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Abstract

We study the task of learning entity and relation embeddings
in knowledge graphs for predicting missing links. Previous
translational models on link prediction make use of transla-
tional properties but lack enough expressiveness, while the
convolution neural network based model (ConvE) takes ad-
vantage of the great nonlinearity fitting ability of neural net-
works but overlooks translational properties. In this paper,
we propose a new knowledge graph embedding model called
ParamE which can utilize the two advantages together. In
ParamE, head entity embeddings, relation embeddings and
tail entity embeddings are regarded as the input, parameters
and output of a neural network respectively. Since param-
eters in networks are effective in converting input to out-
put, taking neural network parameters as relation embeddings
makes ParamE much more expressive and translational. In
addition, the entity and relation embeddings in ParamE are
from feature space and parameter space respectively, which
is in line with the essence that entities and relations are sup-
posed to be mapped into two different spaces. We evalu-
ate the performances of ParamE on standard FB15k-237 and
WN18RR datasets, and experiments show ParamE can sig-
nificantly outperform existing state-of-the-art models, such as
ConvE, SACN, RotatE and D4-STE/Gumbel.

Introduction

Knowledge graphs(KGs) are composed of factual triplets,
where each triplet represents a relation between a head entity
and a tail entity. For example, a triple (Chatou, isLocatedIn,
France) represents a relation (isLocatedIn) between a head
entity (Chatou) and a tail entity(France). There are several
real-world knowledge graphs, such as Freebase (Bollacker et
al. 2008), Yago3 (Mahdisoltani, Biega, and Suchanek 2013),
and WordNet (Miller 1995). They enable many downstream
NLP tasks including information retrieval (Xiong, Power,
and Callan 2017) and dialogue management (He et al. 2017).
Due to the complexity of the real world, knowledge graphs
lack of many triplets (Das et al. 2017). Link prediction is
the task of predicting missing facts based on the existing
ones (Nguyen 2017).
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Figure 1: A comparsion of ConvE and ParamE. In some neu-
ral network based models such as ConvE, head entity em-
beddings and relation embeddings are fed together into neu-
ral networks, which ignores translational properties of rela-
tions. In the ParamE model, we regard neural network pa-
rameters as relation embeddings, such that the ParamE can
make use of translational properties.

One of the effective ways for link prediction is knowledge
graph embedding (Wang et al. 2017). The key idea is to map
entities and relations in KGs into vector spaces, such that the
score function of entities and relations for ground truth can
distinguish from false facts efficiently (Yang et al. 2014).

In the existing link prediction models, there are two
representative kinds of models: translational models and
the convolutional neural network (CNN) based model
(ConvE) (Dettmers et al. 2018). Translational models take
relations as transfer functions which convert head entities
to tail entities, such as TransE (Bordes et al. 2013), Dist-
Mul (Yang et al. 2014), ComplEx (Trouillon et al. 2016),
Rotate (Sun et al. 2019). They make full use of the trans-
lational properties of relations but they only utilize simple
operations like addition and multiplication, which limits the
translational ability of relations (Shang et al. 2019). ConvE
takes advantage of nonlinearity modeling ability of neural
networks and has stronger expresiveness ability. However,
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since ConvE feeds the neural network with entities and rela-
tions together, it ignores the translational properties of rela-
tions in KGs (Shang et al. 2019).

In one triplet, the relation can be regarded as a transfer
function (Wang et al. 2017), and neural networks are effec-
tive tools for fitting complex functions (LeCun, Bengio, and
Hinton 2015). In order to combine the two advantages, this
paper proposes a new kind of knowledge graph embedding
model called ParamE. In ParamE, head entity embeddings,
relation embeddings and tail entity embeddings are regarded
as the input, parameters, and output of a neural network. The
proposed model becomes much more expressive and trans-
lational because parameters do well in converting input to
output. Regarding neural network parameters as relation em-
beddings can help head entity embeddings and relation em-
beddings have more multilevel interaction. In Figure 1, we
compare ParamE with ConvE (Dettmers et al. 2018). Head
entities and relations are fed into neural networks together in
ConvE, but ParamE considers relations as transfer function
parameters rather than the input.

Apart from regarding relations as network parameters, the
proposed model utilizes three different kinds of neural net-
work architectures: multilayer perceptrons (MLP) (Good-
fellow, Bengio, and Courville 2016), convolution lay-
ers (Krizhevsky, Sutskever, and Hinton 2012) and gate
structure layers (Hochreiter and Schmidhuber 1997), called
ParamE-MLP, ParamE-CNN, ParamE-Gate, respectively.
Experiments show the proposed model can achieve good
performance with different network architectures.

According to our statistics in Table 4 and Table 5, the re-
lation frequency has an obvisious uneven distribution in the
two datasets. The largest number relation may even be ten
times or one hundred times than other relations. However,
experiments show the problem of unbalanced distribution
does not have a distinct influence on ParamE.

In summary, the proposed model regards neural network
parameters as relation embeddings, such that the model has
stronger expressiveness and translational properties. Since
entities and relations are different kinds of words, entities
and relations in ParamE are embedded into feature space and
parameter space, respectively. Experiments show the pro-
posed model is effective comparing with the existing state-
of-the-art model, such as ConvE, SACN, RotatE and D4-
STE/Gumbel. Our contributions are as follows:

• To the best knowledge of us, this paper is the first to regard
neural network parameters as relation embeddings, which
can make the proposed model much more expressive and
translational.

• The proposed model considers entity embeddings
and relation embeddings are from different vector
spaces(feature space and parameter space), which is in
line with the fact that entities and relations are different
kinds of words.

• This paper implements ParamE with multilayer percep-
trons, convolution layers and gate structure layers, and
experiments show ParamE is a general model for different
network architectures.

Related Work

In this section, we introduce several kinds of KG embedding
models, such as translational models, ConvE (Dettmers et al.
2018), and other KG embedding models with deep learning
methods.

Several typical translational models are TransE (Bordes et
al. 2013), DistMult (Yang et al. 2014), ComplEx (Trouillon
et al. 2016) and Rotate (Sun et al. 2019). TransE is an ini-
tial translational model. TransE considers the addition op-
eration between the head entity and the tail entity. DistMul
uses a bilinear diagonal model and weighted element-wise
dot products to learn embeddings. ComplEx improves Dist-
Mul by complex-valued embeddings in order to better model
asymmetric relations. In ComplEx, entity and relation em-
beddings lie in a complex space rather than a real one. Ro-
tatE could be taken as an extension of ComplEx, because
it defines each relation as a rotation from the source en-
tity to the target entity in the complex vector space so as
to model and infer various relation patterns including: sym-
metry/antisymmetry, inversion and composition. The oper-
ations of these translational model are mainly addition and
multiplication, which results in less expressive KG embed-
dings though they are easier to train and require fewer pa-
rameters.

Different from translational models, ConvE benefits from
strong expresiveness of neural networks (Dettmers et al.
2018). In ConvE, the embeddings of head entities and re-
lations are concatenated and reshaped into an input matrix,
then the matrix is fed to multiple convolution layers. Dif-
ferent convolutional filters generate multiple feature map
tensors to get the global information, next the tensors are
projected to the embedding dimension via a fully connected
layer. In the end, the tensors have a similarity matching with
all entities embeddings to get the tail entity.

There are also other knowledge graph embedding mod-
els which utilize deep learning methods. NTN (Socher et
al. 2013) combines head and tail entities by a relation-
specific tensor and maps them to a non-linear hidden layer.
NAM (Liu et al. 2016) achieves semantic matching with a
deep neural network, and it concatenates the head and re-
lation embeddings in the input layer and feed them into a
deep neural network. KBGAN (Cai and Wang 2017) uses
generate adversarial networks to help improve the perfor-
mances of a wide range of existing knowledge graph embed-
ding models. In order to absord graph structure information
for knowledge graph embedding, SACN utilizes knowledge
graph connectivity structure, node attributes and relation
types by a weighted graph convolutional network (Shang et
al. 2019).

Traditional translational models make the best of transla-
tional property, but are not expressive enough. On the con-
trary, ConvE makes full use of neural network modeling
ability, but ignores the translational property. The transla-
tional property and nonlinearity fitting ability of neural net-
works are both essential in KG embedding. Regarding the
neural network parameters as relations embedding helps us
to take the two advantages both.
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Method

The main idea of the proposed model is to regard neural
network parameters as relation embeddings, which makes
ParamE much more expresive and translational. Other than
neural network parameters, the architectures also play an im-
port role in the performances of neural networks. In order to
confirm whether ParamE is a general architecture for differ-
ent architectures, we implement ParamE with three differ-
ent architectures: multilayer perceptrons, convolution lay-
ers, and gate structure layers, called ParamE-MLP, ParamE-
CNN, ParamE-Gate. In this section, we introduce the three
ParamE models.

ParamE-MLP

Multilayer perceptrons, also called feedforward neural net-
works, are the typical deep learning methods. A feedforward
network defines a mapping y = f(h; r) and learns the value
of the parameters r that result in the best function approxi-
mation (Goodfellow, Bengio, and Courville 2016), where h
represents the input.

In ParamE-MLP, h is the head entity embedding, r is the
relation embedding, and y is the interaction result of head
entity embedding and relation embedding. Next, y has a
similarity matching with all entity embeddings, and we ex-
pect the matching of y and the tail entity embedding gets the
highest score.

Specifically, ParamE-MLP uses a three layers feedford-
ward neural network. The whole process is shown in the fol-
lowings:

y1 = f(W0h+ b0) (1)

y2 = f(W1y1 + b1) (2)

y = f(W2y2 + b2) (3)

where h ∈ R
d represents the input head entity embedding,

W0 ∈ R
d1×d, W1 ∈ R

d2×d1 , W2 ∈ R
d3×d2 are the

weights of the first, second, third hidden layers respectively;
b0 ∈ R

d1 , b1 ∈ R
d2 , b2 ∈ R

d3 , are the biases of the first,
second, third hidden layers respectively; d is the embedding
dimension, d1, d2, d3 are the dimensions of the first, sec-
ond, third hidden layers, f represents the nonlinear function
(Relu) (Glorot, Bordes, and Bengio 2011).

Taking the triplet (Chatou, isLocatedIn, France) for ex-
ample, the embedding of the head entity (Chatou) is h, the
embedding of the relation (isLocatedIn) is a set consisting
of : W0,W1,W2,b0,b1,b2; then we get y, the interac-
tion result of the head entity embedding and relation embed-
ding, y is projected into the embedding dimension and has
a similarity matching with the embedding of the tail entity t
(France) via an inner product:

ψscore = (Wy + b)t (4)

where W ∈ R
d×n and b ∈ R

d are the weight and bias of the
linear projection layer respectively, and they are independent
of relations and shared by all the triplets, ψscore is the score
of the triplet.

ParanE-CNN

Convolution networks are a specialized kind of neu-
ral network for processing data that has a grid-like
topology (Goodfellow, Bengio, and Courville 2016), and
they are tremendously successful in practical applica-
tions (Krizhevsky, Sutskever, and Hinton 2012). Using 2D
convolution rather than 1D convolution can increase the ex-
presiveness of the model through additional points of inter-
action between embeddings (Dettmers et al. 2018).

In ParamE-CNN, the head entity embedding h is first re-
shaped into a matrix, then the matrix has an interaction with
two convolution layers, the relation embedding r is the set
of the convolution layer weights. The specific process is as
followings:

y1 = f(h ∗ Ω0) (5)
y = vec(f(y1 ∗ Ω1)) (6)

where Ω0 ∈ R
l1×1×n1×n2 represent the parameters of the

first convolution layer, l1 is the number of the output chan-
nel, k1 and k2 are the sizes of the convolution kernels;
Ω1 ∈ R

l2×l1×n3×n4 represent the parameters of the second
convolution layer, l1 is the number of the input channel, l2 is
the number of the output channel, k3 and k4 are the sizes of
the convolution kernels; f is the activation function; the op-
eration vec is to reshape a tensor into a vector, ∗ represents
the conv olution operation.

In the triplet (Chatou, isLocatedIn, France), the embed-
ding of the head entity (Chatou) is h, the relation isLo-
catedIn embedding is the set of Ω0 and Ω1. The subse-
quent projection layer and similarity matching is similar
with ParamE-MLP.

ParamE-Gate

The gate structure plays an essential role in LSTM (Hochre-
iter and Schmidhuber 1997) and GRU (Cho et al. 2014), and
it is also widely applied in applications (LeCun, Bengio, and
Hinton 2015). The core idea of the gate structure is to let in-
formation optionally (Jozefowicz, Zaremba, and Sutskever
2015). The gate structure can learn to adaptively and nonlin-
early filter information, thus can help models to learn some-
thing more useful.

In ParamE-Gate, h still represents the head entity embed-
ding, and one gate structure is used to filter information, the
specific information flow is as followings:

y1 = σ(W0h) (7)

y2 = tanh(W1h) (8)
y = (1− y1)� y2 (9)

where σ is the sigmoid function, h ∈ R
d, W0 ∈ R

d1×d,
W1 ∈ R

d1×d represent the correspongding weights, � is a
Hadamard product.

For the triplet (Chatou, isLocatedIn, France), the entity
(Chatou) embedding is h, and the relation (isLocatedIn) em-
bedding is the set of W0,W1. In Equation 7, the sigmoid
operation sets every element in y1 between 0 and 1. Then
in Equation 9, (1 − y1) is the gate and controls how much
information of y2 is allowed to pass. The subsequent pro-
jection layer and similarity matching are also similar with
ParamE-MLP.
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Figure 2: An illustration of the proposed ParamE. Taking the triplet (Chatou, isLocatedIn, France) for example, in ParamE, the
network first loads the relation embeddings (isLocatedIn) as its parameters, then the head entity embedding (Chatou) is fed into
the network and the output is vectorized and projected to the embedding dimension, through a linear layer. Then the result has
a matrix multiplication with all the entity embeddings to get the logits. Finally, the score is generated after a sigmoid function
on the logit.

Training

Although ParamE-MLP, ParamE-CNN, ParamE-Gate have
different network architectures, the main ideas of them are
the same, which are to regard neural network parameters as
relation embeddings. They can be summrized in the follow-
ing scoring function:

ψscore = ((fnn(h; r))W + b)t (10)

where fnn represents a neural network, ParamE-MLP cor-
responds to multilayer perceptrons, ParamE-CNN corre-
sponds to convolution layers , ParamE-Gate corresponds to
and gate structure layers, more network architectures can be
explored in the future, h is the head entity embedding and
the input to a neural network, r is both the relation embed-
ding and neural network parameters, W is the parameters of
the projection layer, t is the tail entity embedding.

After we get the scores of the true triplets and false
triplets, we use a sigmoid function σ(·) to set every score
between 0 and 1, which can be represented as

p = σ(ψscore) (11)

the loss function is the binary cross entropy loss, which is
the same with ConvE (Dettmers et al. 2018). The whole in-
formation flow process is shown in Figure 2

Since the ParamE is relation-based, the training process
is different from previous models, and the ParamE is trained
relation by relation. We first divide the triplets into differ-
ent groups according to the relation type, in other words, the
triplets in one group has the same relation. We then calculate
the ratio of the number of triples in each group to the num-
ber of all triples, and the training process is group by group.
For one epoch, the number of iteration is n, and the number
of batch size is b. When training in one epoch, we randomly
pick up one group to train based on the ratio of each group,
and the number of selections in one epoch is n. For one iter-
ation, we randomly select b triplets from the corresponding
group as the input, and the network loads the relation em-
beddings as its parameters. After one iteration training, the
network parameters are saved for next loading.

In a word, we implement ParamE with three differ-
ent architectures: multilayer perceptrons, convolution layers
and gate structure layers. ParamE-MLP, ParamE-CNN, and
ParamE-Gate show the ParamE is a general model for dif-
ferent networks, and more reasonable network architectures
can be designed in the future.

Experiments

Background

Formally, if we take E and R as the sets of entities and re-
lations, respectively. A knowledge graph can be represented
as G = {(h, r, t)} ⊆ E × R × E . For each (h, r, t) ∈ G,
we denote the reverse of r by r−1, and add an additional
triplet (t, r−1,h) to G. For example, for the triplet (Chatou,
isLocatedIn, France), we add an additional triplet (France,
isLocatedIn reverse, Chatou) to G. In addition, we replace
the head or tail entity with other entities to generate false
triplets for evaluate the embedding model.

There are many models for knowledge graph embedding,
such as TransE (Bordes et al. 2013), ConvE (Dettmers et
al. 2018), and we summarize the scoring functions and em-
bedding parameter shapes of several representative knowl-
edge graph embedding models in Table 1 to compare with
ParamE.

Evaluation Protocol

The target of knowledge graph embedding is to learn a
good representation of entities, relations, and a scoring func-
tion, such that we can predict a triple (h, r, t) with h
or t unknown. When given (h, r), we should predict the
correspongding t; or given (r, t), we are to get the cor-
respongding h, which becomes predicting h when given
(t, r−1). In the experiments, this papers take one (h, r) pair
and score it against all entities simultaneously, same with
ConvE (Dettmers et al. 2018).

In our experiments, we use the proportion of correct
triples ranked in top 1,3,10, and mean reciprocal rank, the
corresponding symbols in the results tables are Hits@1,
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Table 1: Scoring Functions ψr (h, t) of different knowledge graph embedding model for link prediction, where � denotes the
Hadamard product, · denotes conjugate for complex vectors, ∗ denotes 2D convolution, f denotes activation function, fmlp(h; r)
denotes three layers perceptrons, h is the input of three layers perceptrons, r is the parameters of three layers perceptrons,
composed of W0,W1,W2,b0,b1,b2, σ denotes a sigmoid function.

Model Scoring Function ψr (h, t) Embedding Parameters
TransE(Bordes et al. 2013) −‖h+ r− t‖ h, r, t ∈ R

k

DistMult(Yang et al. 2014) 〈r,h, t〉 h, r, t ∈ R
k

ComplEx(Trouillon et al. 2016) Re(〈r,h, t〉) h, r, t ∈ C
k

ConvE(Dettmers et al. 2018) f(vec(f([r,h] ∗Ω))W)t h, r, t ∈ R
k

SACN(Shang et al. 2019) f(vec (M (h, r))W)t h, r, t ∈ R
k

RotatE(Sun et al. 2019) −‖h� r− t‖2 h, r, t ∈ C
k, |ri| = 1

ParamE-MLP (Wfmlp(h; r) + b)t h, t ∈ Rk0 , r = (Wi ∈ R
ki+1×ki ,bi ∈ R

ki+1), i = 0, 1, 2
ParamE-CNN W(vec(f(f(h ∗ Ω0) ∗ Ω1)) + b)t h, t ∈ Rk, r = (Ω0 ∈ R

l1×1×n1×n2 ,Ω1 ∈ R
l2×l1×n1×n2)

ParamE-Gate (W((1− σ(W0h))� tanh(W1h)) + b)t h, t ∈ Rk, r = (W0 ∈ R
k1×k,W1 ∈ R

k1×k)

Table 2: Statistics of different datasets
Dataset FB15k-237 WN18RR
Entities 14541 40943

Relations 237 11
Training 272115 86835

Validation 17535 3034
Test 20466 3134
All 310116 93003

Hits@3, Hits@10, MRR. Similar to previous work (Bordes
et al. 2013), we use a filtered setting,i.e we remove corrupt
triples which are already present in the or validation or test
sets.

Datasets

We use two benchmark datasets(FB15k-237 and WN18RR)
to evaluate the performances of ParamE-MLP, ParamE-
CNN, ParamE-Gate.

FB15k-237 FB15k-237 (Toutanova and Chen 2015)
dataset contains 310116 triples with 14541 entities and 237
types of relations. As a subset of FB15K (Bordes et al.
2013), originally derived from Freebase, FB15k-237 does
not consist of inverse relations.

WN18RR WN18RR (Dettmers et al. 2018) contains
93003 triples with 40943 entities and 11 kinds of relations.
WN18RR is a subset of WN18 (Bordes et al. 2013) which is
from WordNet. Comparing with WN18, WN18RR dose not
suffer inverse relation test leakage.

The details of the two datasets are listed in Table 2.

Experimental Setup

Sine ParamE is relation-based, relation embeddings are pa-
rameters of neural networks. For one time training, we load
the relation embeddings as the network parameters, so we
have to train triplets with the same relation one time. We first
divide all the triplets into different groups based on the type
of relations in triplets. In other words, triplets in one group
have the same relation. As is shown in Table 4 and Table
5, the numbers of different relation triplets vary greatly, if

the number of one group of triplets is large, we need to give
them more chances to train. So we calculate the ratio of the
number of different groups of triplets to the total number of
triplets.

There are 237 types of relations in FB15k-237 dataset,
and 11 types of relation in WN18RR dataset. As a result, the
number of iteration in FB15k-237 dataset should be larger
than in WN18RR dataset, and the batch size in FB15k-237
dataset should be smaller than in WN18RR dataset. For each
epoch, we randomly select one relation to train according
to its ration, and the number of selections is the iteration;
once we get one relation, we randomly choose some triplets
within the group with the selected relation, the number of
triplets is the batch size.

The learning rate decay is utilized for quicker conver-
gence, after several epochs, the current learning rate mul-
tiplies a decay factor. For WN18RR, after 3 epochs, the cur-
rent learning rate multiplies 0.99; for FB15k-237, the decay
period is 10 epochs, and the decay factor is 0.8. The label
smoothing (Szegedy et al. 2016) is also used to reduce over-
fitting.

For WN18RR dataset and FB15k-237 dataset, the embed-
ding dimension of entities is different in different neural net-
work architectures. In ParamE-MLP, the dimension of the
first, second, third hidden layers are 200, 400, 800, respec-
tively. After each hidden layer, there are dropout (Srivas-
tava et al. 2014) operations to release overfitting. In ParamE-
CNN, the number of output channel in the first convolution
layer is 32, and the number of output channel in the second
convolution layer is 64; the kernel size in the two convolu-
tion layers is 3 × 3.

We use the adaptive moment(Adam) algorithm (Kingma
and Ba 2014) for training these models. In ParamE-CNN, we
use batch normalization (Ioffe and Szegedy 2015) and layer
normalization (Ba, Kiros, and Hinton 2016) in ParamE-
Gate to reduce training time and increase rate of conver-
gence.

Result

The results of the ParamE models on the standard FB15k-
237 dataset, WN18RR dataset are shown in Table 3. We
compare ParamE-MLP, ParamE-CNN, ParamE-Gate with
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Table 3: Results of link prediction for FB15k-237, WN18RR

Model FB15k-237 WN18RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE(Bordes et al. 2013) 0.294 - - 0.465 0.226 - - 0.501
DistMult(Yang et al. 2014) 0.241 0.155 0.263 0.419 0.43 0.39 0.44 0.49

ComplEx(Trouillon et al. 2016) 0.247 0.158 0.275 0.428 0.44 0.41 0.46 0.51
ConvE(Dettmers et al. 2018) 0.325 0.237 0.356 0.501 0.43 0.40 0.44 0.52

SACN(Shang et al. 2019) 0.36 0.27 0.40 0.55 0.47 0.43 0.48 0.54
RotatE(Sun et al. 2019) 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571

D4-STE(Xu and Li 2019) 0.320 0.230 0.353 0.502 0.480 0.452 0.491 0.536
D4-Gumbel(Xu and Li 2019) 0.300 0.204 0.332 0.496 0.486 0.442 0.505 0.557

ParamE-MLP 0.314 0.240 0.339 0.459 0.407 0.384 0.429 0.445
ParamE-CNN 0.393 0.304 0.426 0.576 0.461 0.434 0.472 0.513
ParamE-Gate 0.399 0.310 0.438 0.573 0.489 0.462 0.506 0.538

several state-of-the-art models, including TransE (Bordes et
al. 2013), DistMult (Yang et al. 2014) , ComplEx (Trouillon
et al. 2016), ConvE (Dettmers et al. 2018) , SACN (Shang
et al. 2019), RotatE (Sun et al. 2019), D4-STE(Xu and Li
2019), and D4-Gumbel(Xu and Li 2019).

We can see that ParamE-Gate nearly outperfoms all
the other models. In FB15k-237 dataset, the ParamE-Gate
model is 3.9% higher than SACN’s MRR, 4% higher than
SACN’s Hits@1, 3.7% higher than SACN’s Hits@3, in
ParamE-CNN, the Hits@10 is 2.6% higher than SACN’s
Hits@10. In WN18RR dataset, ParamE-Gate improves upon
D4-Gumbel’s MRR by a margin of 0.3%, upon D4-STE’s
Hits@1 by a margin of 1%, upon D4-Gumbel’s Hits@3 by
a margin of 0.1%.

Due to the differences of the FB15k-237 dataset and
WN18RR dataset, some models may get high performances
in FB15k-237, like SACN, but not suitable for the WN18RR
dataset. While other models are the opposite, such as Ro-
tatE, D4-STE and D4-Gumbel. The ParamE-CNN prefers
FB15k-237 dataset rather than WN18RR dataset. However,
ParamE-Gate can work well in the both datasets.

Comparing with other evaluation criterion, the ParamE-
Gate works better on Hits@1 than Hits@3,10 or MRR.
In FB15k-237 compared with SACN, the ParanE-Gate im-
proves 4.0% on Hits@1, much better than 2.6% on Hits@10,
so the same as in WN18RR. In the training process, head
entity embeddings are like input features, and tail entity em-
beddings are like output, so the network tends to learn the
mapping between the head entity and the most likely correct
tail entity. As a result, the improvement on Hits@1 of the
ParamE is more obvisious than others.

ConvE and ParamE-CNN have similar network architec-
tures, and the difference is that the relation embeddings are
the input in ConvE, but the parameters in ParamE-CNN. Ex-
periments on the both models show the ParamE-CNN can
capture the intrinsic property and is more reasonable.

For the ParamE-MLP, ParamE-CNN, ParamE-Gate, the
ParamE-MLP gets the worst performance because MLP has
a weaker modeling ability than convolution layers and gate
structure. Although convolution layers are good at extract-
ing feature, the head entity embeddings do not have spa-

tial structure, therefore ParamE-CNN model dose not get the
best performance. Since the gate structure can optionally let
information through, useful information is allowed to pass
while the rest is filtered, so the ParamE-Gate is more effec-
tive.

Analysis of performances of different kinds of
relations

In order to make better use of the nonlinerailty ability of
neural networks, we regard networks parameters as relation
embeddings, which is the advantage of our model. How-
ever, this method may have some disadvantages. We all
know training a good neural network needs lots of data. In
the two datasets, the number of triplets belonging to dif-
ferent relations varies a lot. As is shown in Table 4, there
are totally 11 relations in WN18RR, and we list the num-
ber of triplets belonging to different relations. We can see
relation ’ hypernym’ has 34796 triplets in the training set,
1251 triplets in the test set; relation ’ similar to’ only has 80
triplets in the training set, 3 triplets in the test set. Table 5
shows information in FB15k-237, since there are 237 kinds
of relations, so we randomly select 11 relations. The relation
with the most triplets can have 10945 triplets in the train-
ing set, 1311 triplets in the test set; the relation with fewer
triplets only has 264 triplets in the training set, 18 triplets in
the test set.

We list the ParamE-Gate performance of different rela-
tions in Table 4 and Table 5 to check whether the rela-
tion with more triplets has a better result than the relation
with fewer triplets. The model is trained with all the triplets
and tested on every single relation repsectively. In Table
4, relation ’ hypernym’ with the most triplets gets a poor
performance (MRR 0.196, Hits@1 0.161, Hits@3 0.214,
Hits@10 0.261), relation ’ derivationally related form’ with
the second most triplets has a much better result (MRR
0.957, Hits@1 0.953, Hits@3 0.961, Hits@10 0.964).
Relation ’ verb group’ with only 1138 triplets in the
training set has the best result (MRR 0.975, Hits@1
0.974, Hits@3 0.974, Hits@10 0.974), however relation
’ member of domain region’ with nearly the same number
as ’ verb group’ has a much worse result (MRR 0.170,
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Table 4: The numbers and performances of different kinds of relation in WN18RR.
Relation Name training number test number MRR Hits@1 Hits@3 Hits@10

hypernym 34796 1251 0.196 0.161 0.214 0.261
derivationally related form 29715 1074 0.957 0.953 0.961 0.964

member meronym 7402 253 0.139 0.080 0.158 0.241
has part 4816 172 0.124 0.076 0.156 0.203

synset domain topic of 3116 114 0.553 0.491 0.596 0.667
instance hypernym 2921 122 0.594 0.508 0.648 0.754

also see 1299 56 0.598 0.554 0.643 0.643
verb group 1138 39 0.975 0.974 0.974 0.974

member of domain region 923 26 0.170 0.12 0.27 0.27
member of domain usage 629 24 0.025 0 0 0.125

similar to 80 3 0.186 0 0.333 0.333

Table 5: The numbers and performances of different kinds of relation in FB15k-237.
Relation Name training number test number MRR Hits@1 Hits@3 Hits@10

/people/person/profession 10945 1311 0.651 0.519 0.738 0.891
/music/genre/artists 5880 664 0.164 0.107 0.179 0.274
/film/film/language 2570 314 0.763 0.669 0.780 0.904

/music/record label/artist 2226 266 0.062 0.023 0.052 0.127
/film/film/country 2407 131 0.690 0.580 0.756 0.893

/film/film/written by 787 26 0.029 0 0.038 0.077
/people/person/languages 783 98 0.765 0.694 0.796 0.929
/film/film subject/films 603 77 0.005 0 0 0

/sports/sports team/sport 423 53 0.972 0.962 0.981 0.981
/film/film/story by 394 31 0.253 0.161 0.323 0.387

/film/film/film festivals 264 18 0.542 0.333 0.722 0.889

Hits@1 0.12, Hits@3 0.27, Hits@10 0.27). In FB15k-237
dataset from Table 5, we can also see the relation with many
triplets can have a bad result, the relation with few triplets
may have a good performance.

From the analysis above, there is no obvisious correlation
between the number of triplets and the performance for ev-
ery relation in the ParamE-Gate. This is mainly because the
ParamE-Gate can extract the features of the entire knowl-
edge graph and learn effective entity embeddings.

Conclusion and Future Work

We developed a new kind of knowledge graph embedding
method for link prediction called ParamE. The key idea of
ParamE is to regard neural network parameters as relation
embeddings. Compared with some neural network based
models, ParamE makes use of the translational properties
of relations. ParamE has a stronger expresiveness than tradi-
tional translational models. In addition, ParamE regards en-
titiy embeddings and relation embeddings are from different
vector space, i.e., one is feature space and the other is pa-
rameter space, which is very reasonable, since entities and
relations are totally different kinds of words. We implement
ParamE with three different neural network architectures:
multilayer perceptrons(MLP) (Goodfellow, Bengio, and
Courville 2016), convolution layers (Krizhevsky, Sutskever,

and Hinton 2012) and gate structure layers (Hochreiter and
Schmidhuber 1997), called ParamE-MLP, ParamE-CNN,
ParamE-Gate, respectively. The experment results on the
three ParamE models show the ParamE is a general method
for different network architectures, more reasonable archi-
tectures can be explored in the future. The ParamE mod-
els have an obvisious improvement than the previous state-
of-the-art meths such as SACN (Shang et al. 2019) , Ro-
tatE (Sun et al. 2019), D4-STE(Xu and Li 2019), and D4-
Gumbel(Xu and Li 2019) .

In the future work, we would like to incorporate graph
structure information into the ParamE models, such as the
neighbor entities. Combining graph neural network with the
ParamE models may be a good choice. In addition, we would
also like to make a study of some relations with poor perfor-
mance in Table 4 and Table 5. Some well-designed neural
networks may be able to deal with such relations.
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