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Abstract—The aim of cross-modal retrieval is to search for 

flexible results across different types of multimedia data. However, 

the labeled data is usually limited and not well paired with 

different modalities in practical applications. These issues are not 

well addressed in the existing works, which cannot consider the 

semantic information about unlabeled and unpaired data, 

synchronously. Self-training is a well-known strategy to handle 

semi-supervised problems. Motivated by the self-training, this 

paper proposes a self-training-based cross-modal hashing 

framework (STCH) to tackle the semi-supervised and semi-paired 

challenges. In the framework, graph neural networks are used to 

capture potential intra-modality and inter-modality similarities to 

produce pseudo labels. Then the inconsistent pseudo labels of 

different modalities are refined with a heuristic filter to enhance 

the model robustness. To train STCH, we propose an alternating 

learning strategy to conduct the self-train by predicting pseudo 

labels during the training procedure, which can be seamlessly 

incorporated into semi-supervised and supervised learning. In this 

way, the proposed method can leverage sufficient semantic 

information to enhance the semi-supervised effect and address the 

semi-paired problem. Experiments on the real-world datasets 

demonstrate that our approach outperforms related methods on 

hash cross-modal retrieval. 

Keywords—cross-modal retrieval, self-training, semi-supervised, 

semi-paired 

I. INTRODUCTION 

In recent years, cross-modal retrieval technology has 
achieved great success in real-world applications. Cross-modal 
retrieval is used for implementing a retrieval task across 
different modalities (e.g., texts vs. images and audio vs. texts). 
With the rapid growth of different types of media data such as 
texts, images, and videos on the Internet, cross-modal retrieval 
provides search results across various modalities can be helpful 
to the users to obtain comprehensive information about the 
target events or topics.  

The main challenge of cross-modal retrieval is the modality 
gap. A common approach to bridge the heterogeneity gap is 
representation learning, which tries to generate new 
representations from different modalities in the shared subspace 
in which the similarity between them can be measured directly. 
The cross-modal representation method can be further 
categorized real-valued learning and hashing learning, 
depending on whether the representation is real-value or binary. 
Real-valued learning methods lack scalability and efficiency in 
the face of large-scale and high-dimensional multimedia data. 
Hash learning methods can tackle the above complex scenarios 
by importing the data into a hamming space, such that new 

generated features can be used for computing distance metrics 
while preserving the similarity structure in the original space. 

However, multi-modal data quality in the real world is often 
unsatisfactory due to difficult collection and expensive data 
labeling. In addition to limited labeled data, the data of different 
modalities is not well-paired. For instance, many images in the 
web pages have no descriptions with tags or text. Similarly, the 
texts could not find their corresponding images because of 
inaccessible URL or poor quality. 

Both supervised and unsupervised hashing cross-modal 
methods have their advantages and disadvantages. Supervised 
methods[1-5] usually exploit rich label information to connect 
modalities to learn the hash function. However, the performance 
of supervised methods intensely related to the amount of labeled 
data. Unsupervised methods[6-9] do not rely on the label 
information and can preserve the semantic correlation between 
different modalities utilizing pair-wise similarity or dissimilarity 
of different modalities, yet they have limited performance 
without semantic labels. Semi-supervised methods[10-14] 
combines a small amount of labeled data with a large amount of 
unlabeled data during training, which is essentially a trade-off 
between restricted labeled data and model performance. 

Although the existing semi-supervised cross-modal hashing 
methods perform well, most of them require data pairs to 
measure semantic similarity, which is only appropriate to well-
paired data. Consequently, it is challenging to measure the label 
similarity matrix when data of different modality is not well 
paired. To address the problem, Partial Multi-Modal Hashing 
(PMMH) [15] utilized graph Laplacian to preserve the intra-
modal similarity and inter-modal similarity via latent subspace 
learning. Semi-Paired Discrete Hashing (SPDH)[16] 
constructed the similarity graph via anchor data pairs of cross-
view to maintain the similarities of semi-paired data. Semi-Pair 
Hashing (SPH) [17] method maintained cross-view correlation 
and within-view similarity via anchor graph.  

These existing studies explore the correlation between 
unpaired data under weakly supervised learning, ignoring the 
rich semantic information contained in labels. Even though 
some semi-supervised work [12, 13] explored the semantic 
information by predicting the labels of unlabeled data with the 
help of limited labeled data, the accuracy of pseudo labels 
depends on semantic information of limited labeled data and 
pair-wise correlation of unlabeled data. To fully exploit both 
inter-modal and inter-modal similarity, this paper propose a self-
training-based cross-modal hashing (STCH) method, which can 
handle endless unlabeled queries to enhance the effect of semi-
supervised learning. 



The main contributions of STCH are summarized as follows:  

• A novel end-to-end deep hashing semi-supervised cross-
modal retrieval is proposed, which can seamlessly handle 
paired and unpaired data under supervised and semi-
supervised scenarios via an alternating learning strategy; 

• We predict the pseudo label of unlabeled data and then 
utilize these data to enhance the semantic information of 
the dataset. Meanwhile, both unlabeled and unpaired 
samples can help subsequent training by the pseudo 
labels, which is not solved well under the standard 
situation due to their poor semantic information. 

• We exploit the rich semantic information of multi-modal 
data. Image and text feature extractors can help extract 
abundant semantic features, and graph convolution 
networks (GCN) explore the latent intra-modality and 
inter-modality similarities. 

• Extensive experiments demonstrate the effectiveness of 
our method in a variety of conditions. 

The remaining chapters of this paper are organized as 
follows. We introduce related work in section Ⅱ and describe the 
framework of STCH in detail in section Ⅲ. The experimental 
results are analyzed in Section Ⅳ. We conclude this paper in 
section Ⅴ. 

II. RELATED WORK 

A. Hashing Cross-Modal Retrieval 

Cross-modal retrieval has aroused the interest of researchers. 
The main challenge of cross-modal retrieval is measuring the 
semantic correlation of different modalities. In order to 
eliminate the diversity between heterogeneous modalities, many 
methods which learn multiple transformations and map different 
modalities into a common potential subspace have been 
proposed in recent years. Methods for cross-modal retrieval 
have evolved into two directions, one is based on real-value 
representation and another is based on binary representation. 
Cross-modal retrieval in real-value representation learning [13, 
18-20] is more accurate than binary representation which is 
encoded in binary code of limited length. However, the binary 
representation method can significantly improve the training 
speed of the model and make the model more portable by 
importing the massive multi-modal data into a hamming space 
which is convenient to calculate the distance.   

Supervised hashing cross-modal methods usually utilize rich 
label information to generate a connection between modalities 
to learn the hash function. Zhang et al. [1] proposed Semantic 
Correlation Maximization method (SCM), which integrates 
semantic labels into the hash learning process. SCM uses label 
vectors to obtain the semantic similarity matrix and reconstruct 
it by learning hash codes. Yu et al. [2] proposed Discriminative 
Coupled Dictionary Hashing (DCDH) to capture hidden 
semantic information in underlying multi-modal data. 

Extending hash search to nonlinear patterns can further 
improve the effectiveness of the hash representation method. To 
obtain more complex data structures, Lin et al. [3] proposed a 
two-step supervised hash algorithm called SePH for cross-
modal retrieval.  In the training process, SePH first converts the 

semantic similarity of training data into a probability distribution, 
then approximates the probability distribution with learnable 
hash codes in Hamming space, and finally trains the model by 
minimizing KL divergence. SePH uses nuclear logistic 
regression and sampling strategies to learn nonlinear projections 
from features to hash codes in each view. Cao et al. [4] proposed 
Correlation Autoencoder Hashing (CAH), which maximizes the 
feature correlation and label semantic correlation jointly and 
then converts them into trainable hash codes through nonlinear 
autoencoders. Jiang et al. [5] proposed a Deep Cross-Modal 
Hashing method (DCMH), which integrates feature learning and 
hash code learning into the same framework. 

Unsupervised hashing cross-modal methods preserve the 
semantic correlation between different modalities utilizing pair-
wise similarity or dissimilarity of different modalities. Kumar et 
al. [6] proposed Cross-View Hashing (CVH) for multi-view data 
by extending spectral hashing. Collective Matrix Factorization 
Hashing (CMFH) proposed by Ding et at. [7] leverages 
collective matrix factorization to learn unified hash codes for 
cross-view similarity search. Considering the latent semantic 
information, Latent Semantic Sparse Hashing (LSSH) [8] 
generates the image and text representations by using sparse 
coding for images and matrix factorization for text and map 
them into a joint space. Wang et al. proposed Semantic Topic 
Multimodal Hashing (STMH) [9] to obtain the multimedia 
semantic concepts by exploring the data clustering patterns. 

B. Self-Training 

Self-training is a well-known strategy to handle the semi-
supervised situation, whose effectiveness is proved in [21-23]. 
Pseudo-labeling as one simple and effective manner [21] of self-
training is used widely for various applications, such as visual 
categorization [24] and person identification [25]. Pseudo-
labeling regards the maximum predicted probability as the 
accurate label to participate in the subsequent iterative training 
process.  

There are some studies to consider the hash cross-modal 
retrieval in a semi-supervised manner, which mainly utilizes the 
semantic information by predicting pseudo labels of unlabeled 
data. For instance, Semi-paired and Semi-supervised 
Multimodal Hashing (SSMH) [14] constructed a pseudo 
semantic correlation matrix by propagating semantic correlation 
of labeled data to all data. Semi-supervised Semantic 
Factorization Hashing (S3FH) [12] decomposed the predicted 
label matrix of unlabeled data into hash codes through the matrix 
factorization approach with minimizing decompose error. 
Mandal et al. [13] pre-trained a label prediction module by 
comparing the weakly supervised predicted labels of unlabeled 
data with its nearest neighbors, and labeled data with its actual 
label. However, the accuracy of pseudo labels of these methods 
strong depends on semantic information of limited labeled data 
and pair-wise correlation of unlabeled data. Thus, they cannot 
utilize pseudo label to enhance the data semantic information in 
the self-training manner.  

III. METHOD 

In this section, we introduce our proposed self-training 
framework and alternating learning strategy for semi-supervised 
and semi-paired hashing cross-modal retrieval. 



A. Problem Formulation 

Suppose two modalities of images and texts are represented 

as 𝑋 = {𝑥𝑖}𝑖=1
𝑁𝑥  and 𝑌 = {𝑦𝑖}𝑖=1

𝑁𝑦
, where 𝑁𝑥  and 𝑁𝑦  are the 

number of training samples from images and text, respectively. 
The first 𝑁𝑚  samples are correlated with each other, and the 

unpaired samples are 𝑋′ = {𝑥𝑖
′}𝑖=𝑁𝑚
𝑁𝑥  and 𝑌′ = {𝑦𝑖

′}
𝑖=𝑁𝑚

𝑁𝑦
, 

respectively. The partial labels are denoted as 𝐿𝑥 ∈ ℝ
𝑑𝑐×𝑁𝑙𝑥  and 

𝐿𝑦 ∈ ℝ
𝑑𝑐×𝑁𝑙𝑦 , respectively, where 𝑁𝑙𝑋  and 𝑁𝑙𝑦  is the number of 

labeled data and 𝑑𝑐  is the dimension of one-hot code for 𝑐 

categories. The unlabeled data is denoted as �̂�  and �̂�  , 
respectively. In brief, the input of STCH are four multimodal 
data types, paired and labeled {𝑋, 𝑌} , unpaired and labeled 

{𝑋′, 𝑌′}, paired and unlabeled {�̂�, �̂�}, unpaired and unlabeled 

{𝑋′̂, 𝑌′̂}. Each modality of sample is learned by model as binary 

code 𝐵 = {0,1}𝑘 of length 𝑘-bit. The goal of hash cross-modal 
retrieval is that search for the same-category data from another 
modality in the hamming space through calculating the 
similarity of hash codes. 

B. Self-training Framework 

As shown in Fig.1, the proposed cross-modal end-to-end 
framework includes (a) an image feature extractor 𝐹𝑥 =
𝑓𝑥(𝜃𝑥, 𝑋), (b) a text feature extractor 𝐹𝑦 = 𝑓𝑦(𝜃𝑦 , 𝑌), (c) two 

classification blocks based on GCN 𝐺∗ = 𝑓𝑔
∗
(𝜃𝑔

∗
, 𝐹∗), ∗∈

{𝑥, 𝑦}, (d) a pseudo label filter 𝐹𝑝 = 𝑓𝑝(𝐺∗), and (d) a hash 

code learning block 𝐻 = 𝑓ℎ(𝑋, 𝑌, 𝐺∗).  

The image feature extractor 𝐹𝑥 is based on the CNN-F [26] 
structure which comprises eight learnable layers, five of which 

are convolutional, and the last three layers are fully-connected. 
In text feature extractor 𝐹𝑦 , the 1386-dimension text vector, 
represented by bag-of-words (BOW), is fed into the two fully-
connected layers according to the setting of [5]. 

For the features 𝑂𝑥 and 𝑂𝑦 extracted from image and text, 
we calculate the similarity matrix with cosine distance. The 
assumption is that the feature representation of data with high 
similarity is also similar. In particular, image features and text 
features are employed to enhance the semantic mining to 
establish the graph 𝐺∗ = (𝑉, 𝐸,𝑊),∗∈ {𝑋, 𝑌}, where the node 
set 𝑉 contains both unlabeled and labeled data and the edge set 
𝐸 represent the intra-modality affinities among the samples. The 
weight matrix indicates the intra-modality relationship, defined 
as 

W𝑖𝑗
∗ =

𝑜𝑖
∗ ⋅ 𝑜𝑗

∗

|𝑜𝑖
∗| ⋅ |𝑜𝑗

∗|
⊆ [𝜌, 1], (1) 

where 𝜌 is the threshold to filter the strong negative relationship 
and retain strong positive relationship. 

Then we adopt GCN [27] as the classifier to predict the 
pseudo label 𝐿𝑝  due to the adequate performance of semi-
supervised node classification task and aggregating the intra-
modality similarity. Formally, the normalized similarity matrix 
of intra-modality is calculated by 

𝐴 = 𝐷−
1
2(𝑊 + 𝐼)𝐷

1
2, (2) 

where 𝐼  is the identity matrix and 𝐷  is the degree matrix. 
Compared with traditional graph-based regularization 
methods[18-20], GCN adopt an efficient layer-wise propagation 

 

Fig. 1.  The framework of our proposed STCH. We proposed an alternating learning strategy to conduct the self-train by 

predicting pseudo labels during the training procedure. The input of STCH are four multimodal data types, paired and labeled 

{𝑋, 𝑌}, unpaired and labeled {𝑋′, 𝑌′}, paired and unlabeled {�̂�, �̂�}, unpaired and unlabeled {𝑋′̂, 𝑌′̂}. The green arrows represent 

the forward data flow while the red arrows represent the back forward data flow. The black arrows depict the interactions 

between modules. 



rule and each spectral graph convolution operation integrates 
weighted-average features from the local neighbor nodes as its 
own. We use a two-layer GCN as the set-up of [27] with the 
following layer-wise propagation rule: 

𝐺∗ = softmax(𝐴ReLU(𝐴𝐹∗𝑊(0))𝑊(1)), (3) 

where 𝑊(0) and 𝑊(1) are weight matrixes. 

Considering the different intra-modal similarity of image 
and text, and model robustness, we set two classification blocks 
for image and text separately rather than combine features of 
different modalities with the adjustable weighted hyper-
parameter of different modalities. The latter approach avoids the 
case that predicted pseudo label differ between the two 
modalities, which we utilize to enhance model robustness by the 
filter strategy. The pseudo label filter 𝐹𝑝  select the 𝑅  pseudo 
labels that seem most credible to update the label matrix. In 
order to select the credible pseudo labels and enhance the 
robustness of model, we set the filter rules set 𝒬: (1) When the 
prediction accuracy of labeled data is less than 𝓆1, no one is 
selected. (2) When the matched accuracy of paired data is less 
than 𝓆2, no one is selected. (3) When the conditions (1) and (2) 
are satisfied, 𝑅 unlabeled samples are randomly selected. 𝓆1 is 
set 0.5 and 𝓆2 is set 0.5. 

In the hash code learning 𝐻, pseudo label 𝐿𝑝  from 𝐺∗ and 
modality features 𝑜∗ will be used to generate the hash code 𝐵 as 
follows: 

𝐵∗ = sign(𝐹∗(𝑋; 𝑌; 𝜃∗ )), ∗∈ {𝑥, 𝑦}. (4) 
Inspired by [5], we set 𝐵 = 𝐵𝑥 = 𝐵𝑦 . With each module 
working together, we obtain the hash code with rich semantic 
information for cross-modal retrieval task.  

C. Alternating Learning Strategy 

Under the above framework, we adopt an alternating 
learning strategy to learn the parameters of STCH, which is a 
natural selection to take advantage of the superiority of self-
training scheme. During the back propagation, we will learn the 
parameters of one module using stochastic gradient descent with 
fixing the parameters of all other modules. Under this alternating 
learning strategy, the pseudo label can be updated and revised in 
each iteration.  

In particular, given the batch of raw data, 𝐹𝑥 and 𝐹𝑦 extract 
the image and text features 𝑂𝑥 , 𝑂𝑦, respectively. To preserve the 
modality similarity, the similarity loss function of negative log 
likelihood is calculated as follows: 

𝒥𝑠 = −∑∑(S𝑖𝑗
𝑥𝑦
× Ψ𝑖𝑗 − log(1 + 𝑒

Ψ𝑖𝑗))

𝑗𝑖

,

∀𝑖 = 1,2, … , 𝑁𝑋, ∀𝑗 = 1,2, … , 𝑁𝑌,

(5) 

where Ψ𝑖𝑗 = (𝑜𝑖
𝑥)𝑇𝑜𝑗

𝑦
, and label similarity matrix 𝑆 defined as 

follows: 

𝑆𝑖𝑗 =

{
 
 

 
 

+1, 𝐿𝑥𝑖 = 𝐿𝑦𝑗  or 𝑥𝑖 ∈ 𝓅(𝑦𝑗) or 𝑦𝑗 ∈ 𝓅(𝑥𝑖),

𝜑 (�̂�𝑥𝑖 , �̂�𝑦𝑗) , �̂�𝑖  and �̂�𝑗 has pseudo labels,

0,  �̂�𝑖  and �̂�𝑗 have no labels,

−1, 𝐿𝑥𝑖 ≠ 𝐿𝑦𝑗 ,

(6) 

where 𝓅(𝑥) represents the pairs set of sample 𝑥 , 
𝜑(𝑙𝑥 , 𝑙𝑦) represents cosine similarity function. As for both 

unpaired and unlabeled data 𝑥𝑖
′̂  and  𝑦𝑗

′̂, 𝑆𝑖𝑗 = 0 at the training 

beginning. Once they have pseudo labels, we can utilize their 
semantic information to enhance the subsequent training 
procedure.  

Algorithm 1: STCH 

Input: Training set 𝑋 = [𝑥1, 𝑥2, … 𝑥𝑁𝑙𝑥 , … , 𝑥𝑁𝑥] , 𝑌 =

[𝑦1, 𝑦2, … 𝑦𝑁𝑙𝑦 , … , 𝑦𝑁𝑦]   an  aaeeas 𝐿𝑥 =

[𝑙1
𝑥 , 𝑙2

𝑥, … 𝑙𝑁𝑙𝑥
𝑥 ] , 𝐿𝑦 = [𝑙1

𝑦
, 𝑙2
𝑦
, … 𝑙𝑁𝑙𝑦

𝑦
]   siiiaarit  iatri  𝑆,  

pre iction frequenc   ℓ 

Output: Paraieters of iiage an  te t feature e tractor  an  

GCN-ease  caassifier 𝜃𝑥, 𝜃𝑦 , 𝜃𝑔
𝑥
, 𝜃𝑔

𝑦
  hash co e iatri  𝐵  

Initiaaize iiage feature e tractor with pretraine  CNN-F 

io ea 

Initiaaize 𝜃𝑥, 𝜃𝑦 , 𝜃𝑔
𝑥
, 𝜃𝑔

𝑦
 

for 𝑖𝑡𝑒𝑟 = 1,2, … , 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑠 do 

 Saipae a iini-eatch 𝑥, 𝑦 froi  ata 𝑋, 𝑌. 
Learn the iiage an  te t features e  𝑂𝑥, 𝑂𝑦 = 
𝑓𝑥(𝜃𝑥 , 𝑋), 𝑓𝑦(𝜃𝑦 , 𝑌). 
Caacuaate 𝐵 e  (4). 
Caacuaate 𝑆 e  (6). 
Up ate 𝜃𝑥, 𝜃𝑦  e  using eack propagation with oeject 
function as (5). 

for 𝑖𝑡𝑒𝑟 = 1, 2, … , ℓ do  
  Learn the pre icte  aaeeas {𝐿𝑝, 𝐿�̂�}, 𝐸𝑥 , 𝐸𝑦  e  

𝑂𝑥, 𝑂𝑦 = 𝑓𝑔𝑥(𝜃𝑔𝑥 , 𝑂𝑥), 𝑓𝑔𝑦(𝜃𝑔𝑦 , 𝑂𝑦). 
Up ate 𝜃𝑔𝑥 , 𝜃𝑔𝑦  e  using eack propagation with 
oeject function as (10). 

Fiater the pseu o aaeeas �̂� accor ing ruaes set 𝒬  
Up ate 𝐿𝑥 , 𝐿𝑦 𝑆 e  (6) an  e pan  the training  ata  

 end for 

end for 

return 𝜃𝑥, 𝜃𝑦 , 𝜃𝑔
𝑥
, 𝜃𝑔

𝑦
, 𝐵. 

 

The hash code 𝐵 is generated by hash code learning block 
through Equation (4). To preserve the semantic information of 
the hash code and balance each bit of hash code on training 
points, we construct a constraint loss as follows: 

𝒥𝑐 = 𝛽(‖O
𝑥 − 𝐵‖𝐹

2 + ‖O𝑦 − 𝐵‖𝐹
2)

+𝛾(‖B𝑥‖𝐹
2 + ‖B𝑦‖𝐹

2).
(7) 

We update the 𝐹𝑥 and 𝐹𝑦 successively with the object function 
as  
 

min
𝜃∗

𝒥∗ = 𝒥𝑠 + 𝒥𝑐  , ∗∈ {𝑥, 𝑦} (8) 

After obtaining the features of the images and texts, we 
exploit GCN as the semi-supervised classifier to predict pseudo 

label 𝐿�̂� , 𝐿�̂� . At the same time, we obtain the characteristic 

representation 𝑒𝑥, 𝑒𝑦 for each sample. We use the cross-entropy 
loss for labeled data and Mean Squared Error (MSE) for paired 
data to compute the prediction error as  



𝒥𝑝
∗ = −

1

𝑛
(𝐿∗ ⋅ 𝑙𝑜𝑔(𝐿∗̂) + (1 − 𝐿∗) ⋅ 𝑙𝑜𝑔(1 − 𝐿∗̂))

+
1

𝑚
∑ (𝐿𝑥𝑖

̂ − 𝐿𝑦𝑗
̂)

2

𝑥𝑖∈𝓅(𝑦𝑗) 𝑜𝑟 𝑦𝑗∈𝓅(𝑥𝑖)
, (9)

∀𝑖 = 1,2, … , 𝑁𝑋′ , ∀𝑗 = 1,2, … , 𝑁𝑌′ ,

 

where 𝑁𝑋′ , 𝑁𝑌′  is the number of labeled samples and paired 
samples, respectively. In addition to exploring the intra-
modality by GCN, we also measure the inter-modality to assist 
the paired images and text features with the same semantics by 

similarity loss (5), where Ψ𝑖𝑗 = (𝑒𝑖
𝑥)𝑇𝑒𝑗

𝑦
. Therefore, we update 

the 𝐺∗ with the object function to train the classifier for better 
pseudo label prediction as 

min
𝜃𝑔∗

𝒥𝑔∗ = 𝒥𝑝
∗ + 𝒥𝑠 , ∗∈ {𝑥, 𝑦} (10) 

After filtering the pseudo labels according the rules 𝒬, we 

obtain the credible pseudo labels 𝐿�̂� , 𝐿�̂�  for partial unlabeled 

data, which we regard as newcome labeled data. Then we update 

𝐿𝑥 , 𝐿𝑦  by appending 𝐿�̂� , 𝐿�̂� , similarity matrix 𝑆 by (6).  Until 

now, an iteration has finished. After training on enough epochs, 
all unlabeled data will be tagged  via our proposed alternating 
learning strategy to conduct the self-training. We summarize the 
overall training algorithm in Algorithm 1. 

IV. EXPERIMENTS 

In this section, we evaluate the effectiveness of proposed 
STCH based on self-training for partial unpaired and unlabeled 
data, and explore the performance of different training strategy. 

A. Data Sets 

To evaluate our model, we conduct our experiments on two 
public multi-modal data sets MirFlickr-25K and Nus Wide. 

1) MIRFLICKR-25K [28]: The Flickr25k obtained from 

the Flickr website 1 contains 25,000 image-text pairs, which 

belongs to 24 categories. Same as [5], 20015 samples with at 

least 20 textual tags are selected for experiment. We select 8000 

 
1 http://press.liacs.nl/mirflickr/ 

pairs as training set, 2000 pairs as query set, and the left as 

retrieval set. Bag-of-words (BOW) are exploited to represent 

the text in 1386-dimension vectors. Imgase are resized to 

3 × 256 × 256 and then extracted as 4,096-dimension features 

of each image with pretrained CNN-F net.  

2) NUS WIDE [29]: Nus-wide obtained from the National 

University of Singapore website2 has 269,648 image-text pairs, 

belonging to 81 concepts. Although there were not enough 

samples for some concepts, according to [19], we selected 

samples belonging to the 10 most common labels, with at least 

5000 samples per label. Then we have 69,993 samples left. We 

randomly select 100 pairs of each label for query, 80 pairs of 

each label for training, and the rest are retrieval sets, which are 

same as [19]. Each text is represented as 1386-dimension 

vectors by BOW while each image is represented as 4096-

dimension vectors by pretrained CNN-F. 
Due to the data from Mirflikr-25k and Nus Wide are labeled 

and paired, we construct four special dataset. We select 𝛼 ∗
𝑁𝑡  samples from training set as paired samples, where 𝑎 ∈
[0,1], 𝑁𝑡 is the number of training set. The left modal samples 
are shuffled severally to break correlation. To construct the 
unlabeled data,  𝛽 ∗ 𝑁𝑡  labels will be masked regardless of 
whether paired or not.  

B. Experimental Setting 

We employ the mean average precision (mAP)[30] to 
evaluate the performance of cross-modal retrieval models 
through calculating the average precision of R documents, as 
follows: 

𝐴𝑃 =
1

𝑇
∑ 𝑃(𝑟)𝛿(𝑟),

𝑅

𝑟=1
(11) 

where 𝑇  represents the number of related documents in the 
retrieval dataset and 𝑃(𝑟) represent the precision of the first 𝑟 

documents retrieved. 𝛿(𝑟) = 1  means the 𝑟𝑡ℎ  document is 

2 https://lms.comp.nus.edu.sg/wp-

content/uploads/2019/research/nuswide/NUS-WIDE.html 

TABLE I.  MAP OF DIFFERENT HASHING SEMI-PAIRED METHODS ON MIRFLICKR AND NUS WIDE BENCHMARK 

Dataset Flickr 25k Nus Wide 

Methods\ 

Tasks 
I → T  T → I I → T  T → I 

SPDH 𝛼1 0.623  0.605 0.647  0.610 

SPDH 𝛼2 0.614  0.597 0.632  0.600 

PMMH 𝛼1 0.572  0.584 0.568  0.579 

PMMH 𝛼2 0.568  0.559 0.554  0.553 

IMH 𝛼1 0.687  0.635 0.715  0.635 

IMH 𝛼2 0.679  0.642 0.706  0.641 

STCH 𝛼1 s 0.689  0.638 0.704  0.625 

 STCH 𝛼2 ss 0.644  0.625 0.568  0.584 

STCH 𝛼2 s 0.697  0.645 0.720  0.643 

 

 

TABLE Ⅰ  MAP OF HASHING SEMI-SUPERVISED METHODS ON MIRFLICKR AND NUS WIDE BENCHMARK 

Dataset Flickr 25k  Nus Wide 

Task\ 
Methods 

I → T  T → I  I → T  T → I 

16bits 32bits 64bits  16bits 32bits 64bits  16bits 32bits 64bits  16bits 32bits 64bits 

DCMH 
s 

0.741 0.746 0.748  0.782 0.790 0.793  0.590 0.601 0.607  0.638 0.653 0.659 

SePH s 0.711 0.719 0.723  0.744 0.726 0.732  0.603 0.613 0.621  0.598 0.603 0.611 

JRL ss 0.562 0.563 0.584  0.588 0.589 0.598  0.551 0.558 0.573  0.455 0.458 0.473 

JRL s 0.572 0.578 0.597  0.591 0.591 0.602  0.557 0.561 0.580  0.479 0.488 0.497 

GSS-SL 
ss 

0.525 0.532 0.547  0.551 0.558 0.567  0.460 0.461 0.487  0.421 0.427 0.441 

GSS-SL 
s 0.543 0.542 0.562  0.562 0.566 0.582  0.479 0.483 0.501  0.437 0.444 0.460 

STCH 
ss 

0.587 0.590 0.612  0.634 0.631 0.643  0.511 0.513 0.531  0.502 0.509 0.523 

STCH s 0.741 0.746 0.748  0.782 0.790 0.793  0.591 0.601 0.607  0.638 0.653 0.659 

 



related, while the 𝛿(𝑟) = 0 means conversely. Following [12],  
we set 𝑅 = 50. 

To verify the performance of STCH, seven state-of-the-arts 
methods are compared. JRL[20] and GSS-SL[19] are selected 
for semi-supervised method, DCMH[5] and SePH[3] are chosen 
for supervised method, and SPDH[16], PMMH[15], IMH[31] 
are selected for unpaired data. To be fair, supervised and semi-
supervised methods only can use  𝛽  of labeled data of training 
set according to [12], where we set 𝛽 = 40%  for semi-
supervised learning while 𝛽 = 100% for supervised learning. 

We use ReLU[31] as a unique nonlinear activation function 
for all semantic features and Tanh to approximate symbolic hash 
codes. Adam optimizer [32] is adopted to update the parameters, 
and the initial learning rate was set to 1e-4 with 0.9 momentum. 
The weight decay parameters of 1e-5 is also applied to avoid 
over-fitting. All the baselines are finetuned to report the best 
performance in related literatures. 

C. Comparison of Semi-Supervised Methods 

To verify the performance of semi-supervised and 
supervised paradigms, we compare STCH with GSS-SL, JRL, 
DCMH, and SePH under semi-supervised and supervised 
learning.   

Table Ⅰ shows the mAP of STCG and other cross-modal 
retrieval algorithms with different length of hash bits, where 
subscript of the model represents supervised(s), semi-
supervised(ss), and unsupervised(us) methods. It can be seen 
that the retrieval accuracy is higher when length of hash code 
are longer, because longer hash code can carry more semantic 
information. The comparison results indicate that our proposed 
STCH outperforms other state-of-art baselines. It is noted that 
when 𝛽 = 100%, STCH evolves into DCMH.  

The performance of semi-supervised approach STCH was 
supposed to be slightly lower than the supervised methods with 
the same training labeled data. However, our approach still 
exceeds the performance of GSS-SL.  

 

Fig.2. THE PREDICTION ACCURACY OF LABELED DATA IN THE TRAINING 

PROCESS. 

D. Comparison of Semi-Paired Methods 

As shown in Table Ⅱ  we coipare STCH with the state-of-
art algorithms SDPH, PMMH, and IMH, which can work for 
partial paired situations. We set the two paired data proportion 
𝛼1 = 0.3  and 𝛼2 = 0.6 . We found that the results of IMH, 
PMMH, and SPDH are relatively unstable. For instance, the 
mAP of PMMH decrease as 𝛼 increases while retrieval text by 
image. It’s worth noting that  as a rule of thumb, the more paired 
data we have, the more information we can obtain. However, we 
found through experiments that excessive information will 
interfere with model predictions when the number of paired data 
reaches a limit. 

 

E. Comparison of Alternating Learning Strategies 

In order to clearly show the training process of self-training, 
we compare the performance of STCH with the different 
alternating learning strategies. As shown in Algorithm 1, the 
image and text feature extractors and GCN-based classifiers take 
over training with the different frequencies. In order to 
investigate the interaction between modules, we set the different 
strategies with various training frequency comparisons. 

In the Taeae Ⅲ  we represent the final mAP under different 
strategies. We assume that if the feature extractors are trained 
more, the classifier will be relatively weak and generation speed 
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TABLE II.  MAP OF DIFFERENT HASHING SEMI-PAIRED METHODS ON MIRFLICKR AND NUS WIDE BENCHMARK 

Dataset Flickr 25k  Nus Wide 

Methods\ 

Tasks 

I → T  T → I  I → T  T → I 

64bits  64bits  64bits  64bits 

SPDH 𝛼1 0.623  0.605  0.647  0.610 

SPDH 𝛼2 0.614  0.597  0.632  0.600 

PMMH 𝛼1 0.572  0.584  0.568  0.579 

PMMH 𝛼2 0.568  0.559  0.554  0.553 

IMH 𝛼1 0.687  0.635  0.715  0.635 

IMH 𝛼2 0.679  0.642  0.706  0.641 

STCH 𝛼1 s 0.689  0.638  0.704  0.625 

 STCH 𝛼2 ss 0.644  0.625  0.568  0.584 

STCH 𝛼2 s 0.697  0.645  0.720  0.643 

 

 



of pseudo labels will be limited. On the contrary, if the classifier 
are trained more, the text and image features could not support 
the classification process. Experiment shows that the optimal 
training ratio is 2:2:1, which may imply the importance of 
semantic feature representation. 

TABLE III. THE PERFORMANCE OF DIFFERENT TRAINING FREQUENCY OF 

FEATURE EXTRACTOR AND CLASSIFIER 

Proportion I->T T->I 

1:1:1 0.5650 0.6215 

1:1:2 0.5655 0.6233 

1:1:3 0.5668 0.6245 

2:2:1 0.6086 0.6423 

3:3:1 0.6005 0.6346 

 

Furthermore, we compare the accuracy of predicted labels 
with its ground truth on Flickr-25k with 𝑘 as 64 in the training 
process. As shown in Fig.2, it is clear that the accuracy of 
classification and the similarity of cross-modal are rising with 
the increase of training epochs. The label learning abilities are 
different due to the significant training strategies. 

V. CONCLUSION 

Deep hashing cross-modal retrieval has attracted lots of 
attention while retrieving from large-scale multi-modal data. 
However, existing methods cannot solve well when the limited 
multi-modal data is partial labeled and partial paired. We 
proposed a self-training-based cross-modal hashing framework 
to tackle the semi-supervised and semi-paired challenges. We 
utilized the graph neural network to explore implied intra-
modality and inter-modality similarities to produce pseudo 
labels, and we filter the inconsistent pseudo labels of different 
modalities to enhance the model robustness. To train STCH 
effectively, we developed an alternating learning strategy to 
conduct the self-train by predicting pseudo labels during the 
training procedure, which can be seamlessly incorporated into 
semi-supervised and supervised learning. Experiments on the 
real-world datasets demonstrate that our approach outperforms 
related methods on hash cross-modal retrieval. 
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