neural network transducer (RNN-T)
model with language bias to alleviate the problem. We use the
language identities to bias the model to predict the CS points.
This promotes the model to learn the language identity informa-
tion directly from transcriptions, and no additional LID model
is needed. We evaluate the approach on a Mandarin-English CS
corpus SEAME. Compared to our RNN-T baseline, the RNN-T
with language bias can achieve 16.2% and 12.9% relative mixed
error reduction on two test sets, respectively.
Index Terms: Code-switching, speech recognition, end-to-end,
recurrent neural network transducer, language bias

1. Introduction
Code-switching (CS) speech is defined as the alternation of lan-
guages in an utterance. It is a pervasive communicative phe-
nomenon in multilingual communities. Therefore, developing a
CS speech recognition (CSSR) system is of great interest.

However, the CS scenario presents challenges to recog-
nition system [1, 2]. Some attempts based on deep neural
networks-hidden Markov model (DNN-HMM) framework have
been made to alleviate these problems [3, 4]. The methods
usually contain components including acoustic, language, and
lexicon models that are trained with different objective sep-
arately, which would lead to sub-optimal performance. And
the design of complicated lexicon including different languages
would consume lots of human efforts.

Therefore, end-to-end framework for CSSR has received
increasing attention recently [5, 6, 7, 8, 9, 10]. These meth-
ods combine acoustic, language, and lexicon models into a sin-
gle model with joint training. However, the lack of CS train-
ing data limits the performance of these methods. To address
the problem, language identity information is utilized to im-
prove the performance of recognition [5, 6, 7]. They are usually
based on connectionist temporal classification (CTC) [11, 12]
or attention-based encoder-decoder models [13, 14] or the com-
bination of both. However, previous work usually use an addi-
tional language identification (LID) model as an auxiliary mod-
ule, which increases the computation cost. Recurrent neural
network transducer (RNN-T) is an improved model based on
CTC, it augments with a prediction network, which is explicitly
conditioned on the previous outputs [15, 16, 17, 18, 19]. And
the RNN-T model trained with large speech corpus performs

Figure 1: Code-switching distribution diagram.

competitively compared to the state-of-art model in some tasks
[12]. The prediction network can combine the LID information
in a natural way without increasing the computation cost. To
the best of our knowledge, RNN-T has not been used for CSSR
task.

In this paper, we propose an improved RNN-T model with
language bias to alleviate the problem. The model is trained to
predict language IDs as well as the subwords. To ensure the
model can learn CS information, we add language IDs in the
CS point of transcription, as illustrated in Fig. 1. In the figure,
we use the arrangements of different geometric icons to repre-
sent the CS distribution. Compared with normal text, the tagged
data can bias the RNN-T to predict language IDs in CS points.
So our method can model the CS distribution directly without
additional LID model. Then we constrain the input word em-
bedding with its corresponding language ID, which is benefi-
cial for model to learn the language identity information from
transcription. In the inference process, the predicted language
IDs are used to adjust the output posteriors. The experiment
results on SEAME (South East Asia Mandarin English) corpus
show that our proposed method outperforms the RNN-T base-
line (without language bias) obviously. Overall, our best model
achieves 16.2% and 12.9% relative error reduction on two test
sets, respectively. To our best knowledge, this is the first attempt
of using the RNN-T model with language bias as an end-to-end
CSSR strategy.

The rest of the paper is organized as follows. In Section
2, we review RNN-T model. In Section 3, we describe the in-
tuition of the proposed model. In Section 4, we present the
experimental setups, and in Section 5, we report and discuss the
experiment results in detail. Finally, we conclude the paper in
Section 6.

2. Review of RNN-T
Although CTC has been applied successfully in the speech
recognition task, it assumes that outputs at each step are inde-
pendent of the previous predictions [11]. RNN-T is an improved
model based on CTC. It augments with a prediction network,
which is explicitly conditioned on the previous outputs [16], as
illustrated in Fig. 2.

Let X = (x,x, ...,xT ) be the acoustic input sequence,
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where T is the frame number of sequence. Let Y =
(y1, y2, ..., yU ) be the corresponding sequence of output tar-
gets (without language IDs) over the RNN-T output space Y ,
and Y∗ be the set of all possible sequence over Y . For ASR,
the input sequence is much longer than output targets, i.e.,
T > U . Because the frame-level alignments of the target la-
bel are unknown, RNN-T augments the output set with an ad-
ditional symbol, refers to as the blank symbol, denoted as φ,
i.e., Ȳ ∈ Y ∪ {φ}. We denote Ŷ ∈ Ȳ∗ as an alignment, which
are equivalent to (y1, y2, y3) ∈ Y∗ after operation B, such as
Ŷ = (y1, φ, y2, φ, φ, y3) ∈ Ȳ∗. Given the input sequence X,
RNN-T models the conditional probability P (Y ∈ Y∗|X) by
marginalizing over all possible alignments:

P (Y ∈ Y∗|X) =
∑

Ŷ∈B−1(Y)

P (Ŷ|X) (1)

where B is the function that removes consecutive identical sym-
bols and then removing any blank from a given alignment in Ȳ∗.
And B−1(Y) is all possible alignments with {φ}.

An RNN-T model consists of three different networks as
illustrated in Fig. 2. (a) Encoder network (referred to as
transcription network) maps the acoustic features into higher
level representation henct = fenc({xτ}1≤τ≤t). (b) Prediction
network produces output vector pu = fpred({yv}1≤v≤u−1)
based on the previous non-blank input label. (c) Joint net-
work computes logits by combining the outputs of the previous
two networks zt,u = f joint(henct ,pu). These logits are then
passed to a softmax layer to define a probability distribution.
The model can be trained by maximizing the log-likelihood of
P (Y ∈ Y∗|X).

3. RNN-T with Language Bias
3.1. Output symbols set with language IDs

For this task, we augment the output symbols set with language
IDs < chn > and < eng > as shown in Fig. 3, i.e., Ŷ ∈
Ȳ ∪ {< chn >,< eng >}, Ŷ is the final output symbols set.
The intuition behind it is that the CS in the transcript may obey
a certain probability distribution, and this distribution can be
learned by neural network.

3.2. Properties of RNN-T

The properties of RNN-T is key for the problem. It can pre-
dict rich set of target symbols such as speaker role and ”end-
of-word” symbol, which are not related to the input feature di-
rectly [20, 21]. So the language IDs can also be treated as the
output symbols. What’s more, RNN-T can seamlessly integrate
the acoustic and linguistic information. The prediction network
of it can be viewed as an RNN language model which predicts
the current label given history labels [16]. So it is effective in
incorporating LID into the language model. In general, pre-
dicting language IDs only from text data is difficult. However,
the joint training mechanism of RNN-T allows it to combine the
language and acoustic information to model the CS distribution.
Furthermore, the tagged text can bias the RNN-T to predict lan-
guage IDs which indicates CS points, yet the model trained with
normal text can not do this. That is why we choose RNN-T to
build the end-to-end CSSR system.

3.3. Word Embedding Constraint

To promote the model to learn CS distribution more efficient,
we concatenate a short vector to all the English word embed-

Figure 2: Basic RNN-T model.

Figure 3: RNN-T with language bias.

ding and the English tag < eng > embedding, another dif-
ferent vector for Mandarin, as shown at the bottom of Fig. 3.
This enhances the dependence of word embedding to its cor-
responding language ID. In the training process, RNN-T model
can learn the distinction information between the two languages
easily. The experiment results show that the word embedding
constraint is an effective technology.

3.4. Language IDs Re-weighted Decode

In the decode process, we use the predicted language ID to ad-
just the output posteriors, as shown at the head of Fig. 4. λ is the
re-weight scale.This can bias the model to predict a certain lan-
guage words more likely in the next-step decode. Overall, our
proposed method can handle the speech recognition and LID si-
multaneously in a simple way, and without increasing additional
cost. This study provides new insights into the CS information
of text data and its application in end-to-end CSSR system. As a
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Figure 4: Language IDs re-weighted decode process.

final note, the training and inference algorithms of the proposed
model are similar to the standard RNN-T model.

4. Experiments Setups
In this section, we introduce in detail the data set, the RNN-
T model structure, the modeling unit, and evaluation metrics
used in our experiment. We strive to clarify the details of our
experiment.

4.1. Overall Data Set Information

We conduct experiments on SEAME, a spontaneous conver-
sational bilingual speech corpus [22]. Most of the utterances
contain both Mandarin and English uttered by interviews and
conversations in Malaysia and Singapore areas. In this data
set, Singapore speakers tend to speak more English in their ut-
terances, and Malaysian speakers tend to speak more Chinese.
Specifically, the rate of speakers who speak code-switching ut-
terances with Mandarin rate ranged from 10% to 90% is about
90%, while the rate of speakers who have utterances with Man-
darin rates no more than 10% is about 2%, and 5% speakers
have utterances over 90% being Mandarin.

4.2. Test Data Set

We use the standard data partitioning rule of previous work
which consists of three parts: train, evalsge and evalman (see
Table 1) [4]. Each evaluation data set is randomly selected from
10 gender balanced speakers. However, evalsge is biased to
Southeast Asian accent English speech and evalman is biased
to Mandarin speech. The biased data sets are more conducive
to show the effectiveness of each proposed methods on each
individual languages. The training data set has 101.13h and in-
cludes 134 speakers. And the code-switching utterances rate
is 68%, which facilitates the learning model to deal with code-
switching scene.

Building an end-to-end model requires lots of training data,
to improve the reliability of the model, we apply speech speed
perturbation to augment speech data [23]. This method has been
proven to be a very effective method to increase the amount of
data. By manipulation, we get 3 times the data, with the speed
rate of 0.9, 1, and 1.1 of the original speech respectively. We
use the augmented data to build our RNN-T system.

4.3. RNN-T System

We construct the RNN-T baseline system as described in Sec-
tion 3. The encoder network of RNN-T model consists of 4

Table 1: Data Statistics of SEAME [4]

Set Speakers Hours Duration Ratio (%)
Man En CS

train 134 101.13 16 16 68
evalman 10 7.49 14 7 79
evalsge 10 3.93 6 41 53

layers of 512 long short-term memory (LSTM). The prediction
network is 2 layers with 512 LSTM units. And the joint network
consists of single feed-forward layer of 512 units with tanh ac-
tivate function.

The input acoustic features of encoder network are 80-
dimensional log Mel-filterbank with 25ms windowing and
10ms frame shift. Mean and normalization is applied to the
features. And the input words embedding of prediction network
is in 512 dimensions continuous numerical vector space. Dur-
ing training, the ADAM algorithm is used as the optimization
method, we set the initial learning rate as 0.001 and decrease
it linearly when there is no improvement on the validation set.
To reduce the over-fitting problem, the dropout rate is set to 0.2
throughout all the experiments. In the inference process, the
beam-search algorithm [15] with beam size 35 is used to de-
code the model. All the RNN-T models are trained from scratch
using PyTorch.

4.4. Wordpieces

For Mandarin-English CSSR task, it is a natural way to con-
struct output units by using characters. However, there are sev-
eral thousands of Chinese characters and 26 English letters.
Meanwhile, the acoustic counterpart of Chinese character is
much longer than English letter. So, the character modeling
unit will result in significant discrepancy problem between the
two languages. To balance the problem, we adopt BPE subword
[24] as the English modeling units. The targets of our RNN-
T baseline system contains 3090 English wordpieces and 3643
Chinese characters. The BPE subword units can not only in-
crease the duration of English modeling units but also maintain
a balance unit number of two languages.

4.5. Evaluation Metrics

In this paper, we use mixed error rate (MER) to evaluate the
experiment results of our methods. The MER is defined as the
combination of word error rate (WER) for English and character
error rate (CER) for Mandarin. This metrics can balance the
Mandarin and English error rates better compared to the WER
or CER.

5. Results and Analysis
In this part, we show the experimental results with different set-
tings and conduct an in-depth analysis of these results. Experi-
mental results prove the effectiveness of our method compared
to the baseline system.

5.1. Baseline of Standard RNN-T Model

Table 2 reports the main experiment results of our baseline sys-
tem. Because the amount of data is small, the data augmentation
is effective for our baseline system. Because the data augmenta-
tion technology can significantly reduce the MER of end-to-end
model, we conduct all the following experiments based on aug-
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mented training data. To further improve the performance of
the system, we use N-gram and neural language model to re-
score the N-best (N=35) results. The language models used in
this paper are trained with training transcription by Kaldi toolkit
[25]. Furthermore, We can also observe that all the experiment
results in evalsge is much worse than evalman. This is proba-
bly that the accent English in data evalsge is more difficult for
the recognition system. Bilinguals usually have serious accent
problem, which poses challenge to CSSR approaches.

5.2. Results of RNN-T with Language Bias

Table 3 reports the main experiment results of RNN-T with
language bias. In order to fairly compare the results of pro-
posed methods with baseline, we remove all the language IDs
in the decoded transcription. We can find that the performance
of RNN-T model trained (without word embedding constraint)
with tagged transcription is much better than the RNN-T base-
line. It achieves 9.3% and 7.6% relative MER reduction on two
test sets respectively. This shows that the tagged text can im-
prove the modeling ability of RNN-T for the CSSR problem.
It is the main factor that causes the MER reduction in our ex-
periments. Furthermore, word embedding constraint can also
improve the performance of the system though not significant.
Overall, our proposed methods yields improved results without
increasing additional training or inference burden.

Table 2: The results of RNN-T baseline.

Model Data Aug LM MER(%)
evalman evalsge

RNN-T

No No 37.9 49.7
Yes No 33.3 44.9
Yes 4-gram 32.4 42.8
Yes RNN-LM 31.8 42.1

Table 3: The MER of RNN-T with language bias method.

Model LM MER(%)
evalman evalsge

RNN-T No 33.3 44.9
+ LID No 30.2 41.5

++ Emb constraint No 29.5 40.3

5.3. Effect of Language IDs Re-weighted Decode

We then evaluate the system performance by adjusting the
weights of next-step predictions in decode process. Table
4 shows the result of RNN-T model with language IDs re-
weighted in decoding. The result shows that this technique can
further improve the performance of the model compared to the
ordinary decoding process. This suggests that the predicted lan-
guage IDs can effectively guide the model decoding.

Because the model assigns language IDs to the recognized
words directly, the language IDs error rate is hard to compute.
It is difficult for us to measure it in a simple and direct way.
However, this result may imply that the prediction accuracy of
our method is high enough to guide decoding. Meanwhile, We
also find that the re-weighted method is more effective on the
evalman than evalsge. This could be caused by higher lan-
guage IDs prediction accuracy in evalman. After different ex-
periments, we set the re-weight scale λ = 0.2 in the following
experiments.

Table 4: The result of language IDs re-weighted decode method
in inference.

Model λ
MER(%)

evalman evalsge

RNN-T + LID + Emb No 29.5 40.3
0.2 28.9 39.7

Table 5: The MER of language model re-score.

Model LM MER(%)
evalman evalsge

RNN + LID + Emb
No 28.9 39.7

4-gram 28.7 39.3
RNN-LM 28.1 38.9

5.4. Results of Language Model Re-score

Table 5 shows the MER results of the N-best (N=35) re-scoring
with N-gram and neural language models. The language mod-
els are both trained with the tagged training transcription. We
see that the language re-scoring can further improve the per-
formance of models. And the performance of language model
re-scoring is better than the model without re-scoring slightly.
It reveals that the prediction network of RNN-T still has room
to be further optimization.

Finally, compared with the RNN-T baseline with data aug-
ment, the proposed method can achieve 16.2% and 12.9% rela-
tive MER reduction. And the final model with neural language
model re-scoring achieve 11.6% and 7.6% relative MER reduc-
tion compared with baseline with re-score. For both scenarios,
our RNN-T methods can achieve better performance than base-
lines.

6. Conclusions and Future Work
In this work we develop an improved RNN-T model with lan-
guage bias for end-to-end Mandarin-English CSSR task. Our
method can handle the speech recognition and LID simulta-
neously, no additional LID system is needed. Finally, com-
pared with the RNN-T baseline with data augment, the pro-
posed method can achieve 16.2% and 12.9% relative MER re-
duction. It yields consistent improved results of MER without
increasing training or inference cost.

In the future we intend to expand our work in two direc-
tions. For the first direction, we plan to pre-train the prediction
network of RNN-T model using large text corpus, and then fine-
tune the RNN-T model with labeled speech data by frozen the
prediction network. This can effectively utilize large amount
of Mandarin-English text data which without corresponding
speech. Another way is to explore the effectiveness of the
attention-based model language bias for end-to-end Mandarin-
English CSSR task.
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